Artificial Intelligence for
Cyber-Physical Systems

Laura Nenzi

Universita degli Studi di Trieste
| Semestre 2024

Lecture 4-5: Timed and Hybrid Models

Time Trigger Machine

variable: count: {0,---,60}

inputs: pedestrian : pure count < 60 /
outputs: sigR, sigG, sigY : pure count := count + 1

count = 60 / sigG
count :=0

pedestrian / count < 60 /
count 1= count + 1

ﬁ,--*-.
‘ - pedestrian /\ count = 60 / sigY¥ (pendlng) i count ;= count + |
s 4 count := 0

count := count + 1!

count :=0
count = 60 / sigV¥
count > 5 [sigR count := ()

count 1= ()

count := count + 1

Thermostat FSM
Temp < 18 — heatON

cooling heating

Temp = 22 — heatOFF

It could be event triggered, like the garage counter, in which case it will react whenever a
temperature input is provided. Alternatively, it could be time triggered, meaning that it
reacts at regular time intervals

Timed Models

* Like Asynchronous models, but with explicit time information

* Can make use of global time for coordination

Timed ESMs: a Light Switch

Like asynchronous ESMs, have
input, output channels, state

==1)? A (c=1 .
(press==1)7 A (e=1) variables

Special type of state

clock c:=0 (press==1)? A (c<1) .
off dim bright variable called “clock”
(press==1)?—
¢:=0 Clock variables evolve
continuously in time
(press==1)? ESM can “stay” in a mode

with clock increasing
monotonically from the
start value

Transitions of a timed ESM

(press==1)? A (c=1) * Mode switch: discrete action

* machine moves from one mode
to another

(press==1)? A (c<1) O
* guard on the transition must be

true for mode switch to occur

e update specified by the
transition will update/reset
(press==1)? clock variables

clock c:=0

(press==1)?

(off,0.5) —(dim,0)

Transitions of a timed ESM

In @ mode: Timed action

(press==1)? A (c=1) . .
When machine stays in any

given mode for time 9, each

clock c:=0 (press==1)? A (c<1) . .
off (i bright clock variable increases by o
press==ar and all other state variables

c:=0
remain unchanged

Captures timing constraints

Resetting ¢ to O from off=dim
and guard c=1 from dim—off
specifies that these mode
switches are >1

(press==1)7?

Timed Processes: explicit clock variables

* Clock variables

(press==1)? A (c21) e Like other state variables, can be
used in guards

(press==1)? A (c<1) * Can bereset to 0 during mode
@ switches

¢:=0 * When the machine is in a given
mode for duration 9, the clock
variable increases by &

clock c:=0

Timed Process Execution

(press==1)? A (c=1)

Machine execution is
through alternating timed

(press==1)? A (c<1)

clock c:=0
transitions and mode
switches
(press==1)?
s==1)? O 3 (press==1)?
(d|m 0. 8)—>(br|ght 0.8)

(press==1)?

(d|m20; €5—>(dim,3.8) — (0off,3.8)

(off,0) —'—>(off0 5) = (dim,0)

%

Timed Buffer

bool in

booly x:= @, clock c:=0
—>
bool

Tin: (x==0) & in?— out

X:=in; ¢:=0;

Tout: (c=2)—
{out :=x;

Xx:=0}

Tinfurs IN? =

Input channel in of type bool
Output channel out of type bool

State variable x of type bool+@. The
value @ indicates empty

If x is @, then read new value into x,
and set clock to O

If clock value is = 2 seconds, output
value of x, and set x to @

Timed State Machine representation

C.

c=> 2 - out:=x, x:=0

empty

in?— x:=in, c:=0

full

Mode captures whether x==0

Clock variable tracks the time that
elapsed since x received a value

Guard ensures that at least 2 seconds
pass before the value of x is output

Guard does not force transitions
c can keep increasing while process
remains in mode full

How do we make sure that process
does not remain in full mode for at
most 3 seconds?

