
Artificial Intelligence for
Cyber-Physical Systems

Laura Nenzi
Università degli Studi di Trieste

I Semestre 2024

Lecture 4-5: Timed and Hybrid Models

Time Trigger Machine

Thermostat FSM

cooling heating

Temp ≤ 18 → ℎ𝑒𝑎𝑡𝑂𝑁

Temp ≥ 22 → ℎ𝑒𝑎𝑡𝑂𝐹𝐹

It could be event triggered, like the garage counter, in which case it will react whenever a
temperature input is provided. Alternatively, it could be time triggered, meaning that it
reacts at regular time intervals

Timed Models

• Like Asynchronous models, but with explicit time information

• Can make use of global time for coordination

Timed ESMs: a Light Switch
Like asynchronous ESMs, have
input, output channels, state
variables

 Special type of state
variable called “clock”

 Clock variables evolve
continuously in time

 ESM can “stay” in a mode
with clock increasing
monotonically from the
start value

off dim bright
(press==1)?→
c:=0

(press==1)?

clock c:=0

(press==1)? ∧ (c≥1)

(press==1)? ∧ (c≤1)

Transitions of a timed ESM

• Mode switch: discrete action
• machine moves from one mode

to another

• guard on the transition must be
true for mode switch to occur

• update specified by the
transition will update/reset
clock variables

off dim bright
(press==1)?→
c:=0

(press==1)?

clock c:=0

(press==1)? ∧ (c≥1)

(press==1)? ∧ (c≤1)

(off,0.5) (dim,0)
(press==1)?

Transitions of a timed ESM
In a mode: Timed action

 When machine stays in any
given mode for time 𝛿, each
clock variable increases by 𝛿
and all other state variables
remain unchanged

 Captures timing constraints
 Resetting c to 0 from off→dim

and guard c≥1 from dim→off
specifies that these mode
switches are ≥1

off dim bright
(press==1)?→
c:=0

(press==1)?

clock c:=0

(press==1)? ∧ (c≥1)

(press==1)? ∧ (c≤1)

Timed Processes: explicit clock variables

• Clock variables
• Like other state variables, can be

used in guards

• Can be reset to 0 during mode
switches

• When the machine is in a given
mode for duration 𝛿, the clock
variable increases by 𝛿

off dim bright
(press==1)?→
c:=0

(press==1)?

clock c:=0

(press==1)? ∧ (c≥1)

(press==1)? ∧ (c≤1)

Timed Process Execution

10

off dim bright
(press==1)?→
c:=0

(press==1)?

clock c:=0

(press==1)? ∧ (c≥1)

(press==1)? ∧ (c≤1)

(off,0) (off,0.5) (dim,0)
(press==1)?

(dim,0.8)
(press==1)?

(bright,0.8)

(dim,3.8)

 Machine execution is
through alternating timed
transitions and mode
switches

(press==1)?

(off,3.8)0.5

2

0.8

1.8

(dim,2.0)

 Input channel in of type bool

 Output channel out of type bool

 State variable x of type bool+∅. The
value ∅ indicates empty

 If x is ∅, then read new value into x,
and set clock to 0

 If clock value is ≥ 2 seconds, output
value of x, and set x to ∅

Timed Buffer

11

bool
out

bool in
bool∅ x:= ∅, clock c:=0

Tin: (x==∅) & in?→
x:=in; c:=0;

Tout: (c≥2)→
{ out := x;

x := ∅ }

Tinfull: in? →

Timed State Machine representation

12

 Mode captures whether x==∅

 Clock variable tracks the time that
elapsed since x received a value

 Guard ensures that at least 2 seconds
pass before the value of x is output

 Guard does not force transitions
c can keep increasing while process

remains in mode full

 How do we make sure that process
does not remain in full mode for at
most 3 seconds?

empty full

c≥ 2 → out:=x, x≔∅

in?→ x:=in, c:=0

c:=0

in?

