Neurofunctional

Techniques

Lessons 3 & 4

7, 9 October 2024

- 1) Ca²⁺ indicators
- 2) Ca²⁺ binding
- 3) Diffusion

Calendar

- M 30 Sept: Course introduction
- W 2 Oct: Functional imaging
- F 4 Oct: Statistics (Cesca)
- M 7 Oct: Functional imaging
- W 9 Oct: Biophysics of diffusion
- F 11 Oct: Statistics (Cesca)
- M 14 Oct: Functional imaging
- W 16 Oct: General introduction to the papers for the presentations
- F 18 Oct: Statistics (Cesca)
- M 21 Oct: Modeling in neuroscience
- W 23 Oct: Practical exercises on the first part of the course
- F 25 Oct: Statistics (Cesca)
- F 25 Oct: Laboratory (14:00- 18:00) to be confirmed!
- M 28 Oct: Molecular approaches in modern neuroscience
- W 30 Oct: Genome editing in neuroscience (Dr. Jaudon)
- M 4 Nov: Optogenetics
- W 6 Nov: Papers assignment to the groups; introductions to the specific papers
- <u>T 12 Nov</u>: X-genetics + Practical exercises on the second part of the course
- W 13 Nov: Introductions to the specific papers
- M 18 Nov: Introductions to the specific papers
- 9, 10, 11 Dic (15:00-19:00): Paper presentation (all 3 days!)
- Week 16 Dic: Test (to be confirmed!)

Ca²⁺ imaging

Review Ca²⁺ signaling

Ca²⁺ indicators

- Small molecule indicators (SMIs)
- Genetically-encoded Ca²⁺ indicators (GECIs)
- Ca²⁺ binding
- Ca²⁺ diffusion
- Ca²⁺-dependent fluorescence properties
- Simplified models of Ca²⁺ dynamics
- > Imaging devises
- > What can we do with it

A bit of history: Aequorin bioluminescence

Bioluminescence is the production of light by a living organism, for example using a chemical reaction. Bioluminescence is different from fluorescence as it does not require external illumination.

Advantages: there are no problems of phototoxicity, photobleaching, autofluorescence. Disadvantages: each molecule performs only one emission cycle and recharging the coelenterazine is a slow process.

Fluorescence

Fluorescence is not produced by the organism itself; fluorescent molecules absorb photons of light (preferentially of a specific wavelength), which temporarily excite electrons to a higher energy level, giving light off as a waste product. The emitted light has a longer wavelength, and therefore lower energy, than the absorbed light.

Electromagnetic spectrum

C Sapling Learning

An example: GFP (green fluorescent protein)

Fluorescent Ca²⁺ indicator

Fluorescent indicators are advantageous because even at low concentration they allow for high-contrast labeling

How do you make a fluorescent Ca²⁺ indicator?

It should have two moieties:

- 1 acting as Ca²⁺ buffer/chelator
- 1 acting as fluorophore
- Ca²⁺ binding to the chelator moiety must affect some property of the fluorophore

There are 2 major types of fluorescent Ca²⁺ indicators:

- Small molecule indicators (SMIs), synthetic organic dyes developed since the beginning of the 1980s, mainly by Roger Tsien
- Genetically-encoded Ca²⁺ indicators (GECIs)

Small molecule indicators (SMIs) are based on:

EGTA and BATA, the 2 major exogenous Ca²⁺ buffers

- They bind 1 Ca²⁺ → important for quantitative estimation of [Ca²⁺]
- with affinities comparable to endogenous Ca²⁺
 binding proteins → they can 'read' physiological levels of [Ca²⁺]