Clock invariants

c=> 2 - out:=x, x:=0

1
o

o
empty full

in?— x:=in, c:=0

Attempt 1: we could make the guard 2 <
c<3

Attempt 1 fails because:

You could keep getting new input (self-
loop executes) till c = 3

Larger problem: Guards are non-forcing:
nothing requires the guard to be executed

We can fix this by introducing clock
invariants

Clock invariant of any mode: symbolic
expression that must evaluate to true at all
times, and if not, the process must exit
that mode

Clock invariants

c=> 2 - out:=x, x:=0

1
o

c: full

c<3

empty

in?— x:=in, c:=0

Add clock invariant:
(mode==full) = (c < 3)

Forces process to leave mode full if ¢
becomes greater than 3

Staying in mode full when ¢ 3
would violate the clock invariant

Useful construct to limit how long a
process stays in a certain mode

Example with two clocks

clcd).cfo Model with one input channel and two output
¢,0:= idle channels: out; and out,
Clock c tracks time elapsed since occurrence
in? — c:=0 of the input task execution
waitl Clock d tracks time elapsed since occurrence
<1 of output task for out;,
Behavior of process: If input event occurs at
out, #;d:=0 d>1- . h :
Ut ¥ some time t, then process issues output # on
Wait2 ’ out, some time t’ € [t,t+1] and then issues
c<? output * on out, at time t” € [t'+1, t+2]

(1d1e,0,0) 2% ,(1d1e,5.7,5.7) 3 (Wait1,0,5.7) 25 (Vait1,06,6.3) 214

Composing Timed Processes

Each process stays in mode full for
t € [Bi,Ai]

Need to construct a new process
with 4 new modes

c,=B; = outy:=x;, X;==0

€1:=0 full
empty ¢ <A,
1 —

in?— x;:=in, ¢;:=0

Each new mode is a pair consisting of

modes from process 1 and 2
c,=B, = out,:=x,, X,'=0 i)]
Mode switches in the new machine

C2:=0 empty full correspond to mode switches in the
G = A old machine

in?— x,:=in, ¢,:=0 Interesting timing behavior can arise!

Composing Timed Processes

1 — outyi=x4

in?— x;:=in, ¢,:=0

in?— x;:=in, ¢1:=0,
X2:=in, C2:=0

in?
,» = out,:=x,

(” e

iN?— X,:=in, Cy:=

empty, full
C,<A,

Semi-synchrony

If B, <A, <B,:

(full,full) = (full,empty) can never be
enabled!

Why?

c;reaches A; and the process gets kicked
out of state (full,full)

But ¢y, cannot be greater than B, so,
guard from (full,full) to (full,empty) is not
enabled!

Semi-synchrony

full, empty C}\A(%

A c <A ™~
g 1SA
X O,
; 2y
2 :
L in?— x,:=in, ¢;:=0, full full
X,:=in, ¢,:=0 '
empty, : : G
empty ./;\"\’ CzSAZ
6\,\,’
S\Q /,0 .//0
® o
9\‘ DN -\
D A
° N 7
2 i
. 4
% full &
1 empty, Tu O
CzSAz

IfB;<A;<B,:
(full,full) = (full,empty) cannot happen
If B, <A, <B,:

(full, full) = (empty,full) will happen
eventually

out; guaranteed to happen before out,

Implicit coordination based on delays
Both process clocks increase in tandem
Global clock-based synchronization

Reason why timed models are called semi-
synchronous or partially synchronous

Formal recap of a timed process

Timed process consists of:

An asynchronous process, where some of the state variables are of type clock (ranging over non-
negative reals)

A clock invariant J which is a Boolean expression over the state variables

Inputs, Outputs, States, Initial states, Actions: Internal, Input and Output: same as for asynchronous
processes

5
Timed Action: Given a state g and time § > 0, action g —=q’ specifies a transition of duration ¢ if:

g’ represents a state where the non-clock variables have the same value asin q, i.e. q’(x) = q(x)
g’ represents a state where the clock variables in g are incremented by 6, i.e. q’(c) = g(c) + 6, and
For all times t € [q(c), q(c)+d], the clock invariant [is satisfied

If clock invariant is convex, enough to check clock invariant at g(c) and g(c)+6

Pacemaker Modeling as a Timed Process

Most material that follows is from this paper:

Z. Jiang, M. Pajic, S. Moarref, R. Alur, R. Mangharam, Modeling and
Verification of a Dual Chamber Implantable Pacemaker, In Proceedings

of Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2012.

The textbook has detailed descriptions of some other pacemaker
components

How does a healthy heart work?

Sinoatrial (
node =

His
x— Bundle

Atrioventricular
(AV) node Ventricle

Electrical Conduction System of the Heart

SA node (controlled by nervous system)
periodically generates an electric pulse

This pulse causes both atria to contract
pushing blood into the ventricles

Conduction is delayed at the AV node
allowing ventricles to fill

Finally the His-Pukinje system spreads
electric activation through ventricles
causing them both to contract, pumping
blood out of the heart

What do pacemakers do?

