
993SM - Laboratory of�
Computational Physics�

IV week�
October 14, 2024

Maria Peressi

Università degli Studi di Trieste - Dipartimento di Fisica

Sede di Miramare (Strada Costiera 11, Trieste)

e-mail: peressi@units.it

tel.: +39 040 2240242

mailto:peressi@ts.infn.it

Random numbers �
and Monte Carlo(*)

Techniques
(*) any procedure making use of random numbers

Random numbers: use

• in numerical analysis (to calculate integrals)

• to simulate and model complex or
intrinsically random phenomena

• to generate data encryption keys

• ...

Monte Carlo Methods:
to calculate integrals

�Hit or Miss� Method: Ηοw much is π ?

A 1

C B

y

x 0

1

Algorithm:

• Generate uniform, random
 x and y between 0 and 1

• Calculate the distance from
 the origin: d=(x2+y2)1/2

• If d ≤ 1, τhit = τhit + 1

• Repeat for τtot trials tot

hit

τ
τ

π

4

OABC Square of Area
CA Curve Under Area x 4

=

≈

.�
.�.� .�

.�
.�.�

.�

.�
.�.�

Random numbers:

Characteristics and
Generation

Random numbers

... but with a well defined statistical properties, e.g.:

True random numbers generation
◉ Use some chaotic systems, like numbered balls in

a barrel (Lotto game)

◉ Use a process that is inherently random, such as:

- radioactive decay
- thermal noise
- cosmic ray arrival

◉ Tables of a few million truly random numbers do

exist, but this is not enough for most scientific
applications

Pseudo random numbers generation
with a computer

“pseudo” because they are necessarily generated with
deterministic procedures
(the computer is a deterministic system!)

A sequence of computer generated random numbers
is not truly random, since each number is completely
determined from the previous one.

But it may “appear” to be random.

(pseudo)Random numbers generation

the sequence may “appear” to be random

In

[Attention: in a Fortran code, write: xn =float(In)/M !!!]

INTEGER
(pseudo)Random numbers generation

many different algorithms...

Two among the simplest (and oldest) algorithms:
- von Neumann
- Linear Congruential Method

(pseudo)random numbers generation:
example 1 - “Middle square” algorithm

(Von Neumann, 1946)
To generate a 10-digit integer sequence:
- take a first one
- square it
- consider the 10 central digits

Also this sequence may “appear” to be random.
Limits of the algorithm:
depending on the initial choice, you can be trapped into short loops:

loop

(pseudo)random numbers generation:
example I1 - “Linear congruential method (LCM)”

(Lehemer, 1948)

 In+1 = (a In + c) mod m

“A mod m” is the
remainder

of the division of
A by m

QUESTIONS:

- in which interval are the pseudorandom numbers
generated?
- Can we obtain all the numbers in such interval?
- Is the sequence periodic?
- Which is the period?
- Which is the maximum period?

 In+1 = (a In + c) mod m

(pseudo)random numbers generation:
example I1 - “Linear congruential method (LCM)”

(pseudo)random numbers generation:
example I1 - “Linear congruential method (LCM)”

Limits of the algorithm:
- the “quality” of the sequence is very sensitive to the choice of the parameters
- even if c ≠ 0

https://commons.wikimedia.org/wiki/File:Linear_congruential_generator_visualisation.svg

 In+1 = (a In + c) mod m

More subtle limits, even of some smart algorithms...

xi, p(xi)

(xi, xi+1)

65539=216+3; initial seed I0: odd number

plot pairs:

https://en.wikipedia.org/wiki/RANDU

https://en.wikipedia.org/wiki/RANDU

Why? Hint: show that: xk+2=6xk+1-9xk

plot triplets:
(xi, xi+1, xi+2)

other comments/references on: https://en.wikipedia.org/wiki/Linear_congruential_generator
Also an example of Python code

https://en.wikipedia.org/wiki/Linear_congruential_generator

Problems also with other smart algorithms ...

many editions, see web site: numerical.recipes;
free old edition (1996) in fortran:

http://s3.amazonaws.com/nrbook.com/book_F210.html =>
II edition in Fortran90 => B7 Random Numbers p. 1141 or

http://nrbook.com/a/bookf90pdf.php => Random number in Ch. 7
(you need the FileOpen plugin for Adobe [Acrobat] Reader®)

http://s3.amazonaws.com/nrbook.com/book_F210.html
http://nrbook.com/a/bookf90pdf.php

Possible improvements

- uniformity
(look at the histogram, but also check the moments of
the distribution, i.e., <xk>, for k=1, 2, ...)

