
Introduction to Bash
Course titleCourse title

Bash Lecture 1 - Basics

https://github.com/GozDavid/bash_lectures

forked from

https://github.com/bertocco/bash_lectures

https://github.com/GozDavid/bash_lectures

Introduction to bash 2/71

★To know UNIX/Linux command line

★To gain ability in command line usage

★To introduce scripting (in bash)

★ To have some basic programming

★To introduce python programming

★To introduce useful python libraries

Traditional service delivery
Why this lecture series

Introduction to bash 3/71

★ Bibliography:

https://www.rigacci.org/docs/biblio/online/sysadmin/toc.htm

https://www.tldp.org/LDP/abs/html/

★ Learning Materials:

http://www.ee.surrey.ac.uk/Teaching/Unix/

https://github.com/gtaffoni/Learn-Python/blob/
master/Lectures/ShellLecture01.pdf

https://github.com/gtaffoni/Learn-Python/blob/
master/Lectures/ShellLecture02.pdf

https://github.com/bertocco/bash_lectures

Traditional service delivery
Bibliography and learning materials

https://www.rigacci.org/docs/biblio/online/sysadmin/toc.htm
https://www.tldp.org/LDP/abs/html/

Introduction to bash 4/71

★ How the shell works with you and linux

★ Features of a shell

★ Manipulating the shell environment

Traditional service delivery
Arguments of this lesson

Introduction to bash 5/71

★ SHELL is the human interface point for UNIX

SHELL is a program layer that provides an environment
to enter commands and parameters to produce a given
result.

To meet varying needs, UNIX has provided different
shells. They differ in the various options they give the
user to manipulate the commands and in the complexity
and capabilities of the scripting language.

● Bourne (sh)
● Bourne Again (bash)
● Korn (ksh)

Traditional service delivery
What is a shell?

● C shells (csh)
● TC-Shel (tcsh)
● Z shell (zsh)

Introduction to bash 6/71

★Flexible

★ More friendly than others

★The default in the most part of linux distributions

Traditional service delivery
Why bash?

Introduction to bash 7/71

★ General form of a command:
 command [flags] [argument1] [argument2] …
 Example:
 `ls -a -l` or `ls -al`
★ Arguments can be optional or mandatory

★ All commands have a return code (0 if OK)
 Read return code: `echo $?`

 The return codes can be used as part of control
 logic in shell scripts

★ All UNIX commands have an help:
`man command` or `man <number> command

Traditional service delivery
UNIX commands (1)

Introduction to bash 8/71

★ All commands:
– accept inputs from the standard input,

is where UNIX gets the input for a command

– display output on standard output

is where UNIX displays output from a command

– display error message on standard error

is where UNIX displays any errors as a result of the
execution of a command

★ UNIX has redirection capabilities: to redirect
one or more of these (see advanced & scripting lesson)

Traditional service delivery
UNIX commands (2)

Introduction to bash 9/71

★ Verify that you are using bash:

echo $SHELL

★Explore help command

type `help`

★ Explore help for `ls` command

type `man command_name`

★List files `ls` or `ls -l` and check differences

★ List all files `ls -al`

★List files by date (direct and reverse order) `ls -trl`

Traditional service delivery
Exercises

Introduction to bash 10/71

★When one or more strings are provided as arguments,
echo by default repeats those strings on the screen.
Example (try)
echo This is a pen.
It is not necessary to surround the strings with quotes,

as it does not affect what is written on the screen. If
quotes (either single or double) are used, they are not
repeated on the screen (try `echo “This is a pen.”`).
★`echo` can also show the value of a particular variable if

the name of the variable is preceded directly (i.e., with no
intervening spaces) by the dollar character ($), which
tells the shell to substitute the value of the variable for its
name. Example (try):
x=5; echo The number is $x.

Traditional service delivery
Command `echo` and strings

Introduction to bash 11/71

★echo This is a pen.

★x=5
echo The number is $x.
echo “The number is $x.”