Aging and/or diseases cause conduction
properties of heart tissue to change leading to
changes in heart rhythm

Tachycardia: faster than desirable heart rate
impairing hemo-dynamics (blood flow
dynamics)

Bradycardia: slower heart rate leading to
insufficient blood supply

Pacemakers can be used to treat bradycardia by
providing pulses when heart rate is low

Implantable Pacemaker modeling

X N\ N N\
AS Vv [AR] AS AS Atrium
AP E
i Ventricle
i
1
VP Vs VP VP
1
i O,
Leadin : or 2] v Y extension
, right atrium AV AVI Junsensed | AV AVI
PVARP | i | PvarP | PVARP PVARP
\ VRP § VRP VRP VRP
- AEI | LRI LRI
Lead in f LRI LRI
right ventricle T e
URI URI

reset

How dual-chamber pacemakers work

Two fixed leads on wall of right atrium and ventricle respectively

Activation of local tissue sensed by the leads (giving rise to events Atrial
Sense (AS) and Ventricular Sense (VS))

Atrial Pacing (AP) or Ventricular Pacing (VP) are delivered if no sensed
events occur within deadlines

AS

\ A 4

VS
Heart AP Pacemaker

VP

The Lower Rate Interval (LRI) mode

LRI component keeps heart rate above minimum level

LRI = lower rate interval

LRI component keeps heart rate above
VS? = =0 minimum level

AS?
One of the pacemaker modes of
VP? = c:=0 (RI VP? o 120 operation that models the basic timing
ASed c<K cycle
Measures the longest interval between
VS? - ¢:=0 ¢ =K - AP; c:=0 ventricular events
Clock reset when VS or VP received
K=850ms

No AS received = LRI outputs AP after
K time units

FSM Software Tools

Statecharts (Harel, 1987), a notation for concurrent composition of hierarchical FSMs,
has influenced many of these tools.

One of the first tools supporting the Statecharts notation is STATEMATE (Harel et al.,
1990), which subsequently evolved into Rational Rhapsody, sold by IBM.

Almost every software engineering tool that provides UML (unified modeling language)
capabilities (Booch et al., 1998).

SyncCharts (Andre’, 1996) is a particularly nice variant in that it borrows the rigorous
semantics of Esterel (Berry and Gonthier, 1992) for composition of concurrent FSMs.

LabVIEW supports a variant of Statecharts that can operate within dataflow diagrams

Simulink with its Stateflow extension supports a variant that can operate within
continuous-time models.

UPPAAL (Yi, Pettersson, Larsen, mid-1990s) is is a tool for modeling, simulation, and
verification of real-time systems. It was jointly developed by Uppsala University in
Sweden and Aalborg University in Denmark.

Discrete System (FSM)
® >< .-\;’

Continuous System

12VAY

Hybrid System > Jump

N >.,\. [:3 7~ flow

Actor Models

A box, where the inputs and the outputs are functions S:u -y

Actor models are composable. We can form a cascade composition

We have so far assumed that state machines operate in a sequence of discrete reactions.
We have assumed that inputs and outputs are absent between reactions.

Having continuous inputs

Input u(t) Outputy

Guard/action

Gua1d/action

sl

Guard/action

We will define a transition to occur when a guard on an outgoing transition from the cur-
rent state becomes enabled

Thermostat FSM with a continuous-time input signal

7(t) < 18 > heatON

/\

cooling

heating

heatON
—>

heatOFF

\/

7(t) = 22 > heatOFF

The outputs are present only at the times the transitions are taken

>

State Refinements

7(t) < 18

/\

cooling
h(t) =0

heating
h(t) =1

T(t) = 22

The current state of the state machine has a state refinement that gives the dynamic
behavior of the output as a function of the input.

Modal Models

A hybrid system is sometimes called a modal model because it has a finite
number of modes, one for each state of the FSM, and when it is in a mode, it
has dynamics specified by the state refinement.

Timed Automata

* Introduced by Alur and Dill (A theory of timed Automata, TCS,1994)
* They are the simplest non-trivial hybrid systems

* Allthey do is measuring the passage of time

* Aclock s(t) is modeled by afirst-ODE: s =a Vt€T,
where s : R — R is a continuous-time signal,
s(t) is the value of the clock at time t, and
T,, € R is the subset of time during which the hybrid system is in mode m.
The rate of the clock, a, is a constant while the system is in this mode.