- correlation

- other more sophisticated
tests
(in particular for cryptographically secure use!)

Tests the “quality” of a
random sequence

Many other (pseudo)random
numbers generators

- “Mersenne twister” (Matsumoto and Nishimura , 1997)

The commonly used variant, MT19937, produces a sequence of 32-bit integers with the following
desirable properties:

1. It has a very long period of 219937 − 1 (which is necessary but not sufficient to guarantee of
good quality in a random number generator)

 2. It passes numerous tests for statistical randomness

- ...

Mersenne prime: a prime number which is one less a power of 2

http://en.wikipedia.org/w/index.php?title=Makoto_Matsumoto&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Takuji_Nishimura&action=edit&redlink=1

true vs pseudo
random number generators

PSEUDO TRUE

efficiency excellent poor

determinism deterministic non
deterministic

periodicity periodic aperiodic

Technicalities to create our own
(pseudo)random number generator

mod ???

Intrinsic procedures in FORTRAN
(see reference to Chapman book on the moodle page on this Course)

...
EXPANDED DESCRIPTION OF FORTRAN 90 / 95 INTRINSIC PROCEDURES

Intrinsic procedures in FORTRAN
(see the page from Fortran90/95 for Scientists and Engineers, by S.J. Chapman)

...

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to

Introduction to Fortran 90/95, by Stephen J. Chapman

5

LEN(STRING) LEN(str) Integer B.7

LEN_TRIM(STRING) Integer B.7

LGE(STRING_A, STRING_B) Logical B.7

LGT(STRING_A, STRING_B) Logical B.7

LLE(STRING_A, STRING_B) Logical B.7

LLT(STRING_A, STRING_B) Logical B.7

LOG(X) Argument type B.3

ALOG(r) Real

CLOG(c) Complex

DLOG(d) Double Prec.

LOG10(X) Argument type B.3

ALOG10(r) Real

DLOG10(d) Double Prec.

LOGICAL(L, KIND) Logical B.3

MATMUL(MATRIX_A, MATRIX_B) Argument type B.3

MAX(A1,A2,A3, ...) Argument type B.3

AMAX0(i1,i2, ...) Real 1

AMAX1(r1,r2, ...) Real 1

DMAX1(d1,d2,...) Double Prec. 1

MAX0(i1,i2,...) Integer 1

MAX1(r1,r2,...) Integer 1

MAXEXPONENT(X) Integer B.4

MAXLOC(ARRAY, DIM, MASK) Integer B.8 6

MAXVAL(ARRAY, DIM, MASK) Argument type B.8

MERGE(TSOURCE,FSOURCE,MASK) Argument type B.8

MIN(A1,A2,A3, ...) Argument type B.3

AMIN0(i1,i2, ...) Real 1

AMIN1(r1,r2, ...) Real 1

DMIN1(d1,d2,...) Double Prec. 1

MIN0(i1,i2,...) Integer 1

MIN1(r1,r2,...) Integer 1

MINEXPONENT(X) Integer B.4

MINLOC(ARRAY, DIM, MASK) Integer B.8 6

MINVAL(ARRAY, DIM, MASK) Argument type B.8

MOD(A,P) Argument type B.3

AMOD(r1,r2) Real

MOD(i,j) Integer

DMOD(d1,d2) Double Prec.

MODULO(A,P) Argument type B.3

MVBITS(FROM, FROMPOS, LEN, TO,
TOPOS)

Subroutine B.6

NEAREST(X,S) Real B.3

NINT(A, KIND) Integer B.3

IDNINT(i) Integer

NINT(x) Integer

NOT(I) Argument type B.6

NULL(MOLD) Pointer B.8 5

PACK(ARRAY, MASK, VECTOR) Argument type B.8

PRECISION(X) Integer B.4

PRESENT(A) Logical B.9

Intrinsic procedures in FORTRAN

...