Table 1 | Physicochemical properties of exogenous and endogenous Ca²⁺ buffers

Chelator/Ca ²⁺ -binding protein	Ca^{2+} -binding rate (k_{on})	Ca ²⁺ -unbinding rate (k _{off})	Affinity ((K _D) Refs
BAPTA*	$4 \times 10^8 \ M^{-1} \ s^{-1}$	88 s ^{-1‡}	220 nM	22,33,139
EGTA*	$1 \times 10^7 \ M^{-1} \ s^{-1}$	0.7 s ^{-1‡}	70 nM	22,77
Calbindin	$7.5 imes 10^7 M^{-1} s^{-1}$	29.5 s ⁻¹	293 nM‡	77,79
Calretinin§	$1.8 imes 10^{6} M^{-1} s^{-1}$ (T)	1.29 s ⁻¹ (T)	717 nM [‡] 78	
	$3.1 \times 10^8 \text{M}^{-1} \text{s}^{-1}$ (R)	1.73 s ⁻¹ (R)	5.6 nM‡	
Calmodulin N-lobe§	$7.7 imes 10^8 M^{\scriptscriptstyle -1} s^{\scriptscriptstyle -1}$ (T)	$1.6 \times 10^5 \text{s}^{-1}$ (T)	208 µM‡ 79	
	$3.2 \times 10^{10} M^{-1} s^{-1}$ (R)	$2.2 \times 10^4 \text{s}^{-1}$ (R)	688 nM‡	
Calmodulin C-lobe [§]	$8.4 \times 10^7 M^{-1} s^{-1}(T)$	$2.6 \times 10^3 \text{s}^{-1}(\text{T})$	$31\mu M^{\ddagger}$	79
	$2.5 \times 10^7 \text{M}^{-1} \text{s}^{-1}(\text{R})$	6.5 s ^{−1} (R)	260 nM‡	

*For the exogenous chelators, the Ca²⁺-binding rate (on rate) is ~40 times higher for BAPTA than for EGTA. By contrast, the affinity values are comparable; in fact the affinity is threefold lower for BAPTA than for EGTA. This value was calculated using $K_D = k_{off} / k_{on}$. For the Ca²⁺-binding proteins calretinin and calmodulin, Ca²⁺ binding is highly cooperative. Therefore, rates are given separately for tense (T) and relaxed (R) conformations of the protein.

Small molecule indicators (SMIs) are based on:

EGTA and BATA are the 2 major exogenous Ca²⁺ buffers

Fura-2: an example of SMI

based on **BAPTA**

Small molecule indicators (SMIs)

• SMIs are water soluble and diffuse readily through the cytosol

- \Box Pros: you can know the concentration \rightarrow important for quantitative estimation of [Ca²⁺]
- Cons: difficult to load, one cell at the time
- Membrane permeable variants (acetoxymethyl ester (AM)-conjugated) have been developed
 AM Ester Loading

SMI loading

mGluRs

SMI loading

Genetically-encoded Ca²⁺-indicators

Most of them are based on **EGFP**

We can distinguish 2 major classes:

- Fluorescence resonance energy transfer (FRET)-based GECIs (e.g. Cameleon family)
- Single-protein indicators (e.g. GCaMP family)

An example: GFP (green fluorescent protein)

Aequorea victoria

Nobel price 2008 for chemistry: Martin Chalfie, Osamiu Shimomura and Roger Tsien,

Fluorescent proteins

Fluorescence resonance energy transfer (FRET)-based GECIs

- The efficiency of this energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, making FRET extremely sensitive to small changes in distance
- Pros: ratiometric (we will come back to this)
- FRET has broad applications beyond Ca²⁺ imaging for example to detect protein-protein interactions, enzymatic reaction, protein cleavage, mechanical forces...

GCaMP family

Circularly permuted EGFP

A circular permutation is a relationship between proteins whereby the proteins have a changed order of amino acids in their peptide sequence. The result is a protein structure with different connectivity, but overall similar 3D shape.