Timed Automata

T(t) < 20As(t) =T,
- s(t) =0

—

T—> cooling
h(t) =0
s=1
s(t): =T,

heating
h(t) =1
s=1

7(t) = 20 A s(t) =Ty,
- s(t) =0 <

= This is an assignment,

cooling and heating are discrete states, s is a continuous state

not a predicate

A
\/\/ t Temperature input 7(t)
a
@) 20 t, t+T, >
h(t)
1 The output h
e 1
(b) 0 l ‘ r >
s(t)

W[/[/ The refinement state s.
T

¢ e 1

(c) 0 >

continuous variable: x(7): R
inputs: pedestrian: pure
outputs: sigR, sigG, sigY . pure

()>60/Sng

[green]
x(1) = \iesman Ax(t) <60 /

red pedesrrzan Ax(t Z 60 / sigY pending
0 i) =1

\ yeIIow ‘/(I)> 60 / sigY

Sl R
g x(t) := 0

Hybrid Automata

T <187
cooling heating A
T = —arT T =—at1+ ak
h=0 h: _T>
T=>18 T <22
T, = 18 \/
T =227

* Generalization of a timed process

* Instead of timed transitions, we can have arbitrary evolution of state/output
variables, typically specified using differential equations

Modeling a bouncing ball

Ball dropped from an initial height of hy with
an initial velocity of v,

Velocity changes accordingto v = —g

When ball hits the ground, i.e. when h(t) = 0,
velocity changes discretely from negative

(downward) to positive (upward) Y
l.e. v(t) := —av(t) , where a is a damping constant ’

we can model it as a hybrid system!

Hybrid Process for Bouncing ball

Hybrid Process for Bouncing ball

Non-Zeno hybrid process for bouncing ball

faling
h =
= o, v =0 V= —au
h=0Av<e—-
v:i=0
\ 4

halt

Hybrid Process for Bouncing ball

h ==
VUV = _—av

What happensas h — 07?

Hybrid Time Set

A hybrid time set is a finite or infinite sequence of intervals

t={1,i=0,.. M):
e I; =[t;,7{] fori< M

o Iy = |1y, Tyl or Iy = [14,T)) if M<oo t, <t <t; <t
: ti z L+l N ty 1 time instants in 1 are
Ty =T T f > ! . linearly ordered

Hybrid Time Set: Length

Two notions of length for a hybrid timesett ={1;,i =0, ..., M}:

e Discreteextent:<t>=M+1 number of discrete transition
e Continuous extent: ||T|| = YMolti — 1l total duration of interval in T
_ ‘ 13
lI<l] = 73" - 1o T '3
L =1
Il

Hybrid Time Set: Classification
A hybridsett ={1I;,,i =0,..,M}is:

* Finite: if < T > is finite and I, = [Ty, T3]
* Infinite:if ||t|| is infinite
e Zeno: if < T > is infinite but ||| is finite

v finite infinite
— oo

¢ - ! -

infinite Zeno Zeno

/eno’s Paradox

Greek philosopher Zeno’s race between Achilles and a
tortoise
Tortoise has a head start over Achilles, but is much slower
If Achilles is d meters behind at the beginning of a round
and during the round, suppose Achilles runs d meters
but by then, tortoise has moved a little bit further

At the beginning of the next round, Achilles is still behind, by a X d
meters [0<a<1]

By induction, if we repeat this for infinitely many rounds,
Achilles will never catch up!

If sum of durations between successive discrete actions
converges to constant K, then an execution with infinitely
many discrete actions describes behavior only up to time
K (and does not tell us the state of the system at time

K and beyond)

/eno behaviors

An infinite execution is called Zeno if infinite sum of all the durations is
bounded by a constant, and non-Zeno if the sum diverges

Any state in a hybrid process is:
Zeno if every execution starting in state is Zeno
Non-Zeno if there exists some non-Zeno starting in that state

Hybrid process is non-Zeno if any state that you can reach from the initial
state is non-Zeno

Thermostat: non-Zeno, Bouncing ball: Zeno

Dealing with Zeno: remove Zeno-ness through better modeling

(Linear) Hybrid Automata

Co1(x)
;AM)C\A
do d1
5C=AOX-|-BOU x=A1x+Blu
Co(X) c1(x)
|CI(X) \/
C10(x)
X = A{ogX