 Attempt 1: we could make the guard 2 ≤
c ≤ 3

 Attempt 1 fails because:

 You could keep getting new input (self-
loop executes) till 𝑐 ≥ 3

 Larger problem: Guards are non-forcing:
nothing requires the guard to be executed

 We can fix this by introducing clock
invariants

 Clock invariant of any mode: symbolic
expression that must evaluate to true at all
times, and if not, the process must exit
that mode

13

Clock invariants

empty full

c≥ 2 → out:=x, x≔∅

in?→ x:=in, c:=0

c:=0

in?

 Add clock invariant:

(mode==full) ⇒ (c ≤ 3)

 Forces process to leave mode full if c
becomes greater than 3

 Staying in mode full when c≥ 3
would violate the clock invariant

 Useful construct to limit how long a
process stays in a certain mode

14

Clock invariants

empty
full

c ≤ 𝟑

c≥ 2 → out:=x, x≔∅

in?→ x:=in, c:=0

c:=0

in?

 Model with one input channel and two output
channels: out1 and out2

 Clock c tracks time elapsed since occurrence
of the input task execution

 Clock d tracks time elapsed since occurrence
of output task for out1

 Behavior of process: If input event occurs at
some time t, then process issues output # on
out1 some time t’ ∈ [t,t+1] and then issues
output * on out2 at time t’’ ∈ [t’+1, t+2]

Example with two clocks

16

wait1
c≤1

idle

Wait2
c≤2

clock
c,d:=0

in? → c:=0

out1!#;d:=0 d≥ 1 →
out2!*

Composing Timed Processes

17

empty
full

c1 ≤ A1

c1≥B1 → out1:=x1, x1≔∅

in?→ x1:=in, c1:=0

c1:=0

empty
full

c2 ≥ A2

c2≥B2 → out2:=x2, x2≔∅

in?→ x2:=in, c2:=0

c2:=0

 Each process stays in mode full for
𝑡 ∈ [𝐵𝑖, 𝐴𝑖]

 Need to construct a new process
with 4 new modes

 Each new mode is a pair consisting of
modes from process 1 and 2

 Mode switches in the new machine
correspond to mode switches in the
old machine

 Interesting timing behavior can arise!

Composing Timed Processes

18

empty
full

c1 ≤A1

c1≥B1 → out1:=x1

in?→ x1:=in, c1:=0

c1:=0

empty
full

c2 ≤A2

c2≥B2 → out2:=x2

in?→ x2:=in, c2:=0

c2:=0

in?

in?

empty,
empty

full, empty
c1≤A1

empty, full
c2≤A2

full,full
c1≤A1

c2≤A2 in?

in?

in?→ x1:=in, c1:=0,
x2:=in, c2:=0

If B1 < A1 < B2 :

 (full,full) →(full,empty) can never be
enabled!

Why?

 𝑐1reaches 𝐴1 and the process gets kicked
out of state (full,full)

 But 𝑐1 cannot be greater than 𝐵2 so,
guard from (full,full) to (full,empty) is not
enabled!

Semi-synchrony

19

empty,
empty

full, empty
c1≤A1

empty, full
c2≤A2

full,full
c1≤A1

c2≤A2 in?

in?

in?→ x1:=in, c1:=0,
x2:=in, c2:=0

 If B1 < A1 < B2 :
 (full,full) → (full,empty) cannot happen

 If B1 < A1 < B2 :
 (full, full) → (empty,full) will happen

eventually

 out1 guaranteed to happen before out2

 Implicit coordination based on delays
 Both process clocks increase in tandem
 Global clock-based synchronization

 Reason why timed models are called semi-
synchronous or partially synchronous

Semi-synchrony

20

empty,
empty

full, empty
c1≤A1

empty, full
c2≤A2

full,full
c1≤A1

c2≤A2 in?

in?

in?→ x1:=in, c1:=0,
x2:=in, c2:=0

 Timed process consists of:

 An asynchronous process, where some of the state variables are of type clock (ranging over non-
negative reals)

