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3.5 Lindblad evolution in Quantum Information theory

We report some of the most common Lindblad dynamics used in quantum information theory.

Complete depolarising channel. Consider the dynamics given by
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where �̂i is the i-th Pauli matrix. We notice that �̂2
i = 1̂, and thus the dynamics reduces to
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To compute the action of this map, we consider the Bloch representation of the state ⇢̂ = 1
2 (1̂ + r · �̂). Then,
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However,
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By exploiting that r · �̂ = 2⇢̂� 1̂, one obtains

d⇢̂

dt
= �4⇢̂+ 21̂. (3.66)

Such an equation can be easily integrated, and it gives

⇢̂(t) = e�4t⇢̂(0) +

�
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�

2
1̂. (3.67)

Straigtforwardly, one can see that the action of the dynamics is to completely depolarise the state, i.e. any state
is sent to the origin of the Bloch sphere. The e↵ect is summarized in Fig. 3.1.

Exercise 3.1
Verify that the dynamics in Eq. (3.67) can be written in the Kraus form.

Exercise 3.2
Verify that the map Tt, that defines the dynamics Tt[⇢̂(0)] = ⇢̂(t) in Eq. (3.67), satisfies the conditions to
be a strongly continuous semigroup of operators. Namely, verify that
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Fig. 3.1: Graphical representation of the complete depolarising channel. (Left) Dynamics of the components of
the Bloch radius (continuous lines). The initial values (dashed lines) are reported for comparison. (Right) Bloch
representation of the initial state (black arrow) and after a time t = 1 (red arrow). The initial state corresponds
to r0 = (4, 1, 6)/
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1) TtTs = Tt+s 8t, s � 0,
2) T0 = id,
3) limh!0 Tt+h[⇢̂(0)] = Tt[⇢̂(0)], 8⇢̂(0) and 8t, h � 0.

Amplitude damping channel. Consider the following master equation, which describes the amplitude damp-
ing channel:
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where �̂± = 1
2 (�̂x ± i�̂y) and Ĥ = � 1

2~!�̂z is the free Hamiltonian of the system. By exploiting the following
relations expressed in the computational basis { | 0i, | 1i }
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and the Bloch representation, the master equation in the computational basis reads
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This determines a set of first-order di↵erential equations for r:
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(3.71)

whose solutions are



3.5 Lindblad evolution in Quantum Information theory 37

rx(t) = e�
�
2 t(cos(!t)rx(0) + sin(!t)ry(0)),

ry(t) = e�
�
2 t(cos(!t)ry(0) � sin(!t)rx(0)),

rz(t) = e��t(1 + rz(0)) � 1.

(3.72)

Thus, one can clearly see that the asymptotic state is |1i corresponding to the south pole of the Bloch sphere.
The e↵ect is summarized in Fig. 3.2.
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Fig. 3.2: Graphical representation of the amplitude damping channel. (Left) Dynamics of the components of
the Bloch radius (continuous lines) for � = 1 and ! = 20. The initial values (dashed lines) are reported for
comparison. (Right) Bloch representation of the dynamics (gray line) with the initial state (black arrow), that
after a time t = 1 (red arrow). The initial state corresponds to r0 = (4, 1, 6)/
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Thermalisation of a qubit. Consider the following master equation, which describes the thermalisation of a
qubit to temperature T :
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where n = n(T ) is the mean number of excitations at the temperature T . By exploiting Eq. (3.69) and the
Bloch representation, we obtain the following set of first-order di↵erential equations for the components of the
Bloch vector
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which can be easily solved and gives
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rz(t) = e��(2n+1)t(rz(0) � rz,1) + rz,1,

(3.75)
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where we defined rz,1 = �1/(2n + 1) being the asymptotic value of rz = h�̂zi. The e↵ect is summarized in
Fig. 3.3.
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Fig. 3.3: Graphical representation of the thermalisation channel. (Left) Dynamics of the components of the
Bloch radius (continuous lines) for � = n = 1. The initial values (dashed lines) are reported for comparison.
(Right) Bloch representation of the dynamics (gray line) with the initial state (black arrow), that after a time
t = 1 (red arrow) and the asymptotic state (blue arrow). The initial state corresponds to r0 = (4, 1, 6)/
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Decoherence due to continuous non-selective measurement. A continuous non-selective measurement
induce a decoherence, details on the derivation are not discussed here. For example, a measurement of the z
component of the spin leads to the following master equation
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where Ĥ = � 1
2~!�̂x is the free Hamiltonian of the system. By exploiting the Bloch representation, one easily