Hybrid actions/transitions

u(t)/y(t)
(q,X) TN (q,x(t + 5))

Continuous action/transition:

Discrete mode g does not change

X, = X(0)

dx(tt) satisfies the given dynamical equation for mode g

Output y satisfies the output equation for mode q: y(t) = h,(x(t), u(t))

At all times t € |0, 8] ,the state x(t) satisfies the invariant for mode m

Hybrid actions/transitions

r=re)
(qx) —LOEZTX L x)

Discrete action/transition:

Happens instantaneously
Changes discrete mode g to g’
Can execute only if g(Xx;) evaluates to true

Changes state variable value from x; to r(x,)

r(x;) should satisfy mode invariant of g'Output will change from h,(x;) to hq/(r(xr))

Design Application: Autonomous Guided Vehicle

When d € [—¢, +€], controller decides that
vehicle goes straight, otherwise executes a
turn command to bring error back in the
interval

Track

Objective: Steer vehicle to follow a given track
Control inputs: linear speed (v), angular speed (w), start/stop

Constraints on control inputs:
v E {vmax» UmaX/Z,O}
w € {—m, 0,7}

Vmax

Designer choice: v = vy, Only if w = 0, otherwise v =

On/Off control for Path following

Turn right Go straight
X = (Vmax/2) cos 6 d<¢e? X = Vpax COS O
Y = (Vmax/2) sin 6 Y = VUpax Sin 6
0=-m < =0
d=>e?
d=>e€ =€ —e<d<e
A
ss?start A
d=>e? L d < —¢€? d> —e?
x =0 X = (Vpax/2) cos 6 .
. L ss?stop J =) sin 8 Inputs: ss € {stop, start},d € R
x = Xo . 0=m
g; Zﬂ 6 =0 ss? start A d<—e

< —€?
Stationary d=-e Turn left

On/Off control for Path following

-

Straight

Initial
positio

Design Application: Robot Coordination

Autonomous mobile robots in a room, goal for each robot:
Reach a target at a known location
Avoid obstacles (positions not known in advance)
Minimize distance travelled

Design Problems:
Cameras/vision systems can provide estimates of obstacle positions
When should a robot update its estimate of the obstacle position?
Robots can communicate with each other
How often and what information can they communicate?
High-level motion planning
What path in the speed/direction-space should the robots traverse?

Path planning with obstacle avoidance

yA

R,

(v, 92)
k Obstacle 2

Po2 = (xoz }’oz)

b2 = (xZ;yZ) g xf yf)

Obstacle 1
@01 = (xolr yol)
3'&@)
p1 = (X1, 1)

Assumptions:
Two-dimensional world
Robots are just points
Each robot travels with a fixed speed

Dynamics for Robot R;:
X; =V cos0;;y; =v sin0;
Design objectives:

Eventually reach (xf,yf)
Always avoid Obstaclel and Obstacle 2
Minimize distance travelled

Divide path/motion planning into two parts

Computer vision tasks

Assume computer vision algorithm identifies obstacles, and labels them with some
easy-to-represent geometric shape (such as a bounding boxes)

In this example, we will assume a sonar-based sensor, so we will use circles
Actual path planning task

Assuming the vision algorithm is correct, do path planning based on the estimated
shapes of obstacles

Design challenge:

Estimate of obstacle shape is not the smallest shape containing the obstacle
Shape estimate varies based on distance from obstacle

Estimation error

Por = (o1, Yo1) Robot Ry maintains radii e; and e, that are
Estimated shape estimates of obstacle sizes

from distance d

Every T seconds, R, executes following update
[d sh .
o metes shape to get estimates of shapes of each obstacle:
d €1 = min(91»7”1 + a(llpy — porll — 7'1))

Smallest shape We don’t know 7y, but we are guaranteed that we get a radius
bounding obstacle of an estimated shape of the obstacle that is exactly: r;

+ a(d(Pppol) —7)
p, is position of Ry

Estimated radius (from current distance d)
e=r+a(d—r),
where a € [0,1] is a constant

Computation of e, is symmetric
e, == min(e,, 7, + a(llp; — pozll — 12))

Path planning

y ¢ Choose shortest path p; to target (to minimize
time)

If estimate of obstacle 1 intersects p5, calculate

(two paths that are tangent to obstacle 1
xf:)’f)

estimate

If estimate of obstacle 2 intersects p;, or
@ %
p. obstacle 1, calculate tangent paths

x b Plausible paths: p; and p,
Calculate shorter one as the planned path

Dynamic path planning

Path planning inputs:
Current position of robot
Target position
Position of obstacles and estimates