 A clock invariant I which is a Boolean expression over the state variables

 Inputs, Outputs, States, Initial states, Actions: Internal, Input and Output: same as for asynchronous
processes

 Timed Action: Given a state q and time 𝛿 > 0, action q →
𝛿

q’ specifies a transition of duration 𝛿 if:

 q’ represents a state where the non-clock variables have the same value as in q, i.e. q’(x) = q(x)

 q’ represents a state where the clock variables in q are incremented by 𝛿, i.e. q’(c) = q(c) + 𝛿, and

 For all times t ∈ [q(c), q(c)+𝛿], the clock invariant I is satisfied

 If clock invariant is convex, enough to check clock invariant at q(c) and q(c)+𝛿

Formal recap of a timed process

21

 Most material that follows is from this paper:

Z. Jiang, M. Pajic, S. Moarref, R. Alur, R. Mangharam, Modeling and
Verification of a Dual Chamber Implantable Pacemaker, In Proceedings
of Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2012.

 The textbook has detailed descriptions of some other pacemaker
components

Pacemaker Modeling as a Timed Process

22

 SA node (controlled by nervous system)
periodically generates an electric pulse

 This pulse causes both atria to contract
pushing blood into the ventricles

 Conduction is delayed at the AV node
allowing ventricles to fill

 Finally the His-Pukinje system spreads
electric activation through ventricles
causing them both to contract, pumping
blood out of the heart

How does a healthy heart work?

23

Electrical Conduction System of the Heart

 Aging and/or diseases cause conduction
properties of heart tissue to change leading to
changes in heart rhythm

 Tachycardia: faster than desirable heart rate
impairing hemo-dynamics (blood flow
dynamics)

 Bradycardia: slower heart rate leading to
insufficient blood supply

 Pacemakers can be used to treat bradycardia by
providing pulses when heart rate is low

What do pacemakers do?

24

Implantable Pacemaker modeling

25

 Two fixed leads on wall of right atrium and ventricle respectively

 Activation of local tissue sensed by the leads (giving rise to events Atrial
Sense (AS) and Ventricular Sense (VS))

 Atrial Pacing (AP) or Ventricular Pacing (VP) are delivered if no sensed
events occur within deadlines

How dual-chamber pacemakers work

26

Heart Pacemaker

AS

VS

AP

VP

The Lower Rate Interval (LRI) mode

27

LRI component keeps heart rate above minimum level

ASed
LRI

c ≤ K

VP? → c:=0

VS? → c:=0

AS?
VS? → c:=0

VP? → c:=0

c ≥ K → AP!; c:=0

K= 850ms

 LRI = lower rate interval

 LRI component keeps heart rate above
minimum level

 One of the pacemaker modes of
operation that models the basic timing
cycle

 Measures the longest interval between
ventricular events

 Clock reset when VS or VP received

 No AS received ⇒ LRI outputs AP after
K time units

 Statecharts (Harel, 1987), a notation for concurrent composition of hierarchical FSMs,
has influenced many of these tools.

 One of the first tools supporting the Statecharts notation is STATEMATE (Harel et al.,
1990), which subsequently evolved into Rational Rhapsody, sold by IBM.

 Almost every software engineering tool that provides UML (unified modeling language)
capabilities (Booch et al., 1998).

 SyncCharts (Andre ́, 1996) is a particularly nice variant in that it borrows the rigorous
semantics of Esterel (Berry and Gonthier, 1992) for composition of concurrent FSMs.

 LabVIEW supports a variant of Statecharts that can operate within dataflow diagrams
 Simulink with its Stateflow extension supports a variant that can operate within

continuous-time models.
 UPPAAL (Yi, Pettersson, Larseń, mid-1990s) is is a tool for modeling, simulation, and

verification of real-time systems. It was jointly developed by Uppsala University in
Sweden and Aalborg University in Denmark.

FSM Software Tools

Actor Models
A box, where the inputs and the outputs are functions

𝑆

𝑆: 𝑢 → 𝑦

𝑢 𝑦

Actor models are composable. We can form a cascade composition

We have so far assumed that state machines operate in a sequence of discrete reactions.
We have assumed that inputs and outputs are absent between reactions.