★Simple backup script
 OF=/home/me/my-backup-$(date +%Y%m%d).tgz
 tar -czf $OF <path>/dir_or_file_to_tar
 ls -l (to check the result)

Traditional service delivery
Command `echo` examples

Introduction to bash 12/71

`export` exports environment variables (also to children of
the current process). Example:
ubuntu~$ export a=test_env
ubuntu:~$ echo $a
test_env
ubuntu:~$ /bin/bash
ubuntu:~$ echo $a
test_env
ubuntu:~$ exit
exit
ubuntu:~$ echo $a
test_env
`export` called with no arguments prints all of the variables
in the shell's environment.
`unset` frees variables

Traditional service delivery
`export`

Introduction to bash 13/71

★`passwd` changes user’s password

Example: type `passwd`
$ passwd
Changing password for bertocco.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
Sorry, passwords do not match
passwd: Authentication token manipulation error
passwd: password unchanged
$ passwd
Changing password for bertocco.
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

Traditional service delivery
User related commands: passwd

Introduction to bash 14/71

★`who` show who is logged on

Print information about users who are currently logged

in.

★`whoami`

Print the user name associated with the current

effective user ID.

Exercise:

try the commands and then type `man who`

and try some option

Traditional service delivery
User related commands: who and whoami

Introduction to bash 15/71

Traditional service delivery
File manipulation commands File manipulation commands (1)

It exists a set of file manipulation commands to manage files and directories.

To use these commands, the user needs to have right on the file to manage.

drwxrwxr-x 2 bertocco bertocco 20480 Dec 14 09:00 BACKUP

 owner group size last_access_date file-name

drwxrwxr-x permissions representation:

 d means it is a directory (- for a file)

 rwx means readable, writable, executable by owner

 rwx readable, writable, executable by group

 r-x readable, NOT writable, executable by

Introduction to bash 16/71

Traditional service delivery
File manipulation commands File Permissions

Understand the meaning of:

drwxrwxr-x 2 bertocco bertocco 4096 Apr 26 2018 config

-rw-rw-r-- 1 bertocco bertocco 10240 Mar 13 2017 config.tar

-rw------- 1 bertocco bertocco 960065536 Dec 3 22:02 core.3040

-rw-rw-r-- 1 bertocco bertocco 7290880 May 8 2017 demo_EGIconf.tar

drwxr-xr-x. 4 bertocco bertocco 4096 Dec 7 15:57 Desktop

drwx------. 12 bertocco bertocco 4096 Aug 13 19:01 dev

drwxr-xr-x. 14 bertocco bertocco 4096 Nov 28 17:18 Documents

drwxr-----. 13 bertocco bertocco 8192 Dec 10 12:35 Downloads

drwxrwxr-x 2 bertocco bertocco 147 Apr 24 2018 exchange

-rw-r--r-- 1 bertocco bertocco 181 Apr 13 2017 filmatini_utili.txt

Introduction to bash 17/71

Traditional service delivery
File manipulation commands Change File Permissions

 Change read permission (similarly for write ‘w’ and execute ‘x’):

-rw-rw-r-- 1 bertocco bertocco 0 Dec 14 15:30 pippo

 $ chmod -r pippo # remove all read permissions. Check:

 $ ls -l pippo

 --w--w---- 1 bertocco bertocco 0 Dec 14 15:30 pippo

 $ chmod +r pippo # add all read permissions, Check:

 $ ls -l pippo

 -rw-rw-r-- 1 bertocco bertocco 0 Dec 14 15:30 pippo

 $ chmod -r pippo # remove a new time all permissions, to restart from

 --w--w---- 1 bertocco bertocco 0 Dec 14 15:30 pippo

 $ chmod u+r pippo # add read permission to user

 $ ls -l pippo

 -rw--w---- 1 bertocco bertocco 0 Dec 14 15:30 pippo

 $ chmod g+r pippo # add read permission to group

 $ ls -l pippo

 -rw-rw---- 1 bertocco bertocco 0 Dec 14 15:30 pippo

 $ chmod a+r pippo # add read permission to all

 $ ls -l pippo

 -rw-rw-r-- 1 bertocco bertocco 0 Dec 14 15:30 pippo

Introduction to bash 18/71

Traditional service delivery
File manipulation commands Main file manipulation commands

