Artificial Intelligence for Cyber-Physical Systems

Laura Nenzi

Università degli Studi di Trieste I Semestre 2024

Lecture 4-5: Timed and Hybrid Models

Time Trigger Machine

Thermostat FSM

It could be event triggered, like the garage counter, in which case it will react whenever a *temperature* input is provided. Alternatively, it could be time triggered, meaning that it reacts at regular time intervals

Timed Models

- Like Asynchronous models, but with explicit time information
- Can make use of global time for coordination

Timed ESMs: a Light Switch

Like asynchronous ESMs, have input, output channels, state variables

- Special type of state variable called "clock"
- Clock variables evolve continuously in time
- ESM can "stay" in a mode with clock increasing monotonically from the start value

Transitions of a timed ESM

$$(off,0.5) \xrightarrow{(press=1)?} (dim,0)$$

- Mode switch: discrete action
 - machine moves from one mode to another
 - guard on the transition must be true for mode switch to occur
 - update specified by the transition will update/reset clock variables

Transitions of a timed ESM

In a mode: Timed action

- When machine stays in any given mode for time δ , each clock variable increases by δ and all other state variables remain unchanged
- Captures timing constraints
 - Resetting c to 0 from off→dim and guard c≥1 from dim→off specifies that these mode switches are ≥1

Timed Processes: explicit clock variables

Clock variables

- Like other state variables, can be used in guards
- Can be reset to 0 during mode switches
- When the machine is in a given mode for duration δ , the clock variable increases by δ

Timed Process Execution

Timed Buffer

bool

out

- Input channel in of type bool
- Output channel out of type bool
- State variable x of type bool+Ø. The value Ø indicates empty
- If x is Ø, then read new value into x, and set clock to 0
- If clock value is ≥ 2 seconds, output value of x, and set x to \emptyset

Timed State Machine representation

- Mode captures whether x==Ø
- Clock variable tracks the time that elapsed since x received a value
- Guard ensures that at least 2 seconds pass before the value of x is output
- Guard does not force transitions
 - c can keep increasing while process remains in mode full
- How do we make sure that process does not remain in full mode for at most 3 seconds?

Clock invariants

- Attempt 1: we could make the guard $2 \le c \le 3$
- Attempt 1 fails because:
 - You could keep getting new input (self-loop executes) till $c \ge 3$
- Larger problem: Guards are non-forcing: nothing requires the guard to be executed
- We can fix this by introducing clock invariants
- Clock invariant of any mode: symbolic expression that must evaluate to true at all times, and if not, the process must exit that mode

Clock invariants

Add clock invariant:

$$(mode==full) \Rightarrow (c \leq 3)$$

- Forces process to leave mode full if c becomes greater than 3
- Staying in mode full when c≥ 3 would violate the clock invariant
- Useful construct to limit how long a process stays in a certain mode

Example with two clocks

- Model with one input channel and two output channels: out₁ and out₂
- Clock c tracks time elapsed since occurrence of the input task execution
- Clock d tracks time elapsed since occurrence of output task for out₁
- Behavior of process: If input event occurs at some time t, then process issues output # on out₁ some time t' ∈ [t,t+1] and then issues output * on out₂ at time t" ∈ [t'+1, t+2]

Composing Timed Processes

- Each process stays in mode full for $t \in [B_i, A_i]$
- Need to construct a new process with 4 new modes
- Each new mode is a pair consisting of modes from process 1 and 2
- Mode switches in the new machine correspond to mode switches in the old machine
- Interesting timing behavior can arise!

Composing Timed Processes

Semi-synchrony

If $B_1 < A_1 < B_2$:

(full,full) →(full,empty) can never be enabled!

Why?

- c_1 reaches A_1 and the process gets kicked out of state (full, full)
- But c_1 cannot be greater than B_2 so, guard from (full,full) to (full,empty) is not enabled!

Semi-synchrony

- If $B_1 < A_1 < B_2$:
 - (full,full) → (full,empty) cannot happen
- If $B_1 < A_1 < B_2$:
 - (full, full) → (empty,full) will happen eventually
 - out₁ guaranteed to happen before out₂
- Implicit coordination based on delays
 - Both process clocks increase in tandem
 - Global clock-based synchronization
- Reason why timed models are called semisynchronous or partially synchronous