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

11

• Arguments may be Real or Integer; all must be of the same type

MIN(A1,A2,A3,...)
• Elemental function of same kind as its arguments
• Returns the minimum value of A1, A2, etc.
• Arguments may be Real or Integer; all must be of the same type

MOD(A1,P)
• Elemental function of same kind as its arguments
• Returns the value MOD(A,P) = A - P*INT(A/P) if P ! 0. Results are processor

dependent if P = 0.
• Arguments may be Real or Integer; they must be of the same type
• Examples:

Function Result
MOD(5,3) 2
MOD(-5,3) -2
MOD(5,-3) 2
MOD(-5,-3) -2

MODULO(A1,P)
• Elemental function of same kind as its arguments
• Returns the modulo of A with respect to P if P ! 0. Results are processor

dependent if P = 0.
• Arguments may be Real or Integer; they must be of the same type
• If P > 0, then the function determines the positive difference between A and then

next lowest multiple of P. If P < 0, then the function determines the negative
difference between A and then next highest multiple of P.

• Results agree with the MOD function for two positive or two negative arguments;
results disagree for arguments of mixed signs.

• Examples:
Function Result Explanation

MODULO(5,3) 2 5 is 2 up from 3
MODULO(-5,3) 1 -5 is 1 up from -6
MODULO(5,-3) -1 5 is 1 down from 6
MODULO(-5,-3) -2 -5 is 2 down from -3

NEAREST(X,S)
• Real elemental function
• Returns the nearest machine-representable number different from X in the

direction of S. The returned value will be of the same kind as X.
• X and S are Real, and S ! 0

NINT(A,KIND)
• Integer elemental function

 mod or modulo
give the same result
if acting on positive

integers

Modulus operator in C++
the language provides a built-in mechanism, the modulus operator ('%').
Example:

01 #include <iostream>
02 using namespace std;
03
04 int main()
05 {
06 int M = 8;
07 int a = 5;
08 int c = 3;
09 int X = 1;
10 int i;
11 for(i=0; i<8; i++)
12 {
13 X = (a * X + c) % M;
14 cout << X << “ “;
15 }
16 return 0;
17 }

Intrinsic pseudorandom numbers generators

We could create our own random number generator
using “mod” intrinsic function, but it is much better to use
directly the (smart) intrinsic procedures provided by the

compilers to generate random numbers,
in general: real, with uniform distribution in [0;1[

Es. :

in Fortran90: subroutine random_number()

in C: function rand ...

Intrinsic pseudorandom numbers generator
in FORTRAN

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to

Introduction to Fortran 90/95, by Stephen J. Chapman

6

PRODUCT(ARRAY, DIM, MASK) Argument type B.8

RADIX(X) Integer B.4

RANDOM_NUMBER(HARVEST) Subroutine B.3

RANDOM_SEED(SIZE, PUT, GET) Subroutine B.3

RANGE(X) Integer B.4

REAL(A, KIND) Real B.3

FLOAT(i) Real 1

SNGL(d) Real 1

REPEAT(STRING, NCOPIES) Character B.7

RESHAPE(SOURCE,SHAPE,PAD,
ORDER)

Argument type B.8

RRSPACING(X) Argument type B.4

SCALE(X, I) Argument type B.4

SCAN(STRING, SET, BACK) Integer B.7

SELECTED_INT_KIND(R) Integer B.4

SELECTED_REAL_KIND(P,R) Integer B.4 3

SET_EXPONENT(X, I) Argument type B.4

SHAPE(SOURCE) Integer B.8

SIGN(A,B) Argument type B.3

DSIGN(d1,d2) Double Prec.

ISIGN(i1,i2) Integer

SIGN(r1,r2) Real

SIN(X) Argument type B.3

CSIN(c) Complex

DSIN(d) Double Prec.

SIN(r) Real

SINH(X) Argument type B.3

DSINH(d) Double Prec.

SINH(r) Real

SIZE(ARRAY, DIM) Integer B.8

SPACING(X) Argument type B.4

SPREAD(SOURCE, DIM, NCOPIES) Argument type B.8

SQRT(X) Argument type B.3

CSQRT(c) Complex

DSQRT(d) Double Prec.

SQRT(r) Real

SUM(ARRAY, DIM, MASK) Argument type B.8

SYSTEM_CLOCK(COUNT, COUNT_RATE,
COUNT_MAX)

Subroutine B.5

TAN(X) Argument type B.3

DTAN(d) Double Prec.

TAN(r) Real

TANH(X) Argument type B.3

DTANH(d) Double Prec.