Having continuous inputs

31

Input u(t) Output y

s1 s2
Guard/actionGuard/action

Guard/action

Guard/action

We will define a transition to occur when a guard on an outgoing transition from the cur-
rent state becomes enabled

Thermostat FSM with a continuous-time input signal

The outputs are present only at the times the transitions are taken

cooling heating

𝜏 𝑡 ≤ 18 → ℎ𝑒𝑎𝑡𝑂𝑁

𝜏 𝑡 ≥ 22 → ℎ𝑒𝑎𝑡𝑂𝐹𝐹

𝜏
ℎ𝑒𝑎𝑡𝑂𝑁

ℎ𝑒𝑎𝑡𝑂𝐹𝐹

cooling heating

𝜏 𝑡 ≤ 18

𝜏(𝑡) ≥ 22

The current state of the state machine has a state refinement that gives the dynamic
behavior of the output as a function of the input.

State Refinements

h 𝑡 = 0 h 𝑡 = 1

𝜏 ℎ

Modal Models

A hybrid system is sometimes called a modal model because it has a finite
number of modes, one for each state of the FSM, and when it is in a mode, it
has dynamics specified by the state refinement.

Timed Automata

• Introduced by Alur and Dill (A theory of timed Automata, TCS,1994)

• They are the simplest non-trivial hybrid systems

• All they do is measuring the passage of time

• A clock 𝑠 𝑡 is modeled by a first-ODE: ሶ𝑠 = 𝑎 ∀𝑡 ∈ 𝑇𝑚

where 𝑠 ∶ ℝ → ℝ is a continuous-time signal,
𝑠(𝑡) is the value of the clock at time 𝑡, and
𝑇𝑚 ⊂ ℝ is the subset of time during which the hybrid system is in mode 𝑚.
The rate of the clock, 𝑎, is a constant while the system is in this mode.

Timed Automata

cooling heating

𝜏 𝑡 < 20 ∧ 𝑠 𝑡 ≥ 𝑇𝑐

→ 𝑠 𝑡 ≔ 0

𝜏 𝑡 ≥ 20 ∧ 𝑠 𝑡 ≥ 𝑇ℎ

→ 𝑠 𝑡 ≔ 0

h 𝑡 = 0 h 𝑡 = 1

𝜏 ℎ

s 𝑡 : = 𝑇𝑐

ሶ𝑠 = 1 ሶ𝑠 = 1

This is an assignment, not a predicate

cooling and heating are discrete states, s is a continuous state

Temperature input 𝜏 𝑡

The output ℎ

The refinement state 𝑠.

Hybrid Automata

𝜏 ≤ 18

cooling heating

𝜏 ≤ 18 ?

𝜏 ≥ 22 ?

ሶ𝜏 = −𝛼 𝜏

ℎ

ሶ𝜏 = −𝛼 𝜏 + 𝛼𝑘

𝜏0 ≥ 18

ℎ = 0 ℎ = 1
𝜏

𝜏 ≥ 18 𝜏 ≤ 22

• Generalization of a timed process

• Instead of timed transitions, we can have arbitrary evolution of state/output
variables, typically specified using differential equations

• Ball dropped from an initial height of ℎ0 with
an initial velocity of 𝑣0

• Velocity changes according to ሶ𝑣 = −𝑔

• When ball hits the ground, i.e. when ℎ 𝑡 = 0,
velocity changes discretely from negative
(downward) to positive (upward)
• I.e. 𝑣 𝑡 ≔ −𝑎𝑣(𝑡) , where 𝑎 is a damping constant

• we can model it as a hybrid system!