GCaMP family

Genetically-encoded Ca²⁺-indicators

GECI	Maximum ∆ <i>F</i> / <i>F</i> in vitroª	Ca ²⁺ -free brightness (mM ⁻¹ cm ⁻¹) ^b	Ca ²⁺ -saturated brightness (mM ⁻¹ cm ⁻¹) ^b	K _d in vitro (nM)℃	∆ <i>F</i> / <i>F</i> per AP in tissue ^d	Half-decay rate in tissue (ms) ^e	Refs.
YC3.60	-0.66 (ECFP)	8.8 ^f	3.1	780	-0.01	410	137,138
	+0.77 (cpVenus)	2.4 ^f	11		+0.02		
YC3.60 3GS	–0.66 (ECFP)	8.8 ^g	3.1	140	-0.01	470	139,140
	+0.77 (cpVenus)	2.4 ^g	11		+0.01		
D3cpV	-0.46 (ECFP)	7.3 ^h	3.6	530	-0.03	9,500	141,142
	+1.1 (cpVenus)	4.8 ^h	10		+0.02		
TN-XXL	–0.5 (ECFP) +1.0 (cpCitrine)	ek of 13 EX jGCaMP8 Calcium	m indicators Ja × 🗾 🚾 Genetically encoded fluo	prescent × +			
Twitch-2B	-0.77 (mCerulean3)	https://www.janelia.org/jgcamp8-calcium-indicators				E 🕁	公
	+0.87 (cpVenus)	tting Started 💮 Save to Mendeley					
GCaMP3	+12				AREERS CONFERENCES PEOPLE	PUBLICATIONS RESEAR	CH GROUPS
GCaMP5k	+9.4	hhmi ianalia				TOBLICATIONS	\bigcirc
GCaMP6f	+52	Research Campus	Our Resear	rch Support Tear	ms Open Science	You + Janelia	About Us 🛛 🔨
GCaMP6s	+63						
R-CaMP2	+4.8						
jRGECO1a	+11	iGCaMP8 Cal	cium indicators				

Ultra-sensitive protein calcium sensors with fast kinetics

The Looger Lab and the GENIE Project Team at HHMI Janelia have developed a new suite of jGCaMP8 calcium indicators, built on the GCaMP scaffold. The jGCaMP8 sensors have fast kinetics without compromising sensitivity, setting a new standard for *in vivo* imaging. Sensors that have been extensively tested in mammalian neurons *in vivo* and *in vitro* are:

- jGCaMP8f (fast): 4x faster rise time, 2.5x faster decay time than jGCaMP7f
- jGCaMP8m (medium): almost 4x faster rise time and 3.5x more sensitive than jGCaMP7f
- jGCaMP8s (sensitive): 2x more sensitive than jGCaMP7s, >2x faster than jGCaMP7f (at 1 AP)

The plasmids are available on Addgene!

Update (6/23/2021):

jRCaMP1b

+6.2

jGCaMP8-expressing flies are now available from The Bloomington Drosophila Stock Center. Search for "jGCaMP8" to see all available strains. See results of testing in Drosophila below.

Pros and Cons of GECIs

1) Long-term (days, weeks, months) expression and imaging in vivo

Pros and Cons of GECIs

Rational Engineering of XCaMPs, a Multicolor GECI Suite for *In Vivo* Imaging of Complex Brain Circuit Dynamics

Graphical Abstract

Authors

Masatoshi Inoue, Atsuya Takeuchi, Satoshi Manita, ..., Karl Deisseroth, Kazuo Kitamura, Haruhiko Bito

Correspondence

hbito@m.u-tokyo.ac.jp

In Brief

Quadricolor suite of genetically encoded calcium indicators for multiplex recording in the brain.

Multicolor XCamPs

Dual color simultaneous imaging of axons and dendrites in the barrel cortex

Can we image deep brain structures non-invasively?

D λ=1064 nm GSLD, Resonant 30 Hz imaging

Fluorescence imaging with longer wavelength has the advantage of minimizing both the scattering of excitation light and the absorption of emission when compared to green probes

Pros and <u>Cons</u> of GECIs

- 1) Indicator concentration not known
- Because (often) based on calmodulin (4 cooperative Ca²⁺ binding sites) →
 Ca²⁺ binding is cooperative

Difficult to relate ΔF to $\Delta [Ca^{2+}]$

Conclusions

- 1. Ca²⁺ indicators are fluorescent Ca²⁺ indicators
- 2. Small molecule indicators (SMIs)
 - a. Based on EGTA/BAPTA
 - b. Soluble or membrane permeable
 - c. Pros: They bind 1 Ca²⁺