TANH(r) Real

TINY(X) Real B.4

TRANSFER(SOURCE, MOLD, SIZE) Argument type B.8

TRANSPOSE(MATRIX) Argument type B.8

TRIM(STRING) Character B.7

UBOUND(ARRAY, DIM) B.8

Here (Chapman’s book): ARGUMENTS in Italic are optional
(in other books, optional arguments are in square brackets [])

the name of the produced output has to be specified

Fortran 90/95 Intrinsic Procedure Descriptions, a supplement to
Introduction to Fortran 90/95, by Stephen J. Chapman

12

• Returns the nearest integer to the real value A.
• A is Real

RANDOM_NUMBER(HARVEST)
• Intrinsic subroutine
• Returns pseudo-random number(s) from a uniform distribution in the range 0 !

HARVEST < 1. HARVEST may be either a scalar or an array. If it is an array, then a
separate random number will be returned in each element of the array.

• Arguments:
Keyword Type Intent Description
HARVEST Real OUT Holds random numbers.

May be scalar or array.

RANDOM_SEED(SIZE,PUT,GET)
• Intrinsic subroutine
• Performs three functions: (1) restarts the pseudo-random number generator used

by subroutine RANDOM_NUMBER, (2) gets information about the generator, and (3)
puts a new seed into the generator.

• Arguments:
Keyword Type Intent Description
SIZE Integer OUT Number of integers used to

hold the seed (n)
PUT Integer(m) IN Set the seed to the value in

PUT. Note that m ! n.
GET Integer(m) OUT Get the current value of the

seed. Note that m ! n.
• SIZE is an Integer, and PUT and GET are Integer arrays. All arguments are

optional, and at most one can be specified in any given call.
• Functions:

1. If no argument is specified, the call to RANDOM_SEED restarts the pseudo-
random number generator.

2. If SIZE is specified, then the subroutine returns the number of integers used
by the generator to hold the seed.

3. If GET is specified, then the current random generator seed is returned to the
user. The integer array associated with keyword GET must be at least as
long as SIZE.

4. If PUT is specified, then the value in the integer array associated with
keyword PUT is set into the generator as a new seed. The integer array
associated with keyword PUT must be at least as long as SIZE.

REAL(A,KIND)
• Real elemental function
• This function converts A into a real value. If A is complex, it converts the real

part of A only. If A is real, this function changes the kind only.
• A is numeric; KIND is Integer.

warning:
processor-
dependent;
sometimes it
starts always

from
the same
seed !!!

Intrinsic pseudorandom numbers generator
in FORTRAN

subroutine random_number(x) :
- the argument x can be either a scalar or a N-
dimensional array
- the result is one or N real pseudorandom numbers
uniformly distributed between 0 and 1

subroutine random_seed([size][put] [get])
- algorithm is deterministic: the sequence can be
controlled by initialization: array of “size” (*) integers
(seed): different seeds -> different sequences
- syntax:
call random_seed(put=seed) to put seed,
call random_seed(get=seed) to get its value

(*): it depends on the compiler (gfortran, g95, ifort, ...)
and on the machine architecture

Intrinsic pseudorandom numbers generator
in FORTRAN

Further notes:

subroutine random_number(x) :
- you can call it directly, without a previous call to
random_seed

subroutine random_seed([size][put][get])
- all the arguments are optional; i.e., you may also call it as:
call random_seed()
The call without arguments corresponds to different actions,
according to the compiler implementation and is processor
dependent!!! check on your computer!
In some cases it starts always from the same seed, chosen
by the computer

Intrinsic pseudorandom numbers generator
in C++

real pseudorandom numbers uniformly distributed between
0 and 1:
temp = rand();

A number between 0 and 50:
int rnd = int((double(rand())/RAND_MAX)*50);

where RAND_MAX is an implementation defined constant.

Also in c++ the sequence can be controlled by initialization:

srand (time(NULL));

on moodle2.units.it

random_lc.f90
rantest_intrinsic.f90
rantest_intrinsic_with_seed.f90
rantestbis_intrinsic.f90
INIT_RANDOM_SEED.f90
nrdemo_ran.f90

Some programs:

Exercise I:
Linear Congruent Method: periodicity

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20

’random.257.25.1.25000.dat’
’’

How to determine the period “automatically”?
Is it enough to check when a generated number is equal to the initial seed?