Output:
Direction for motion assuming obstacle estimates are correct

May be useful to execute planning algorithm again as robot moves!
Because estimates will improve closer to the obstacles
Invoke planning algorithm every T seconds

Communication improves planning

Every robot has its own estimate of the obstacle
R,’s estimate of obstacle might be better than R4’s

Strategy: every T seconds, send estimates to other robot, and receive
estimates

For estimate e;, use final estimate = min(e;, e; °°")

Re-run path planner

Improved path planning through communication
y

yu

A

New path available
because estimate of
obstacle 1 improved

after receiving estimate
/ fromR,

(X7, ¥r)

RO

e =11 + a(dist((x,y). (z5,9,)) — 1)
ez 1=y + a(dist((x, y). (23, 9;)) — 72)

orid State Machine for Communicating

00T

(z. =t.) — {out! (e, e); z

clock zp, z., z. := 0 O O Zp _t

{0 —plan X, Y, Tf,Yf,€1,€2); Z

_{]}

X 1= Toi Vi=Yo Move

X =uwvcosfH

y=wvsinf
¢ := plan(x. y,xs,ys, €1, 92)

Fxr V y#yy)

p <ty Nz <t Nz <t

(x=z7 N y=y;)?

J

in? (e}, €e})

{e, :==min(e}, €); e; :=min(e), e;)}

(z, = t.) —}- {ze :=0;

e; = min 91 r + a(dist((x,y),
ey ;= min(ey, 2 + a(dist((x.

'

= 0}
~
Stop
x=y=0
J/
)-ﬂféey;))'—));
¥); (22,95)) —r2))}

Advantage of using hybrid processes

Hybrid models combine computation, communication and control

Most real-world controllers are digital/discrete-time controllers: hybrid
process/automata models describe underlying mathematical model for most

CPS applications!

We can perform design-space exploration through simulations and check
safety/correctness through formal techniques such as reachability analysis

	Slide 1: Artificial Intelligence for Cyber-Physical Systems
	Slide 2: Time Trigger Machine
	Slide 3
	Slide 5: Timed Models
	Slide 6: Timed ESMs: a Light Switch
	Slide 7: Transitions of a timed ESM
	Slide 8: Transitions of a timed ESM
	Slide 9: Timed Processes: explicit clock variables
	Slide 10: Timed Process Execution
	Slide 11: Timed Buffer
	Slide 12: Timed State Machine representation
	Slide 13: Clock invariants
	Slide 14: Clock invariants
	Slide 16: Example with two clocks
	Slide 17: Composing Timed Processes
	Slide 18: Composing Timed Processes
	Slide 19: Semi-synchrony
	Slide 20: Semi-synchrony
	Slide 21: Formal recap of a timed process
	Slide 22: Pacemaker Modeling as a Timed Process
	Slide 23: How does a healthy heart work?
	Slide 24: What do pacemakers do?
	Slide 25: Implantable Pacemaker modeling
	Slide 26: How dual-chamber pacemakers work
	Slide 27: The Lower Rate Interval (LRI) mode
	Slide 28: FSM Software Tools
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Modeling a bouncing ball
	Slide 41: Hybrid Process for Bouncing ball
	Slide 42: Hybrid Process for Bouncing ball
	Slide 43: Non-Zeno hybrid process for bouncing ball
	Slide 44: Hybrid Process for Bouncing ball
	Slide 45
	Slide 46
	Slide 47: Hybrid Time Set: Classification
	Slide 48: Zeno’s Paradox
	Slide 49: Zeno behaviors
	Slide 50
	Slide 52: Hybrid actions/transitions
	Slide 53: Hybrid actions/transitions
	Slide 54: Design Application: Autonomous Guided Vehicle
	Slide 55: On/Off control for Path following
	Slide 56: On/Off control for Path following
	Slide 57: Design Application: Robot Coordination
	Slide 58: Path planning with obstacle avoidance
	Slide 59: Divide path/motion planning into two parts
	Slide 60: Estimation error
	Slide 61: Path planning
	Slide 62: Dynamic path planning
	Slide 63: Communication improves planning
	Slide 64: Improved path planning through communication
	Slide 65: Hybrid State Machine for Communicating Robot
	Slide 66: Advantage of using hybrid processes