– `touch` creates a file

– `mkdir mydir` creates a directory (where you are)

– `mkdir -p /onedir/twodir/threedir`

– `rmdir mydir` delete an empty directory

– `rm -rf` force to recursively delete a non empty directory

– `cp file1 file2` copy file1 on file2 (overwriting it if already exists,

 creating file2 if it does not exist)

– `cp -i file1 file2` before copy asks “are you sure?”

– `cp file1 file2` remove the -i flag if set

– `rm file1` removes file1

– `mv file1 file2` moves file1 on file2 # it is the same of :

– `cp file1 file2`; `rm file1`

Introduction to bash 19/71

– Create a file

– Create a directory

– Create a directory tree

– Create files in the directory tree

– Remove a file

– remove a directory (empty and not empty)

– remove a directory tree (empty and not empty)

– Rename a file

Traditional service delivery
File manipulation commands: Exercises

Introduction to bash 20/71

Traditional service delivery
`ls` (1)

`ls` can be used to inquire about the various
attributes of one or more files or directories.
You must have read permission to a directory to be

able to use the ls command on that directory and the
files under that directory.

The `ls` command generates the output to standard
output, which can be redirected, using the UNIX
redirection operator >, to a file.

Introduction to bash 21/71

Traditional service delivery
`ls` (2)

You can provide the names of one or more filenames or
directories to the ls command. The file and directory
names are optional. If you do not provide them, UNIX
processes the current directory.
Be default, the list of files within a directory is sorted by

filename. You can modify the sort order by using some of
the flags.
You should also be aware that the files starting with .

(period) will not be processed unless you use the -a flag
with the ls command. This means that the entries .
(single period) and .. (two consecutive periods) will not
be processed by default.

Introduction to bash 22/71

Traditional service delivery
`ls`: Exercices

– Try and understand differences:
ls; ls -l; ls -al
– Try and understand differences:

ls -trl; ls -tl

- Try an output redirection:

ls -l > myfileout.txt

Introduction to bash 23/71

Traditional service delivery
`cat`

`cat` is used to display a text file or to concatenate
multiple files into a single file.

By default, the cat command generates outputs into the
standard output and accepts input from standard input.

 The cat command takes in one or more filenames as its
arguments. The files are concatenated in the order they
appear in the argument list.

Introduction to bash 24/71

Traditional service delivery
`cat`: Exercises

– Display file on a terminal

cat testfile

– concatenate multiple files for display on the terminal

cat testfile1 testfile2 testfile3

– concatenate these files into a file called testfile, use the
redirection operator > as follows:

cat testfile1 testfile2 testfile2 > testfile

– If the file testfile already exists, it is overwritten with the
concatenated files testfile1, testfile2 and testfile3. If testfile
already exists and you want to concatenate at the end of the
existing file, instead of using the redirection operator >, you must
use the >> (two consecutive greater than sign) operator as
follows:

cat testfile1 testfile2 testfile2 >> testfile

Introduction to bash 25/71

Traditional service delivery
`ln`

`ln` provides alternate names for the same file.

It links a file name to another one and it is possible to link a file to
another name in the same directory or the same name in another
directory.

When linking a filename to another filename, you can specify only two
arguments: the source filename and the target filename. When linking a
filename to a directory, you can specify multiple filenames to be linked
to the same directory.

The flags that can be used with the ln command are as follows:

-s to create a soft link to another file or directory. In a soft link, the linked
file contains the name of the original file. When an operation on the
linked filename is done, the name of the original file in the link is used
to reference the original file.

-f to ensure that the destination filename is replaced by the linked
filename if the file already exists.

Introduction to bash 26/71

Traditional service delivery
`ln`: Exercices
★If you want to link testfile1 to testfile2 in the current directory, execute the

following command:

ln testfile1 testfile2

This creates a hard linked testfile2 linking it to tesftfile1. In this case, if one of
the files is removed, the other will remain unaltered.