Formal recap of a timed process

- Timed process consists of:
 - An asynchronous process, where some of the state variables are of type clock (ranging over non-negative reals)
 - ightharpoonup A clock invariant I which is a Boolean expression over the state variables
- Inputs, Outputs, States, Initial states, Actions: Internal, Input and Output: same as for asynchronous processes
- Timed Action: Given a state q and time $\delta > 0$, action $q \to q'$ specifies a transition of duration δ if:
 - ightharpoonup q' represents a state where the non-clock variables have the same value as in q, i.e. q'(x) = q(x)
 - ightharpoonup q' represents a state where the clock variables in q are incremented by δ , i.e. q'(c) = q(c) + δ , and
 - ▶ For all times $t \in [q(c), q(c)+\delta]$, the clock invariant I is satisfied
 - ▶ If clock invariant is *convex*, enough to check clock invariant at q(c) and q(c)+ δ

Pacemaker Modeling as a Timed Process

- Most material that follows is from this paper:
- Z. Jiang, M. Pajic, S. Moarref, R. Alur, R. Mangharam, *Modeling and Verification of a Dual Chamber Implantable Pacemaker*, In Proceedings of Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2012.
- The textbook has detailed descriptions of some other pacemaker components

How does a healthy heart work?

Electrical Conduction System of the Heart

- SA node (controlled by nervous system) periodically generates an electric pulse
- This pulse causes both atria to contract pushing blood into the ventricles
- Conduction is delayed at the AV node allowing ventricles to fill
- Finally the His-Pukinje system spreads electric activation through ventricles causing them both to contract, pumping blood out of the heart

What do pacemakers do?

- Aging and/or diseases cause conduction properties of heart tissue to change leading to changes in heart rhythm
- Tachycardia: faster than desirable heart rate impairing hemo-dynamics (blood flow dynamics)
- Bradycardia: slower heart rate leading to insufficient blood supply
- Pacemakers can be used to treat bradycardia by providing pulses when heart rate is low

Implantable Pacemaker modeling

How dual-chamber pacemakers work

- Two fixed leads on wall of right atrium and ventricle respectively
- Activation of local tissue sensed by the leads (giving rise to events Atrial Sense (AS) and Ventricular Sense (VS))
- Atrial Pacing (AP) or Ventricular Pacing (VP) are delivered if no sensed events occur within deadlines

The Lower Rate Interval (LRI) mode

LRI component keeps heart rate above minimum level

K= 850ms

- LRI = lower rate interval
- LRI component keeps heart rate above minimum level
- One of the pacemaker modes of operation that models the basic timing cycle
- Measures the longest interval between ventricular events
- Clock reset when VS or VP received
- No AS received ⇒ LRI outputs AP after K time units

FSM Software Tools

- Statecharts (Harel, 1987), a notation for concurrent composition of hierarchical FSMs, has influenced many of these tools.
- One of the first tools supporting the Statecharts notation is STATEMATE (Harel et al., 1990), which subsequently evolved into Rational Rhapsody, sold by IBM.
- Almost every software engineering tool that provides UML (unified modeling language) capabilities (Booch et al., 1998).
- SyncCharts (André, 1996) is a particularly nice variant in that it borrows the rigorous semantics of Esterel (Berry and Gonthier, 1992) for composition of concurrent FSMs.
- LabVIEW supports a variant of Statecharts that can operate within dataflow diagrams
- Simulink with its Stateflow extension supports a variant that can operate within continuous-time models.
- UPPAAL (Yi, Pettersson, Larseń, mid-1990s) is is a tool for modeling, simulation, and verification of real-time systems. It was jointly developed by Uppsala University in Sweden and Aalborg University in Denmark.

Discrete System (FSM)

Continuous System

Actor Models

A box, where the inputs and the outputs are functions $S: u \rightarrow y$

Actor models are composable. We can form a cascade composition

We have so far assumed that state machines operate in a sequence of discrete reactions. We have assumed that inputs and outputs are absent between reactions.

Having continuous inputs

We will define a transition to occur when a guard on an outgoing transition from the current state becomes enabled

Thermostat FSM with a continuous-time input signal

The outputs are present only at the times the transitions are taken

State Refinements

The current state of the state machine has a state refinement that gives the dynamic behavior of the output as a function of the input.

Modal Models

A hybrid system is sometimes called a modal model because it has a finite number of modes, one for each state of the FSM, and when it is in a mode, it has dynamics specified by the state refinement.

Timed Automata

- Introduced by Alur and Dill (A theory of timed Automata, TCS, 1994)
- They are the simplest non-trivial hybrid systems
- All they do is measuring the passage of time
- A **clock** s(t) is modeled by a first-ODE: $\dot{s} = a \quad \forall t \in T_m$ where $s: \mathbb{R} \to \mathbb{R}$ is a continuous-time signal, s(t) is the value of the clock at time t, and $T_m \subset \mathbb{R}$ is the subset of time during which the hybrid system is in mode m. The rate of the clock, a, is a constant while the system is in this mode.