NO. In same cases you will NEVER go back to the seed...

x_0, a, c, m

A possible algorithm:

- create a sequence of m+1 numbers
(you don’t need more! why?)
- don’t start from the first one, that could be in a
transient part of the sequence, but from the last one,
which is for sure in the periodic part
- compare all the numbers with the last one, starting
from the second to the last and going back by 1 ...
- you get the period!

Exercise 2:
test of uniformity of the pseudorandom sequence

r(n), n=1, data is our random number sequence between 0 and 1

<= counts the number of points falling
 between i*delta_r and (i+1)*delta_r
and assign them to the “i+1” channel

AINT(A[,KIND])

• Real elemental function

• Returns A truncated to a whole number. AINT(A) is the largest integer which is smaller
than |A|, with the sign of A. For example, AINT(3.7) is 3.0, and AINT(-3.7) is -3.0.

• Argument A is Real; optional argument KIND is Integer

ANINT(A[,KIND])

• Real elemental function

• Returns the nearest whole number to A. For example, ANINT(3.7) is 4.0, and AINT(-3.7) is
-4.0.

• Argument A is Real; optional argument KIND is Integer

FLOOR(A,KIND)

• Integer elemental function

• Returns the largest integer ≤ A. For example, FLOOR(3.7) is 3, and FLOOR(-3.7) is -4.

• Argument A is Real of any kind; optional argument KIND is Integer

• Argument KIND is only available in Fortran 95

INT(A[,KIND])

• Integer elemental function

• This function truncates A and converts it into an integer. If A is complex, only the real
part is converted. If A is integer, this function changes the kind only.

• A is numeric; optional argument KIND is Integer.

NINT(A[,KIND])

• Integer elemental function

• Returns the nearest integer to the real value A.

• A is Real

what is int() ? similar intrinsic functions? how to choose?

AINT(A[,KIND])

• Real elemental function

• Returns A truncated to a whole number. AINT(A) is the largest integer which is smaller
than |A|, with the sign of A. For example, AINT(3.7) is 3.0, and AINT(-3.7) is -3.0.

• Argument A is Real; optional argument KIND is Integer

ANINT(A[,KIND])

• Real elemental function

• Returns the nearest whole number to A. For example, ANINT(3.7) is 4.0, and AINT(-3.7) is
-4.0.

• Argument A is Real; optional argument KIND is Integer

FLOOR(A,KIND)

• Integer elemental function

• Returns the largest integer ≤ A. For example, FLOOR(3.7) is 3, and FLOOR(-3.7) is -4.

• Argument A is Real of any kind; optional argument KIND is Integer

• Argument KIND is only available in Fortran 95

INT(A[,KIND])

• Integer elemental function

• This function truncates A and converts it into an integer. If A is complex, only the real
part is converted. If A is integer, this function changes the kind only.

• A is numeric; optional argument KIND is Integer.

NINT(A[,KIND])

• Integer elemental function

• Returns the nearest integer to the real value A.

• A is Real

what is int() ? similar intrinsic functions? how to choose?

Exercise 2:
intrinsic random number generator - test correlations

(obsolete: fortran 77)

(b) We can test the presence of correlation. Consider the sequence of

random numbers and plot the points (without connecting them wi-

th lines) corresponding to the pairs of consecutive numbers in the

sequence:

(xi, yi) = (r2i�1, r2i) i = 1, 2, 3....

How many points (di↵erent pairs) would you expect? What do you

see from the plot?

program rantest_intrinsic
!
! test program, call to intrinsic f90 random number generator
! generate random numbers in [0,1[; then,
! generate random integers between n_min and n_max.
!

implicit none
real :: rnd
real, dimension (:), allocatable :: x
integer :: L,i,n_min,n_max,ran_int

! generates ONE random number in [0,1[
call random_number(rnd)
print *,’ A real random number in [0,1[is:’,rnd

! generates L random numbers in [0,1[
print*,’ How many random numbers do you want to generate in [0,1[?’
print*,’ Insert the length of the sequence >’
read(*,*)L ! length of sequence

do i = 1,L
call random_number(rnd)
print *,rnd

end do

! generates integer random numbers between n_min and n_max
print*,’ Generate ’,L,’ integer random numbers in [n_min,n_max[;’
print*,’ insert n_min, n_max >’
read(*,*),n_min,n_max

do i = 1,L
call random_number(rnd)
ran_int = (n_max - n_min + 1)*rnd + n_min
print *,ran_int

end do

! use array x to generate and store L random numbers with a unique call
print*,’ Generate other ’,L,’ real random numbers in [0,1[:’

3

How many numbers? How many pairs?