For the soluble ones, we know the concentration

Quantitative

3. Genetically-encoded Ca²⁺ indicators (GECIs)

- a. Based on EGFP or other fluorescent proteins
- b. The most commonly used are those based on circularly permuted fluorescent proteins (e.g. GCaMPs)
- c. Pros: Long-term *in vivo* experiments

Cell-type specific expression (e.g. excitatory vs. inhibitory neurons)

Specific subcellular locations (e.g. presynaptic bouton)

Ca²⁺ imaging

- Review Ca²⁺ signaling
- > Ca²⁺ indicators

Ca²⁺ binding

- Dissociation constant
- Calcium binding ratio
- Cooperative binding
- Ca²⁺ diffusion
- Ca²⁺-dependent fluorescence properties
- Simplified models of Ca²⁺ dynamics
- > Imaging devises
- > What can we do with it

Independent Ca²⁺ binding

The indicator binds 1 Ca²⁺

(Alternatively it binds multiple Ca²⁺ but it does so independently, non-cooperatively)

Independent Ca²⁺ binding

 K_d = Dissociation constant. When $[Ca^{2+}] = K_d 50\%$ of the buffer is saturated.Attention:Low K_d = high affinityHigh K_d = low affinity

The affinity of the indicator should match the expected range of $[Ca^{2+}]$ 'seen' by the indicator Affinity too low $(K_d \text{ high}) \rightarrow$ not enough sensitivity Affinity too high $(K_d \text{ low}) \rightarrow$ saturation

Independent Ca²⁺ binding

$$S = \frac{[CaB]}{[B]_T} = \frac{[Ca]}{[Ca] + K_d}$$

An example: Fluo family of Ca²⁺ indicators

Ca²⁺-binding ratio

Buffering capacity = buffering strength = Ca^{2+} -binding efficiency = Ca^{2+} -binding ratio = κ_B

κ_B = how fast [CaB] changes relative to Δ[Ca²⁺]

- = capacity of absorbing extra Ca²⁺
- = Ca²⁺ buffering capacity

Ca²⁺-binding ratio

κ_B decreases when [Ca²⁺] increases according to the 2 power of [Ca²⁺] Buffering capacity decreases quickly the more Ca²⁺ you give to B (This also makes sense!) **Trends in Neurosciences**

Opinion

An Inconvenient Truth: Calcium Sensors Are Calcium Buffers

Shane M. McMahon¹ and Meyer B. Jackson^{1,*}

Exogenous vs. endogenous Ca²⁺-binding ratio

At any given moment, free [Ca²⁺]_i is determined by the balance between

- Ca²⁺ influx
- Ca²⁺ efflux
- Ca²⁺ exchange with internal stores
- Ca²⁺ sequestration by endogenous buffers (Ca²⁺ -binding proteins)

It is important to have a good estimation of κ_B of the added fluorescent indicator relative to the κ_B of the endogenous buffers, in order not to alter (too much) the free Ca²⁺ signal.

An added exogenous κ_B larger than the endogenous κ_B of the neuron deforms the very same signal we wish to measure

It is important to have a good estimation of κ_B of the added fluorescent indicator relative to the κ_B of the endogenous buffers, in order not to alter (too much) the free Ca²⁺ signal.

Many GECIs exhibit however cooperative Ca²⁺ binding

Cooperative Ca²⁺ binding

The buffer binds <u>x</u> Ca²⁺ non-independently, cooperatively (for calmodulin x = 4)

$$\mathbf{X}\mathbf{C}a^{2+} + \mathbf{B} \qquad \stackrel{\stackrel{k_{on}}{\rightarrow}}{\underset{k_{off}}{\leftarrow}} \mathbf{C}\mathbf{X}\mathbf{B}$$
$$K_{A} = \frac{[\mathbf{C}a^{n}\mathbf{B}]}{[\mathbf{C}a^{n}\mathbf{B}]}$$

n = Hill coefficient (it is not the number of Ca^{2+} binding sites, but an empirical parameter describing cooperativity; generally \leq binding sites)

 K_A = apparent dissociation constant = K_d^n

Cooperative Ca²⁺ binding

(the [Ca²⁺] at half-maximal occupancy is K_d , not $K_A = K_d^n$)