Timed Automata

cooling and heating are discrete states, s is a continuous state

continuous variable: x(t): \mathbb{R}

inputs: pedestrian: pure

outputs: *sigR*, *sigG*, *sigY*: pure

Hybrid Automata

- Generalization of a timed process
- Instead of timed transitions, we can have arbitrary evolution of state/output variables, typically specified using differential equations

Modeling a bouncing ball

- Ball dropped from an initial height of h_0 with an initial velocity of v_0
- Velocity changes according to $\dot{v} = -g$
- When ball hits the ground, i.e. when h(t)=0, velocity changes discretely from negative (downward) to positive (upward)
 - I.e. $v(t) \coloneqq -av(t)$, where a is a damping constant
- we can model it as a hybrid system!

Hybrid Process for Bouncing ball

Hybrid Process for Bouncing ball

Non-Zeno hybrid process for bouncing ball

Hybrid Process for Bouncing ball

What happens as $h \to 0$?

Hybrid Time Set

A hybrid time set is a finite or infinite sequence of intervals

$$\begin{split} \tau &= \{\,I_i, i = 0, \dots, M\}; \\ \bullet &\ I_i = [\tau_i, \tau_i'] \ for \ i < M \\ \bullet &\ I_M = [\tau_M, \tau_M'] \ \text{or} \ I_M = [\tau_M, \tau_M') \ \text{if} \ \mathsf{M} < \infty \\ \bullet &\ \tau_i' = \tau_{i+1} \end{split}$$

• $\tau_i \leq \tau_i'$

 $t_1 \prec t_2 \prec t_3 \prec t_4$

Hybrid Time Set: Length

Two notions of length for a hybrid time set $\tau = \{I_i, i = 0, ..., M\}$:

- Discrete extent: $<\tau>=M+1$
- Continuous extent: $||\tau|| = \sum_{i=0}^{M} |\tau_i' \tau_i|$

number of discrete transition

total duration of interval in au

Hybrid Time Set: Classification

A hybrid set $\tau = \{ I_i, i = 0, ..., M \}$ is :

- Finite: if $<\tau>$ is finite and $I_M=[\tau_M,\tau_M']$
- Infinite:if $||\tau||$ is infinite
- Zeno: if $<\tau>$ is infinite but $||\tau||$ is finite

Zeno's Paradox

- Greek philosopher Zeno's race between Achilles and a tortoise
 - ► Tortoise has a head start over Achilles, but is much slower
 - ▶ If Achilles is d meters behind at the beginning of a round and during the round, suppose Achilles runs d meters but by then, tortoise has moved a little bit further
 - ▶ At the beginning of the next round, Achilles is still behind, by $a \times d$ meters [0 < a < 1]
- By induction, if we repeat this for infinitely many rounds, Achilles will never catch up!
- If sum of durations between successive discrete actions converges to constant K, then an execution with infinitely many discrete actions describes behavior only up to time K (and does not tell us the state of the system at time K and beyond)

Zeno behaviors

- An infinite execution is called Zeno if infinite sum of all the durations is bounded by a constant, and non-Zeno if the sum diverges
- Any state in a hybrid process is:
 - Zeno if every execution starting in state is Zeno
 - ▶ Non-Zeno if there exists some non-Zeno starting in that state
- Hybrid process is non-Zeno if any state that you can reach from the initial state is non-Zeno
- ► Thermostat: non-Zeno, Bouncing ball: Zeno
- Dealing with Zeno: remove Zeno-ness through better modeling

(Linear) Hybrid Automata

Hybrid actions/transitions

$$(q, \mathbf{x}_{\tau}) \xrightarrow{\mathbf{u}(t)/\mathbf{y}(t)} \delta(q, \mathbf{x}(t+\delta))$$

- Continuous action/transition:
 - Discrete mode q does not change
 - $\mathbf{x}_{\tau} = \mathbf{x}(0)$
 - $\frac{d\mathbf{x}(t)}{dt}$ satisfies the given dynamical equation for mode q
 - Output **y** satisfies the output equation for mode $q: \mathbf{y}(t) = h_q(\mathbf{x}(t), \mathbf{u}(t))$
 - At all times $t \in [0, \delta]$, the state $\mathbf{x}(t)$ satisfies the invariant for mode m

Hybrid actions/transitions

$$(q, \mathbf{x}_{\tau}) \xrightarrow{g(\mathbf{x})/\mathbf{x} \coloneqq r(\mathbf{x})} (q', r(\mathbf{x}_{\tau}))$$

- Discrete action/transition:
 - Happens instantaneously
 - Changes discrete mode q to q'
 - Can execute only if $g(\mathbf{x}_{\tau})$ evaluates to true
 - Changes state variable value from \mathbf{x}_{τ} to $r(\mathbf{x}_{\tau})$
 - $r(\mathbf{x}_ au)$ should satisfy mode invariant of q'Output will change from $h_q(\mathbf{x}_ au)$ to $h_{q'}ig(r(\mathbf{x}_ au)ig)$