Modeling a bouncing ball

40

Hybrid Process for Bouncing ball

41

ሶℎ = 𝑣
ሶ𝑣 = −𝑔

ℎ == 0
𝑣 ≔ −𝑎𝑣

ℎ = ℎ0

𝑣 = 0

Hybrid Process for Bouncing ball

42

ሶℎ = 𝑣
ሶ𝑣 = −𝑔
ℎ ≥ 0

ℎ == 0
𝑣 ≔ −𝑎𝑣

ℎ = ℎ0

𝑣 = 0

Non-Zeno hybrid process for bouncing ball

43

ሶℎ = 𝑣
ሶ𝑣 = −𝑔 ℎ = 0 →

𝑣 ≔ −𝑎𝑣ℎ = ℎ0, 𝑣 = 0

ℎ = 0 ∧ 𝑣 < 𝜖 →
𝑣 ≔ 0

halt

faling

Hybrid Process for Bouncing ball

44

What happens as ℎ → 0?

ℎ(𝑡)

ሶℎ = 𝑣
ሶ𝑣 = −𝑔

ℎ == 0
𝑣 ≔ −𝑎𝑣

ℎ = ℎ0

𝑣 = 0 ሶℎ(𝑡)

Hybrid Time Set
A hybrid time set is a finite or infinite sequence of intervals

𝜏 = { 𝐼𝑖 , 𝑖 = 0, … , 𝑀}:
• 𝐼𝑖 = 𝜏𝑖 , 𝜏𝑖

′ 𝑓𝑜𝑟 𝑖 < 𝑀
• 𝐼𝑀 = 𝜏𝑀 , 𝜏𝑀

′ or 𝐼𝑀 = [𝜏𝑀 , 𝜏𝑀
′) if M<∞

• 𝜏𝑖
′ = 𝜏𝑖+1

• 𝜏𝑖 ≤ 𝜏𝑖
′

Hybrid Time Set: Length
Two notions of length for a hybrid time set 𝜏 = { 𝐼𝑖 , 𝑖 = 0, … , 𝑀}:

• Discrete extent: < 𝜏 > = 𝑀 + 1 number of discrete transition

• Continuous extent: 𝜏 = σ𝑖=0
𝑀 𝜏𝑖

′ − 𝜏𝑖 total duration of interval in 𝜏

Hybrid Time Set: Classification

• Finite: if < 𝜏 > is finite and I𝑀 = [𝜏𝑀 , 𝜏𝑀
′]

• Infinite:if ||𝜏|| is infinite
• Zeno: if < 𝜏 > is infinite but ||𝜏|| is finite

A hybrid set 𝜏 = { 𝐼𝑖 , 𝑖 = 0, … , 𝑀} is :

Zeno’s Paradox

48

 Greek philosopher Zeno’s race between Achilles and a
tortoise
 Tortoise has a head start over Achilles, but is much slower
 If Achilles is d meters behind at the beginning of a round

and during the round, suppose Achilles runs d meters
but by then, tortoise has moved a little bit further

 At the beginning of the next round, Achilles is still behind, by 𝑎 × 𝑑
meters [0<𝑎<1]

 By induction, if we repeat this for infinitely many rounds,
Achilles will never catch up!

 If sum of durations between successive discrete actions
converges to constant 𝐾, then an execution with infinitely
many discrete actions describes behavior only up to time
𝐾 (and does not tell us the state of the system at time
𝐾 and beyond)

Zeno behaviors
 An infinite execution is called Zeno if infinite sum of all the durations is

bounded by a constant, and non-Zeno if the sum diverges

 Any state in a hybrid process is:
 Zeno if every execution starting in state is Zeno

 Non-Zeno if there exists some non-Zeno starting in that state

 Hybrid process is non-Zeno if any state that you can reach from the initial
state is non-Zeno

 Thermostat: non-Zeno, Bouncing ball: Zeno

 Dealing with Zeno: remove Zeno-ness through better modeling

(Linear) Hybrid Automata

c01(𝑥)

𝑞0 𝑞1

c01 𝑥
 𝑥 ≔ 𝐴01𝑥

ሶ𝑥 = 𝐴0𝑥 + 𝐵0 𝑢 ሶ𝑥 = 𝐴1𝑥 + 𝐵1 𝑢

c𝐼(𝑥)

c0(𝑥) c1(𝑥)

c10 𝑥
 𝑥 ≔ 𝐴10𝑥

 Continuous action/transition:

Hybrid actions/transitions

52

• Discrete mode q does not change

• 𝐱𝝉 = 𝐱(0)

•
𝑑𝐱 𝑡

𝑑𝑡
satisfies the given dynamical equation for mode 𝑞

• Output 𝐲 satisfies the output equation for mode 𝑞: 𝐲 𝑡 = ℎ𝑞(𝐱 𝑡 , 𝐮 𝑡)

• At all times 𝑡 ∈ 0, 𝛿 ,the state 𝐱 𝑡 satisfies the invariant for mode 𝑚

(𝑞, 𝐱 𝜏) 𝑞, 𝐱 t + 𝛿𝛿

𝐮(𝑡)/𝐲(𝑡)

 Discrete action/transition:

• Happens instantaneously

• Changes discrete mode 𝑞 to 𝑞′

• Can execute only if 𝑔(𝐱𝜏) evaluates to true

• Changes state variable value from 𝐱𝜏 to 𝑟 𝐱𝜏

• 𝑟 𝐱𝜏 should satisfy mode invariant of q′Output will change from ℎ𝑞 𝐱𝜏 to ℎ𝑞′ 𝑟 𝐱𝜏

Hybrid actions/transitions

53

(𝑞, 𝐱 𝜏) 𝑞′, 𝑟 𝐱𝜏

𝑔(𝐱)/𝐱 ≔ 𝑟 𝐱

 Objective: Steer vehicle to follow a given track

 Control inputs: linear speed 𝑣 , angular speed (𝜔), start/stop

 Constraints on control inputs:

 𝑣 ∈ 𝑣max, 𝑣max/2,0

 𝜔 ∈ {−𝜋, 0, 𝜋}

 Designer choice: 𝑣 = 𝑣max only if 𝜔 = 0, otherwise 𝑣 =
𝑣max

2

Design Application: Autonomous Guided Vehicle

54

𝜃

𝑦

Track

When 𝑑 ∈ −𝜖, +𝜖 , controller decides that
vehicle goes straight, otherwise executes a
turn command to bring error back in the
interval

𝑥

On/Off control for Path following

55

𝜃
𝑥

𝑦

Track

ሶ𝑥 = (𝑣max/2) cos 𝜃
ሶ𝑦 = Τ𝑣max 2 sin 𝜃

ሶ𝜃 = −𝜋
𝑑 ≥ 𝜖

ሶ𝑥 = 0
ሶ𝑦 = 0
ሶ𝜃 = 0

ሶ𝑥 = (𝑣max/2) cos 𝜃
ሶ𝑦 = Τ𝑣max 2 sin 𝜃

ሶ𝜃 = 𝜋
𝑑 ≤ −𝜖

ሶ𝑥 = 𝑣max cos 𝜃
ሶ𝑦 = 𝑣max sin 𝜃

ሶ𝜃 = 0
−𝜖 ≤ 𝑑 ≤ 𝜖

𝑑 ≤ 𝜖?

𝑑 ≤ −𝜖? 𝑑 ≥ −𝜖?

𝑑 ≥ 𝜖?

𝑠𝑠? 𝑠𝑡𝑎𝑟𝑡 ∧
𝑑 ≥ 𝜖?

𝑠𝑠? 𝑠𝑡𝑜𝑝

𝑠𝑠? 𝑠𝑡𝑜𝑝

𝑠𝑠? 𝑠𝑡𝑎𝑟𝑡 ∧
𝑑 ≤ −𝜖?