Relationship non-monotonic, making interpretation of fluorescent signals extremely difficult

Cooperative Ca²⁺ binding

Cooperative binding makes it difficult to correlate fluorescence to [Ca²⁺]

Conclusion

- 1. K_d = Dissociation constant
 - a. It depends on the intrinsic properties of B
 - b. It needs to match the [Ca²⁺] we want to detect

2. $\kappa_B = Ca^{2+}$ -binding ratio

- a. It depends on
 - ≻ [B]
 - intrinsic properties of B (K_d)
 - ➢ [Ca²⁺]
- b. κ_B of exogenous indicators needs not to overwhelm κ_B of endogenous buffers
- 3. Cooperativity binding makes quantitative Ca²⁺ imaging arduous

Further readings

Edited by Romain Brette and Alain Destexhe

Handbook of Neural Activity Measurement

Neuron Primer

Imaging Calcium in Neurons

Christine Grienberger¹ and Arthur Konnerth^{1,*} ¹Institute of Neuroscience, Technical University Munich, Biedersteinerstr. 29, 80802 Munich, Germany ^{*}Correspondence: arthur.konnerth@irz.tum.de DOI 10.1016/j.neuron.2012.02.011

Calcium ions generate versatile intracellular signals that control key functions in all types of neurons. Imaging calcium in neurons is particularly important because calcium signals exert their highly specific functions in well-defined cellular subcompartments. In this Primer, we briefly review the general mechanisms of neuronal calcium signaling. We then introduce the calcium imaging devices, including confocal and two-photon microscopy as well as miniaturized devices that are used in freely moving animals. We provide an overview of the classical chemical fluorescent calcium indicators and of the protein-based genetically encoded calcium indicators. Using application examples, we introduce new developments in the field, such as calcium imaging in awake, behaving animals and the use of calcium imaging for mapping single spine sensory inputs in cortical neurons in vivo. We conclude by providing an outlook on the prospects of calcium imaging for the analysis of neuronal signaling and plasticity in various animal models.

CAMBRIDGE

Diffusion

- Review Ca²⁺ signaling
- > Ca²⁺ indicators
- > Ca²⁺ binding
- Ca²⁺ diffusion
- Ca²⁺-dependent fluorescence properties
- Simplified models of Ca²⁺ dynamics
- Imaging devises
- > Applications

Objective

To understand how the <u>timescale</u> of diffusion relates to <u>length</u> scales

Thermal energy

For every degree of freedom (= for every way that a particle can move, either forward and backward, left and right, up and down, or rotations), a particle has a kinetic energy proportional to the temperature.

The proportionality constant is the **Boltzmann constant (k) = 1.38 \times 10^{-23} \text{ J/K}**

Kinetic energy:
$$\left\langle \frac{1}{2} \boldsymbol{m} \boldsymbol{v}_{\chi}^{2} \right\rangle = \frac{1}{2} \boldsymbol{K} \boldsymbol{T}$$

The mass of a calcium ion is 6.66×10^{-26} Kg; Room temperature = 300 K

$$\langle v_x^2 \rangle$$
 = 6 x 10⁴ m²/s² $\rightarrow \overline{v_x}$ = 250 m/s (900 km/hr)

Collisions produce a random walk

A particle in solution constantly (10^{13} times per second) bumps into H₂O and other molecules, which constantly changes its direction.

The so called brownian motion

(Robert Brown, botanist)

Ca²⁺ diffusion

Ca²⁺ diffusion

Relationship between spatial and temporal scales

Diffusion is fast at short length scales and becomes slower and slower at long length scales

- To diffuse across a **synapse** (1 μm), it takes Ca²⁺ 8 ms (not 4 ns)
- To diffuse across a soma (10 μm), it takes Ca²⁺ 800 ms (not 40 ns)
- To diffuse down a **dendrite** (1 mm), it takes Ca²⁺ ???
- To diffuse down an **axon** (1 m), it takes Ca²⁺ ????