★If testfile is in the current directory and is to be linked to testfile in the
directory /u/testuser/testdir, execute the following command:

ln testfile /u/testuser/testdir

★To create a symbolic link of testfile1 in the current directory, execute the
following command:

ln -s testfile1 testfile2

This creates a linked testfile2, which will contain the name of testfile1. If you

remove testfile1, you will be left with an orphan testfile2, which points to
nowhere.

Introduction to bash 27/71

★To execute a command, UNIX has to locate the
command before it can execute it
★UNIX uses the concept of search path to locate the
commands.
★Search path is a list of directories in the order to be
searched for locating commands. Usually it contains
standard paths (/bin, /usr/bin, ...)
★Modify the search path for your environment
modifying the PATH environment variable

Traditional service delivery
Locating commands

Introduction to bash 28/71

Traditional service delivery
`which`

★`which` can be used to find whether a particular
command exists in you search path. If it does exist,
which tells you which directory contains that
command.

Examples (try with existing and not existing
commands):
which pippo
which gedit
which vim

Introduction to bash 29/71

Traditional service delivery
File information commands

★Each file and directory in UNIX has several
attributes associated with it. UNIX provides several
commands to inquire about and process these
attributes

Introduction to bash 30/71

Traditional service delivery
`find`

★`find` search for the particular file giving the flexibility
to search for a file by various attributes: name, size,
permission, and so on. Additionally, the find
command allows to execute commands on the files
that are found as a result of the search.
Command:
find directory-name search-expression

Introduction to bash 31/71

Traditional service delivery
`find` Examples (try)

find . -name pippo
find /etc -name networking
find /etc -name netw # nothing found
find /etc -name netw*

find -size 18 # 18 blocks files

find -size 1024c # 1024 bytes (`du -b`)

find . -print

Try other options

Introduction to bash 32/71

Traditional service delivery
`file`

★`file` can be used to determine the type of the
specified file.
Examples (try):
$ file /etc/networking/interfaces
/etc/networking/interfaces: cannot open

`/etc/networking/interfaces’ (No such file or directory)
$ file /etc/network/interfaces
/etc/network/interfaces: ASCII text

Introduction to bash 33/71

Traditional service delivery
UNIX Processes

Usually, a command or a script that you can execute consists of one or

more processes.
The processes can be categorized into the following broad groups:
★ Interactive processes, which are those executed at the terminal.

Can execute either in foreground or in background. In a foreground
process, the input is accepted from standard input, output is
displayed to standard output, and error messages to standard error.
In background, the terminal is detached from the process so that it
can be used for executing other commands. It is possible to move a
process from foreground to background and vice versa (<ctrl+bg>;
<ctrl+fg>.

★ Batch processes are not submitted from terminals. They are
submitted to job queues to be executed sequentially.

★ Deamons are never-ending processes that wait to service requests
from other processes.

Introduction to bash 34/71

Traditional service delivery
Process attributes

★In UNIX, each process has a number of attributes associated with it. The
following is a list of some of these attributes:

– Process ID is a unique identifier assigned to each process

– Real User ID is the user ID of the user who initiated the process.

– Effective User ID is the user ID associated with each process. It
determines the process's access to system resources. Under normal
circumstances, the Real User ID and Effective User ID are one and the
same. They can differ by setting the Set User ID flag on the executable
program, if you want a program to be executed with special privilege
without actually granting the user special privilege.

– Real Group ID is the group ID of the user who initiated the process.

– Effective Group ID is the group ID that determines the access rights.
The effective group ID is similar to the effective user ID.

– Priority (Nice Number) is the priority associated with a process relative
to the other processes executing in the system.