Inputs: ss ∈ 𝑠𝑡𝑜𝑝, 𝑠𝑡𝑎𝑟𝑡 , 𝑑 ∈ ℝ

Turn right

Turn left

Go straight

Stationary

𝑥 ≔ 𝑥0

𝑦 ≔ 𝑦0

𝜃 ≔ 𝜃0

On/Off control for Path following

56

 Autonomous mobile robots in a room, goal for each robot:
 Reach a target at a known location
 Avoid obstacles (positions not known in advance)
 Minimize distance travelled

 Design Problems:
 Cameras/vision systems can provide estimates of obstacle positions

When should a robot update its estimate of the obstacle position?
 Robots can communicate with each other

How often and what information can they communicate?
 High-level motion planning

What path in the speed/direction-space should the robots traverse?

Design Application: Robot Coordination

57

Path planning with obstacle avoidance

58

Goal

𝑥

𝑦

𝑝1 = 𝑥1, 𝑦1

𝑝2 = 𝑥2, 𝑦2

𝑣, 𝜃2

𝑣, 𝜃1

𝑥𝑓 , 𝑦𝑓

 Assumptions:

 Two-dimensional world

 Robots are just points

 Each robot travels with a fixed speed

 Dynamics for Robot 𝑅𝑖:

 ሶ𝑥𝑖 = 𝑣 cos 𝜃𝑖; ሶ𝑦𝑖 = 𝑣 sin 𝜃𝑖

 Design objectives:

 Eventually reach 𝑥𝑓 , 𝑦𝑓

 Always avoid Obstacle1 and Obstacle 2

 Minimize distance travelled

𝑅1

𝑅2

Obstacle 1
𝑝𝑜1 = 𝑥𝑜1, 𝑦𝑜1

Obstacle 2
𝑝𝑜2 = 𝑥𝑜2 , 𝑦𝑜2

1. Computer vision tasks
 Assume computer vision algorithm identifies obstacles, and labels them with some

easy-to-represent geometric shape (such as a bounding boxes)
 In this example, we will assume a sonar-based sensor, so we will use circles

2. Actual path planning task
 Assuming the vision algorithm is correct, do path planning based on the estimated

shapes of obstacles

Design challenge:
 Estimate of obstacle shape is not the smallest shape containing the obstacle

 Shape estimate varies based on distance from obstacle

Divide path/motion planning into two parts

59

 Robot 𝑅1 maintains radii 𝑒1 and 𝑒2 that are
estimates of obstacle sizes

 Every 𝜏 seconds, 𝑅1 executes following update
to get estimates of shapes of each obstacle:

𝑒1 ≔ min 𝑒1, 𝑟1 + 𝑎 𝑝1 − 𝑝𝑜1 − 𝑟1

 We don’t know 𝑟1, but we are guaranteed that we get a radius
of an estimated shape of the obstacle that is exactly: 𝑟1

+ 𝑎 𝑑 𝑝1, 𝑝𝑜1
− 𝑟1

 𝑝1 is position of 𝑅1

 Computation of 𝑒2 is symmetric
𝑒2 ≔ min 𝑒2, 𝑟2 + 𝑎 𝑝1 − 𝑝𝑜2 − 𝑟2

Estimation error

60

𝑒′
𝑒

𝑟1

Estimated shape
from distance 𝑑

Estimated shape
from distance
𝑑′

Smallest shape
bounding obstacle

Estimated radius (from current distance d)
𝑒 = 𝑟 + 𝑎(𝑑 − 𝑟),
where 𝑎 ∈ [0,1] is a constant

𝑝𝑜1 = 𝑥𝑜1, 𝑦𝑜1

 Choose shortest path 𝜌3 to target (to minimize
time)

 If estimate of obstacle 1 intersects 𝜌3, calculate
two paths that are tangent to obstacle 1
estimate

 If estimate of obstacle 2 intersects 𝜌3, or
obstacle 1, calculate tangent paths

 Plausible paths: 𝜌1 and 𝜌2

 Calculate shorter one as the planned path

Path planning

61

𝜌1

𝜌2

𝜌3

𝜌4

𝑥

𝑦

𝑝1

𝑝𝑜1

𝑝𝑜2

(𝑥𝑓, 𝑦𝑓)