finds the following set of di↵erential equations
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whose solution is
rx(t) = e�2�trx(0),
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where ⌦2 = !2 � �2. Notably, the asymptotic state corresponds to the origin of the Bloch sphere. The e↵ect is
summarized in Fig. 3.4.
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Fig. 3.4: Graphical representation of the non-selective measurement decoherence. (Left) Dynamics of the com-
ponents of the Bloch radius (continuous lines) for � = 1 and ! = 20. The initial values (dashed lines) are
reported for comparison. (Right) Bloch representation of the dynamics (gray line) with the initial state (black
arrow), that after a time t = 1 (red arrow). The initial state corresponds to r0 = (4, 1, 6)/
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3.6 Unravelling formalism for noises

An alternative way to account for noises is to unravel the master equation and consider explicitly the noise
acting on the wavefunction. Consider the following master equation, which — for the sake of simplicity — is
taken as Markovian
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where Ĥ is the Hamiltonian, and ✏ quantifies the coupling of the noises, while the Lindblad operator L̂k can
embed also relative strengths between di↵erent noise channels.

We want to construct a stochastic unravelling of the Lindblad dynamics in Eq. (3.79). This is a dynamical
stochastic equation for the wavefunction | ti from which one can derive exactly Eq. (3.79) for the corresponding
statistical operator obtained as ⇢̂t = E[| ti h t|], where E indicates the average over the stochastic process. There
are two advantages in using the unravelling approach in place of that based on the master equation. The first
one is that, for a N level system, the master equation approach is equivalent to solve N2 ordinary coupled
di↵erential equations of the first order, while the unravelling approach has N stochastic ordinary coupled
di↵erential equation of the first order. Clearly, there is a computational advantage in the scaling, however
it is only polynomial and it has to be compared with the necessity of performing stochastic averages. The
second advantage is that for every master equation there are infinite equivalent unravellings corresponding to
it. Depending on the specific problem, some of these can be solved or simulated more easily than others or than
the master equation.

In this family of equivalent unravellings, the linear stochastic unravelling has a special place due to its
simplicity. In the so-called Ito form, it reads
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where dWk,t are di↵erentials of standard independent Wiener processes, such that

E[dWk,t] = 0, and E[dWk,tdWk0,t] = �k,k0dt. (3.81)
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The first term of Eq. (3.80) is the standard Schrödinger equantion. The second term introduces the stochasticity
of the noise process, while the last term is necessary to preserve the normalisation of | ti in time. We now proceed
in showing that the dynamics in Eq. (3.80) is equivalent to that in Eq. (3.79). We start by di↵erentiating the
statistical operator:

d⇢̂t = dE[| ti h t|] = E[d(| ti h t|)], (3.82)

where the second equality follows from the linearity of the average. Then, one has

d⇢̂t = E[|d ti h t|] + E[| ti hd t|] + E[|d ti hd t|], (3.83)

where the last term is needed to account all the terms of the first order in dt, which includes that in the
second order in dW , see Eq. (3.81). Now, one substitutes, up to the first order in dt and second order in dWk,t,
Eq. (3.80) in place of |d ti, and its conjugate in place of hd t|. Then, we obtain
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Under the Markovian assumption, i.e. that the noises dWk,t and dWk,s for t 6= s are independent, then in the
state | ti there are only noises up to time s < t and thus independent from dWk,t. Thus, in Eq. (3.84) one can
separate the average acting on dWk,t and that acting on the state | ti. Namely, we find

E[dWk,t | ti h t|] = E[dWk,t] E[| ti h t|] = E[dWk,t] ⇢̂t = 0,

E[dWk,t | ti h t| dWk0,t] = E[dWk,tdWk0,t] E[| ti h t|] = �k,k0dt ⇢̂t.
(3.85)

By substituting these expressions in Eq. (3.84), we obtain
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which can be easily recasted in the form of Eq. (3.79).

Exercise 3.3
Derive the master equation associated to Eq. (3.80) for ✏ = i✏0, with ✏0 2 R.

Exercise 3.4
Derive the master equation associated to Eq. (3.80) for L̂k = Âk � h t|Âk| ti with Â†

k = Âk.
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