Introduction to bash 35/71

Traditional service delivery
Process Related Commands

★a command or a script that you can execute consists
of one or more processes.
The main commands related to processes are:
– `kill`
– `ps`
– `wait`
– `nohup`
– `sleep`

Introduction to bash 36/71

Traditional service delivery
`ps`

★`ps` command is used to find out which processes
are currently running.
Exercises:
– Try the following commands, check the differences

in the output. Read the flag meaning using

`man ps`:

ps

ps -ef

ps -aux

Introduction to bash 37/71

Traditional service delivery
`kill`

★`kill` is used to send signals to an executing process. The process must
be a nonforeground process for you to be able to send a signal to it using
this command.

★The default action of the command is to terminate the process by sending
it a signal. If the process has been programmed for receiving such a
signal. In such a case, the process will process the signal as programmed.

★ You can kill only the processes initiated by you. However, the root user
can kill any process in the system.

★The flags associated with the kill commands are as follows:
-l to obtain a list of all the signal numbers and their names that are
supported by the system.
-’signal number’ is the signal number to be sent to the process. You can
also use a signal name in place of the number. The strongest signal you
can send to a process is 9 or kill.

Introduction to bash 38/71

Traditional service delivery
`kill` Exercises

★Look for a process PID of a process belonging of
you (using ps) and kill it using two different signals:
-9 and -15.

★List all available signals and read the differences
between the two signal previously used

Introduction to bash 39/71

Traditional service delivery
`wait` with exercises

★`wait` is to wait for completion of jobs. It takes one or more process IDs
as arguments. This is useful while doing shell programming when you
want a process to be finished before the next process is invoked.
If you do not specify a process ID, UNIX will find out all the processes
running for the current environment and wait for termination of all of
them.

★Examples:

– `wait` If you want to find out whether all the processes you have
started have completed

– `wait 15060` If you want to find out whether the process ID 15060
has completed

★The return code from the wait command is zero if you invoked the wait
command without any arguments. If you invoked the wait command
with multiple process IDs, the return code depends on the return code
from the last process ID specified.

Introduction to bash 40/71

Traditional service delivery
`wait`: exercise

★From a shell launch an infinite process using:
`while true; do echo looping; sleep 2; done`

★From another shell find the pid of this process using
`ps` command
★From a third shell launch a process waiting for the
end of the initial infinite loop
pid=<your_process_pid>; wait $pid

★From a fourth shell kill the first process (pid)
★ Check in the third shell that your waiting process
ended

NOT WORKING using shells. Needs scripting: next time.

Introduction to bash 41/71

Traditional service delivery
`nohup`

★When you are executing processes under UNIX, they can be
running in foreground or background. In a foreground process,
you are waiting at the terminal for the process to finish. Under
such circumstances, you cannot use the terminal until the
process is finished. You can put the foreground process into
background as follows:

Ctrl-z
The processes in UNIX will be terminated when you logout of
the system or exit the current shell whether they are running in
foreground or background. The only way to ensure that the
process currently running is not terminated when you exit is to
use the nohup command.

Introduction to bash 42/71

Traditional service delivery
`nohup`

The nohup command has default redirection for the standard
output. It redirects the messages to a file called nohup.out
under the directory from which the command was executed.
That is, if you want to execute a script called sample_script in
background from the current directory, use the following
command:
nohup sample_script &
The & (ampersand) tells UNIX to execute the command in
background. If you omit the &, the command is executed in
foreground. In this case, all the messages will be redirected to
nohup.out under the current directory. If the nohup.out file
already exists, the output will be appended to it.

Introduction to bash 43/71

Traditional service delivery
`nohup`: Examples

nohup grep sample_string * &

nohup grep sample_string * > mygrep.out &

nohup my_script > my_script.out &

Introduction to bash 44/71

Traditional service delivery
`sleep`

`sleep` wait for a certain period of time between execution of
commands. This can be used in cases where you want to
check for, say, the presence of a file, every 15 minutes. The
argument is specified in seconds.
Examples: If you want to wait for 5 minutes between
commands, use:
sleep 300
Small shell script that reminds you twice to go home, with a 5-
minute wait between reminders:
echo "Time to go home"
sleep 300
echo "Final call to go home"

Introduction to bash 45/71

Traditional service delivery
File Content Related Commands

★Commands that can be used to look at the contents
of the file or parts of it. You can use these commands
to look at the top or bottom of a file, search for strings
in the file, and so on.