Diffusion in 1-D

You can get an intuition why this is the case by analyzing how ions diffuse in 1-D, for example along an axon

Diffusion in 1-D

What is the average position of all the particles?

- Each particle is moving left (p=0.5) or right (p=0.5) by a distance δ at a velocity $\overline{v_x}$ for some time τ before a collision.
- After each collision $\overline{v_x}$ is randomly reset to the left or to the right.
- Each particle is independent
- On average, particles stay clustered around the initial position = the peak of the Gaussian stays fixed at the center (µ = 0)

What is diffusion?

On average, how far do particles travel/get from where they started?

This is simply how wide the Gaussian distribution is

$$ho(x,t)=rac{1}{\sqrt{4\pi Dt}}e^{-rac{x^2}{4Dt}}$$

With $\mu = 0$ $\sigma^2 = 4Dt$ $\sigma^2 = 2Dt$ $\sigma = \sqrt{2Dt}$ (D = diffusion coefficient)

 $/2\pi\sigma^2$

Mean displacement = r = standard deviation =
$$\sigma = \sqrt{Var} = \sqrt{2Dt}$$

with D = $\frac{\delta^2}{2\tau}$ (D is the diffusion coefficient)
 $f(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

(I have posted an easy to understand derivation of this important result)

Low Mobility of the Ca²⁺ Buffers in Axons of Cultured Aplysia Neurons

- Neuron loaded with the indicator Fura-2
- Ca²⁺ (100 μM) pressure injected in the center of the axon at time 0

How long will it take for Ca²⁺ to be uniformly distributed across a subcellular compartment?

In one dimension: mean displacement = $r = \sigma = \sqrt{2Dt} \rightarrow t = \frac{r^2}{2D}$ In two dimension: mean displacement = $r = \sigma = \sqrt{4Dt} \rightarrow t = \frac{r^2}{4D}$ In three dimension: mean displacement = $r = \sigma = \sqrt{6Dt} \rightarrow t = \frac{r^2}{6D}$

- 5) Some axons in your brain can be 1 m long. Assuming a diffusional constant for Ca^{2+} (D_{Ca}) of 20 μ m²s⁻¹, how long would it take for Ca^{2+} to diffuse from the soma to the terminal bouton if there were only free diffusion in 1 D?
 - a) 80 min
 - b) 80 hours
 - c) 80 days
 - d) 8 months
 - e) 8 years
 - f) 80 years
 - g) 800 years

Lower limit of (Ca²⁺) imaging (1)

Lower limit of (Ca²⁺) imaging (1)

Ca²⁺ important for synaptic transmission

Average residual Ca²⁺ we can 'see' with Ca²⁺ imaging after <u>diffusion</u> and <u>equilibration</u> with <u>endogenous</u> and <u>exogenous</u> (= Ca²⁺ indicators) <u>buffers</u>

Lower limit of (Ca²⁺) imaging (1)

Many Ca^{2+} -dependent events (e.g. synaptic transmission) depends on local nanodomains (few hundreds nanometers) of high Ca^{2+} (100 μ M) that develop and collapse within tens to hundreds of microseconds following the opening of Ca^{2+} permeable channels

10 - 100 μM Ca²⁺ are required for synaptic transmission

Residual Ca²⁺ in the presynaptic bouton, as measured with Ca²⁺ imaging, is ≈1 µM

Lower limit of (Ca²⁺) imaging (2)

Due to the diffraction limit (≈ 200 nm)

Comparing slow (EGTA) and fast (BAPTA) Ca²⁺ buffers to estimate the distance between intracellular targets and Ca²⁺ channels

At 10-20 nm distance:

- high [Ca²⁺], high P_r
- Sensitive to BAPTA
- Insensitive to EGTA

- At 100-200 nm distance:
- \blacktriangleright low [Ca²⁺], low P_r
- Sensitive to BAPTA
- Sensitive to EGTA

Example: sensitivity of different Ca_v2.1 splice variants to EGTA-AM

Thalhammer et al., 2017

Conclusion

- 1. A particle has a kinetic energy proportional to the temperature $(\overline{v_x} = 250 \text{ m/s} \text{ at RT for Ca}^{2+})$
- 2. A particle in solution constantly (10¹³ times per second) bumps into other particles, which changes its direction
- 3. As a result, diffusion is fast at short length scales and slower at long length scales or