𝜃

 Path planning inputs:
 Current position of robot

 Target position

 Position of obstacles and estimates

 Output:
 Direction for motion assuming obstacle estimates are correct

 May be useful to execute planning algorithm again as robot moves!
 Because estimates will improve closer to the obstacles

 Invoke planning algorithm every 𝜏 seconds

Dynamic path planning

62

 Every robot has its own estimate of the obstacle

 𝑅2’s estimate of obstacle might be better than 𝑅1’s

 Strategy: every 𝜏 seconds, send estimates to other robot, and receive
estimates

 For estimate 𝑒𝑖, use final estimate = min 𝑒𝑖 , 𝑒𝑖
𝑟𝑒𝑐𝑣

 Re-run path planner

Communication improves planning

63

Improved path planning through communication

64

𝜌1

𝜌2

𝜌3

𝜌4

𝑥

𝑦

𝑝1

𝑝𝑜1

𝑝𝑜2

(𝑥𝑓, 𝑦𝑓)

𝜌1

𝜌2

𝜌3

𝜌4
′

𝑥

𝑦

𝑝1(0)

𝑝𝑜1

𝑝𝑜2

(𝑥𝑓, 𝑦𝑓)

𝑝1(𝜏) Old path

New path available
because estimate of
obstacle 1 improved
after receiving estimate
from 𝑅2

Hybrid State Machine for Communicating
Robot

65

Advantage of using hybrid processes

 Hybrid models combine computation, communication and control

 Most real-world controllers are digital/discrete-time controllers: hybrid
process/automata models describe underlying mathematical model for most
CPS applications!

 We can perform design-space exploration through simulations and check
safety/correctness through formal techniques such as reachability analysis

	Slide 1: Artificial Intelligence for Cyber-Physical Systems
	Slide 2: Time Trigger Machine
	Slide 3
	Slide 5: Timed Models
	Slide 6: Timed ESMs: a Light Switch
	Slide 7: Transitions of a timed ESM
	Slide 8: Transitions of a timed ESM
	Slide 9: Timed Processes: explicit clock variables
	Slide 10: Timed Process Execution
	Slide 11: Timed Buffer
	Slide 12: Timed State Machine representation
	Slide 13: Clock invariants
	Slide 14: Clock invariants
	Slide 16: Example with two clocks
	Slide 17: Composing Timed Processes
	Slide 18: Composing Timed Processes
	Slide 19: Semi-synchrony
	Slide 20: Semi-synchrony
	Slide 21: Formal recap of a timed process
	Slide 22: Pacemaker Modeling as a Timed Process
	Slide 23: How does a healthy heart work?
	Slide 24: What do pacemakers do?
	Slide 25: Implantable Pacemaker modeling
	Slide 26: How dual-chamber pacemakers work
	Slide 27: The Lower Rate Interval (LRI) mode
	Slide 28: FSM Software Tools
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Modeling a bouncing ball
	Slide 41: Hybrid Process for Bouncing ball
	Slide 42: Hybrid Process for Bouncing ball
	Slide 43: Non-Zeno hybrid process for bouncing ball
	Slide 44: Hybrid Process for Bouncing ball
	Slide 45
	Slide 46
	Slide 47: Hybrid Time Set: Classification
	Slide 48: Zeno’s Paradox
	Slide 49: Zeno behaviors
	Slide 50
	Slide 52: Hybrid actions/transitions
	Slide 53: Hybrid actions/transitions
	Slide 54: Design Application: Autonomous Guided Vehicle
	Slide 55: On/Off control for Path following
	Slide 56: On/Off control for Path following
	Slide 57: Design Application: Robot Coordination
	Slide 58: Path planning with obstacle avoidance
	Slide 59: Divide path/motion planning into two parts
	Slide 60: Estimation error
	Slide 61: Path planning
	Slide 62: Dynamic path planning
	Slide 63: Communication improves planning
	Slide 64: Improved path planning through communication
	Slide 65: Hybrid State Machine for Communicating Robot
	Slide 66: Advantage of using hybrid processes