Introduction to bash 46/71

Traditional service delivery
`more`

★`more` can be used to display the contents of a file
one screen at a time. By default, the more command
displays one screen worth of data at a time. The
more command pauses at the end of display of each
page. To continue, press a space bar so that the next
page is displayed or press the Return or Enter key to
display the next line. Mostly the more command is
used where output from other commands are piped
into the more command for display.
★Try

Introduction to bash 47/71

Traditional service delivery
`less`

★`less` is to view the contents of a file. This may
not be available by default on all UNIX systems. It
behaves similarly to the more command. The less
command allows you to go backward as well as
forward in the file by default.
★Try
★Cat <a big file> | less

Introduction to bash 48/71

Traditional service delivery
`tail`

★`tail` to display, on standard output, the last part
of files.
 One of the flags, -f, can be used to look at the

bottom of a file continuously as it grows in size.
By default, tail displays the last 10 lines of the file.

Introduction to bash 49/71

Traditional service delivery
`wc`

`wc` counts the number of bytes, words, and lines in
specified files. A word is a number of characters stringed
together delimited either by a space or a newline character.

Following is a list of flags that can be used with the wc
command:

-l to count only the number of lines in the file.
-w to count only the number of words in the file.
-c to count only the number of bytes in the file.

You can use multiple filenames as argument to the wc
command.

Introduction to bash 50/71

Traditional service delivery
`wc` exercices

wc file

wc -w file

cat <file> | wc -l

wc -w <file1> <file2>

Introduction to bash 51/71

Traditional service delivery
`read`

`read` is used in shell scripts to read each field
from a file and assign them to shell variables. A
field is a string of bytes that are separated by a
space or newline character. If the number of fields
read is less than the number of variables
specified, the rest of the fields are unassigned.
Flag -r to treat a \(backslash) as part of the input
record and not as a control character.

Introduction to bash 52/71

Traditional service delivery
`read` Examples

The following example is a piece of shell script
code that reads first name and last name from the
file name_list.txt and prints them on the standard
output:

while read -r fname lname
do
 echo ${fname}","${lname}
done < name_list.txt

Introduction to bash 53/71

Traditional service delivery
`read` Examples

The following example is a piece of shell script
code that reads a file (name_list.txt) line by line:

while read -r line
do
 echo ${line}
done < name_list.txt

Introduction to bash 54/71

Traditional service delivery
`tee`

`tee` to execute a command and want its output
redirected to multiple files in addition to the standard
output, use the tee command. The tee command
accepts input from the standard input, so it is possible
to pipe another command to the tee command.

Following is an optional flag that can be used with the
tee command:
-a to append to the end of the specified file. The
default of the tee command is to overwrite the
specified file.

Introduction to bash 55/71

Traditional service delivery
`tee` Examples (try)

use the cat command on file1 to display on the
screen, but you want to make a copy of file2, use the
tee command as follows:

cat file1 | tee file2 | more

append file1 to the end of an already existing file2,
use the flag -a as in the following command:

cat file1 | tee -a file2 | more

Introduction to bash 56/71

Traditional service delivery
File Content Search Commands

For searching for a pattern in one or more files,
use the grep series of commands. The grep
commands search for a string in the specified
files and display the output on standard output.

Introduction to bash 57/71

Traditional service delivery
`egrep`

`egrep` extended version of grep command. This
command searches for a specified pattern in one or
more files and displays the output to standard output.
The pattern can be a regular expression to match
any single character.

* to match one or more single characters that precede the
asterisk.
^ to match the regular expression at the beginning of a line.
$ to match the regular expression at the end of a line.
+ to match one or more occurrences of a preceding regular
expression.
? to match zero or more occurrences of a preceding regular
expression.
[] to match any of the characters specified within the brackets.