4.
$$t_{diffusion} = \frac{r^2}{2D}$$
 (in one dimension)

5. We can only image the average 'residual' [Ca²⁺] that remains after initial concentration gradients have equilibrated by diffusion

Further readings

Random

Walks in

Biology

Howard C. Berg

New, expanded editio

REVIEWS

The control of release probability at nerve terminals

Jeremy S. Dittman* and Timothy A. Ryan *

Abstract | Exocytosis is a fundamental membrane fusion process by which the soluble or membrane-associated cargoes of a secretory vesicle are delivered to the extracellular milieu or the cell surface. While essential for all organs, the brain relies on a specialized form of exocytosis to mediate information flow throughout its vast circuitry. Neurotransmitter-laden synaptic vesicles fuse with the plasma membrane on cue with astonishing speed in a probabilistic process that is both tightly regulated and capable of a fascinating array of plasticities. Here, we examine progress in the molecular understanding of synaptic vesicle fusion and its control.

Supplementary material

- We have N particles at position x = 0 at time t = 0
- At every time step τ, each particle moves independently from the others:
 - Half of the particles step right by a distance $\delta = +\overline{\nu_{\chi}} \tau$
 - Half of the particles step left by a distance $-\delta = -\overline{v_{\chi}} \tau$
- $x_i(n)$ = position of the ith particle on time-step n, with n = $\frac{c}{\tau}$
- Thus, we can write the position of each particle at time-step n as a function of the position at previous time-step:

$$x_i(n) = x_i(n-1) \pm \delta$$

Supplementary material

 $\langle x_i(\mathbf{n}) \rangle = \langle x_i(\mathbf{n} - \mathbf{1}) \rangle$

What is the average position of all the particles?

$$\langle x_i(\mathbf{n}) \rangle = \frac{1}{N} \sum_i x_i(\mathbf{n})$$

$$\langle x_i(\mathbf{n}) \rangle = \frac{1}{N} \sum_i [x_i(\mathbf{n}-\mathbf{1}) \pm \delta]$$

$$\langle x_i(\mathbf{n}) \rangle = \frac{1}{N} \sum_i [x_i(\mathbf{n}-\mathbf{1})] + \frac{1}{N} \sum_i (\pm \delta)$$

 $\langle x_i(n) \rangle = \mu = 0$

Supplementary material

On average, how far do particles travel in absolute terms?

 $\langle |x_i(\mathbf{n})| \rangle = -$

 $x_{i}(n) = x_{i}(n-1) \pm \delta$ $x_{i}^{2}(n) = (x_{i}(n-1) \pm \delta)^{2}$ $x_{i}^{2}(n) = x_{i}^{2}(n-1) \pm 2 \delta x_{i}(n-1) + \delta^{2}$

Supplementary material

At each step the variance grows linearly by δ^2

 $\sigma^2 = \langle x_i^2(\mathbf{n}) \rangle = \langle x_i^2(\mathbf{n}-\mathbf{1}) \rangle + \delta^2$

$$\langle x_i^2(\mathbf{0}) \rangle = \mathbf{0}$$
, $\langle x_i^2(\mathbf{1}) \rangle = \delta^2$, $\langle x_i^2(\mathbf{2}) \rangle = 2\delta^2$, $\langle x_i^2(\mathbf{n}) \rangle = \mathbf{n}\delta^2$

We can change time steps between collisions (n) to continuous time, with $n = \frac{\tau}{\tau}$ $\sigma^2 = \langle x_i^2(t) \rangle = \frac{\delta^2}{\tau} t$

$$\sigma^{2} = \langle x_{i}^{2}(t) \rangle = 2Dt, \text{ with } 2D = \frac{\delta^{2}}{\tau} \text{ (Diffusion coefficient; length}^{2}/\text{ time)}$$
$$\sigma = \sqrt{\langle x_{i}^{2}(n) \rangle} = \sqrt{2Dt}$$