Physics Education Laboratory Lecture 06 **Content Knowledge for** teaching Dynamics

Francesco Longo - 09/10/24

Distance - Time, Velocity-Time Graphs Metric

Create a graph of a runner's position versus time and watch the runner run a 40-meter dash based on the graph you made. Notice the connection between the slope of the line and the velocity of the runner. Add a second runner (a second graph) and connect real-world meaning to the intersection of two graphs. Also experiment with a graph of velocity versus time for the runners, and also distance traveled versus time.

https://www.explorelearning.com/index.cfm?method=cResource.dspDetail&ResourceID=626

Students' Exploration Sheet

Analyze the sheet Observe the use of Multiple Representations Add one or more exercises to improve the Multiple Representations usage of this sheet

What's missing?

Student Exploration: Distance-Time and Velocity-Time Graphs

[NOTE TO TEACHERS AND STUDENTS: This lesson was designed as a follow-up to the Distance-Time Graphs Gizmo. We recommend you complete that activity before this one.]

Vocabulary: displacement, distance traveled, slope, speed, velocity

Prior Knowledge Questions (Do these BEFORE using the Gizmo.) Dora runs one lap around the track, finishing where she started. Clark runs a 100-meter dash along the straight side of the track.

- 1. Which runner traveled a greater distance? _
- 2. Which runner had a greater change in position, start to finish?

Gizmo Warm-up

The *Distance-Time Graphs* Gizmo shows a dynamic graph of the position of a runner over time. The *Distance-Time and Velocity-Time Graphs* Gizmo includes that same graph and adds two new ones: a velocity vs. time graph and a distance traveled vs. time graph.

The graph shown below (and in the Gizmo) shows a runner's position (or distance from the starting line) over time. This is most commonly called a *position-time graph*.

Check that the Number of Points is 2. Turn on Show graph and Show animation for both Runner 1 and Runner 2.

- 1. Drag the points to create the graph shown to the right.
 - Runner 1's line (the red one) should have endpoints at (0, 0) and (4, 40).
 - Runner 2's line (the blue one) should have endpoints at (0, 40) and (4, 20).

https://docs.google.com/document/d/1jD2MEKh-DqkrSdD2y30wb3_I_pm381oTVOR8JdOrfpQ/edit

https://www.youtube.com/watch?v=A2cYcQkcJ08

Video on Kinematics

How to build a knowledge on the uniform motion?

Let's try ...

Let's try ...

a. What patterns did you notice in the placement of the dots?

b. How can you use thedistances between the dots todescribe the motion of thebowling ball?

https://mediaplayer.pearsoncmg.com/assets/_frames.true/secs-experiment-video-1

Key concepts in Dynamics

- The three laws of Dynamics
- The concept of acceleration
- The concept of linear momentum
- The vector nature of the force
- The observer system
- The inertial system

key concepts in Dynamics

• Newton's second law

key concepts in Dynamics

• Newton's third law

key concepts in Dynamics

- The Force ...
- The free body approach
- "Force diagram"

A concepts' map

a. What patterns did you notice in the placement of the dots?

b. How can you use thedistances between the dots todescribe the motion of thebowling ball?

https://mediaplayer.pearsoncmg.com/assets/_frames.true/secs-experiment-video-1