Introduction to bash 58/71

Traditional service delivery
`egrep` Examples

Let us assume that we have a file called file1 whose contents
are shown below using the more command:

more file1
***** This file is a dummy file *****
which has been created
to run a test for egrep
grep series of commands are used by the following types of
people
 programmers
 end users
Believe it or not, grep series of commands are used by pros and
novices alike
***** THIS FILE IS A DUMMY FILE *****

Introduction to bash 59/71

● If you are just interested in finding the number of lines in which
the specified pattern occurs, use the -c flag as in the following
command:

 egrep -i -c dummy file1
● If you want to get a list of all lines that do not contain the

specified pattern, use the -v flag as in the following command:
 egrep -i -v dummy file1

● If you are interested in searching for a pattern that you want to
search as a word, use the -w flag as in the following command:

 egrep -w grep file1

Traditional service delivery
`egrep` Examples

Introduction to bash 60/71

● If you want to find all occurrences of dummy, use the following
command:

egrep dummy file1
***** This file is a dummy file *****

● If you want to find all occurrences of dummy, irrespective of the case,
use the -i flag as in the following command:

egrep -i dummy file1
***** This file is a dummy file *****
***** THIS FILE IS A DUMMY FILE *****

● If you want to display the relative line number of the line that contains
the pattern being searched, use the -n flag as in the following
command:

egrep -i -n dummy file1
1:***** This file is a dummy file *****
8:***** THIS FILE IS A DUMMY FILE *****

Traditional service delivery
`egrep` Examples

Introduction to bash 61/71

Bash has more configuration startup files.
They are executed at bash start-up time.
The files and sequence of the files executed differ
from the type of shell. Shell can be:

★Interactive
★Non-interactive
★Login shell
★Non-login shell

Traditional service delivery
Bash configuration

Introduction to bash 62/71

★Interactive: means that the commands are run with user-
interaction from keyboard. E.g. the shell can prompt the
user to enter input.
★Non-interactive: the shell is probably run from an

automated process so it can't assume if can request input
or that someone will see the output. E.g Maybe it is best to
write output to a log-file.
★Login: shell is run as part of the login of the user to the

system. Typically used to do any configuration that a user
needs/wants to establish his work-environment.
★Non-login: any other shell run by the user after logging on,

or which is run by any automated process not coupled to a
logged in user.

Traditional service delivery
Bash types

Introduction to bash 63/71

http://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html

★Interactive login shell, or with –login:
/etc/profile, if that file exists
~/.bash_profile,
~/.bash_login
~/.profile, in that order, and reads and executes
 --noprofile option may be used to inhibit this behavior.

When an interactive login shell exits, or a non-
interactive login shell executes the exit builtin command,
Bash reads and executes commands from the file
~/.bash_logout, if it exists.

Invoked as an interactive non-login shell
When an interactive shell that is not a login shell is
started, Bash reads and executes commands from
~/.bashrc, if that file exists. This may be inhibited by
using the --norc option. The --rcfile file option will force
Bash to read and execute commands from file instead
of ~/.bashrc.

So, typically, your ~/.bash_profile contains the line

if [-f ~/.bashrc]; then . ~/.bashrc; fi
after (or before) any login-specific initializations.

Invoked non-interactively
When Bash is started non-interactively, to run a shell
script, for example, it looks for the variable BASH_ENV
in the environment, expands its value if it appears there,
and uses the expanded value as the name of a file to
read and execute. Bash behaves as if the following
command were executed:

if [-n "$BASH_ENV"]; then . "$BASH_ENV"; fi
but the value of the PATH variable is not used to search
for the filename.

As noted above, if a non-interactive shell is invoked with
the --login option, Bash attempts to read and execute
commands from the login shell startup files.

Traditional service delivery
Bash startup files (1)

http://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html

Introduction to bash 64/71

http://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html

★interactive non-login shell
[Example: when you open a new terminal window by
pressing Ctrl+Alt+T, or just open a new terminal tab.]

bash reads and executes commands from
~/.bashrc, if that file exists.
 --norc option to inhibit this behaviour.
 --rcfile file option will force Bash to read and execute
 commands from file instead of ~/.bashrc.
So, typically, your ~/.bash_profile contains the line
if [-f ~/.bashrc]; then . ~/.bashrc; fi
after (or before) any login-specific initializations.