Design Application: Autonomous Guided Vehicle

When $d \in [-\epsilon, +\epsilon]$, controller decides that vehicle goes straight, otherwise executes a turn command to bring error back in the interval

- Objective: Steer vehicle to follow a given track
- ▶ Control inputs: linear speed (v), angular speed (ω) , start/stop
- Constraints on control inputs:
 - $v \in \{v_{\text{max}}, v_{\text{max}}/2, 0\}$
 - $\omega \in \{-\pi, 0, \pi\}$
- Designer choice: $v=v_{\rm max}$ only if $\omega=0$, otherwise $v=\frac{v_{\rm max}}{2}$

On/Off control for Path following

Inputs: $ss \in \{stop, start\}, d \in \mathbb{R}$

On/Off control for Path following

Design Application: Robot Coordination

- Autonomous mobile robots in a room, goal for each robot:
 - Reach a target at a known location
 - Avoid obstacles (positions not known in advance)
 - Minimize distance travelled
- Design Problems:
 - Cameras/vision systems can provide estimates of obstacle positions
 - When should a robot update its estimate of the obstacle position?
 - ▶ Robots can communicate with each other
 - ▶ How often and what information can they communicate?
 - High-level motion planning
 - ▶ What path in the speed/direction-space should the robots traverse?

Path planning with obstacle avoidance

- Assumptions:
 - Two-dimensional world
 - Robots are just points
 - Each robot travels with a fixed speed
- Dynamics for Robot R_i :
 - $\dot{x}_i = v \cos \theta_i; \dot{y}_i = v \sin \theta_i$
- Design objectives:
 - ► Eventually reach (x_f, y_f)
 - ► Always avoid Obstacle 1 and Obstacle 2
 - Minimize distance travelled

Divide path/motion planning into two parts

Computer vision tasks

- Assume computer vision algorithm identifies obstacles, and labels them with some easy-to-represent geometric shape (such as a bounding boxes)
 - ▶ In this example, we will assume a sonar-based sensor, so we will use circles

2. Actual path planning task

Assuming the vision algorithm is correct, do path planning based on the estimated shapes of obstacles

Design challenge:

- ▶ Estimate of obstacle shape is not the smallest shape containing the obstacle
- Shape estimate varies based on distance from obstacle

Estimation error

Estimated radius (from current distance d) e = r + a(d - r), where $a \in [0,1]$ is a constant

- Nobot R_1 maintains radii e_1 and e_2 that are estimates of obstacle sizes
- Every τ seconds, R_1 executes following update to get estimates of shapes of each obstacle:

$$e_1 := \min(e_1, r_1 + a(||p_1 - p_{o1}|| - r_1))$$

- We don't know r_1 , but we are guaranteed that we get a radius of an estimated shape of the obstacle that is exactly: $r_1 + a(d(p_1, p_{o_1}) r_1)$
- $\triangleright p_1$ is position of R_1
- ightharpoonup Computation of e_2 is symmetric

$$e_2 := \min(e_2, r_2 + a(||p_1 - p_{o2}|| - r_2))$$

Path planning

- Choose shortest path ρ_3 to target (to minimize time)
- If estimate of obstacle 1 intersects ρ_3 , calculate two paths that are tangent to obstacle 1 estimate
- If estimate of obstacle 2 intersects ρ_3 , or obstacle 1, calculate tangent paths
- Plausible paths: ho_1 and ho_2
- Calculate shorter one as the planned path

Dynamic path planning

- Path planning inputs:
 - Current position of robot
 - Target position
 - Position of obstacles and estimates
- Output:
 - ▶ Direction for motion assuming obstacle estimates are correct
- May be useful to execute planning algorithm again as robot moves!
 - ▶ Because estimates will improve closer to the obstacles
 - Invoke planning algorithm every τ seconds

Communication improves planning

- Every robot has its own estimate of the obstacle
- $ightharpoonup R_2$'s estimate of obstacle might be better than R_1 's
- \blacktriangleright Strategy: every au seconds, send estimates to other robot, and receive estimates
- For estimate e_i , use final estimate = $\min(e_i, e_i^{recv})$
- Re-run path planner

Improved path planning through communication

Hybrid State Machine for Communicating Robot

Advantage of using hybrid processes

- Hybrid models combine computation, communication and control
- Most real-world controllers are digital/discrete-time controllers: hybrid process/automata models describe underlying mathematical model for most CPS applications!
- We can perform design-space exploration through simulations and check safety/correctness through formal techniques such as reachability analysis