Traditional service delivery
Bash startup files (2)

http://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html

Introduction to bash 65/71

http://www.gnu.org/software/bash/manual/html_node/Bash-Startu
p-Files.html
★Invoked non-interactively

[Example: to run a shell script]
bash looks for the variable BASH_ENV in the environment,
expands its value if it appears there, and uses the expanded
value as the name of a file to read and execute. Bash behaves as
if the following command were executed:
if [-n "$BASH_ENV"]; then . "$BASH_ENV"; fi
but the value of the PATH variable is not used to search for the
filename.
If a non-interactive shell is invoked with the --login option, Bash
attempts to read and execute commands from the login shell
startup files.

Traditional service delivery
Bash startup files (3)

http://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html
http://www.gnu.org/software/bash/manual/html_node/Bash-Startup-Files.html

Introduction to bash 66/71

$ cat .profile
~/.profile: executed by the command interpreter for login shells.
This file is not read by bash(1), if ~/.bash_profile or
~/.bash_login exists.

if running bash
if [-n "$BASH_VERSION"]; then
 # include .bashrc if it exists
 if [-f "$HOME/.bashrc"]; then
. "$HOME/.bashrc"
 fi
fi
set PATH so it includes user's private bin directories
PATH="$HOME/bin:$HOME/.local/bin:$PATH"

Traditional service delivery
Set user’s PATH environment variable

Introduction to bash 67/71

User specific, hidden by default.

~/.bashrc
If not there simply create one.

System wide:

/etc/bash.bashrc

Traditional service delivery
~/.bashrc file

Introduction to bash 68/71

★Several commands that display the status of

various parts of the system. These commands

can be used to monitor the system status at any

point in time.

Traditional service delivery
Status commands

Introduction to bash 69/71

`date` command to display the current date and time in a specified format. If
you are root user, use the date command to set the system date.
To display the date and time, you must specify a + (plus) sign followed by the
format. The format can be as follows:
%A to display date complete with weekday name.
%b or %h to display short month name.
%B to display complete month name.
%c to display default date and time representation.
%d to display the day of the month as a number from 1 through 31.
%D to display the date in mm/dd/yy format.
%H to display the hour as a number from 00 through 23.
%I to display the hour as a number from 00 through 12.
%j to display the day of year as a number from 1 through 366.
%m to display the month as a number from 1 through 12.
%M to display the minutes as a number from 0 through 59.
%p to display AM or PM appropriately.
%r to display 12-hour clock time (01-12) using the AM-PM notation.
%S to display the seconds as a number from 0 through 59.

Traditional service delivery
`date`

Introduction to bash 70/71

Other format flags:
%T to display the time in hh:mm:ss format for 24 hour clock.
%U to display the week number of the year as a number from 1 through 53
counting Sunday as first day of the week.
%w to display the day of the week as a number from 0 through 6 with Sunday
counted as 0.
%W to display the week number of the year as a number from 1 through 53
counting Monday as first day of the week.
%x to display the default date format.
%X to display the time format.
%y to display the last two digits of the year from 00 through 99.
%Y to display the year with century as a decimal number.
%Z to display the time-zone name, if available.

Traditional service delivery
`date`

Introduction to bash 71/71

Try some example of `date` command usage with different display of day,
month, year
★If you want to display the date without formatting, use date without any

formatting descriptor as follows:
date
Sat Dec 7 11:50:59 EST 1996
★If you want to display only the date in mm/dd/yy format, use the following

commands:
date +%m/%d/%y
12/07/96
★If you want to format the date in yy/mm/dd format and time in hh:mm:ss

format, use the following command:
date "+%y/%m/%d %H:%M:%S"
96/12/07 11:57:27
★Following is another way of formatting the date:

date +%A","%B" "%d","%Y
Sunday,December 15,1996

Traditional service delivery
`date`: Exercises

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