1

1

but...
correlations with the LCM generator with M=256

How many numbers? How many pairs?

(b) We can test the presence of correlation. Consider the sequence of

random numbers and plot the points (without connecting them wi-

th lines) corresponding to the pairs of consecutive numbers in the

sequence:

(xi, yi) = (r2i�1, r2i) i = 1, 2, 3....

How many points (di↵erent pairs) would you expect? What do you

see from the plot?

program rantest_intrinsic
!
! test program, call to intrinsic f90 random number generator
! generate random numbers in [0,1[; then,
! generate random integers between n_min and n_max.
!

implicit none
real :: rnd
real, dimension (:), allocatable :: x
integer :: L,i,n_min,n_max,ran_int

! generates ONE random number in [0,1[
call random_number(rnd)
print *,’ A real random number in [0,1[is:’,rnd

! generates L random numbers in [0,1[
print*,’ How many random numbers do you want to generate in [0,1[?’
print*,’ Insert the length of the sequence >’
read(*,*)L ! length of sequence

do i = 1,L
call random_number(rnd)
print *,rnd

end do

! generates integer random numbers between n_min and n_max
print*,’ Generate ’,L,’ integer random numbers in [n_min,n_max[;’
print*,’ insert n_min, n_max >’
read(*,*),n_min,n_max

do i = 1,L
call random_number(rnd)
ran_int = (n_max - n_min + 1)*rnd + n_min
print *,ran_int

end do

! use array x to generate and store L random numbers with a unique call
print*,’ Generate other ’,L,’ real random numbers in [0,1[:’

3

two distributions are the same if all the moments <xk> are the same,
and not just the first one <x1> (average)

Quantitative tests the “quality”
of a random sequence

e.g.:

uniform and gaussian
distribution centred around
zero have the same average,
but different higher order
momenta

Exercise 3:
intrinsic random number generator - test uniformity

Exercise 3:
intrinsic random number generator - test uniformity

allocate(x(L))
call random_number(x)
print*, x
deallocate(x)

end program rantest_intrinsic

3. Intrinsic generators: uniformity and correlation (quantitative
tests)

Consider again a sequence generated by an intrinsic pseudorandom num-

ber generator.

(a) For a uniformity quantitative test, calculate the moment of order k:

hxkicalc = 1

N

NX

i=1

xk
i ,

that should correspond to

hxkith =

Z 1

0
dx xk pu(x) =

1

k + 1

where pu(x) is the uniform distribution in [0,1[. For a given k (fix for

instance k=1, 3, 7), consider the deviation of the calculated momen-

tum from the expected one: �N (k) =
��hxkicalc � hxkith

�� , and study

its behaviour with N (N up to ⇠100.000). It should be ⇠ 1/
p
N . (a

log-log plot could be useful)

(b) For a correlation quantitative test, calculate:

C(k)calc =
1

N

NX

i=1

xixi+k

that should correspond to

Cth
=

Z 1

0
dx

Z 1

0
dy xy pu(x)pu(y) =

1

4
.

Consider the deviation of the calculated quantity from the expected

one: �N (k) =
��C(k)calc � 1/4

�� and study its behaviour with N (N

up to ⇠100.000). It should be ⇠ 1/
p
N .

4

If f (x) ∼ 1/ N ⟹ log(f (x)) ∼ −
1
2

log(N)

…
do i=1,N
allocate (rnd(i))

call random_number(rnd) ! generate a new sequence of "i" random numbers
 ! (seed changes automatically)
somma = sum(rnd**k)
write(1,*)i,somma/i, abs(somma/i - 1./(k+1))
! somma/i is the PARTIAL sum of the sequence for the momentum k
deallocate(rnd)

end do

A “brute force” test:
Do several
sequences of
different length

ok, but time consuming…

rantest_es3_bruteforce.f90

<= this sum() corresponds to an internal loop (nested loops)

 3

how to calculate the sum of the series for increasing N?
no need of recalculating again the sum from scratch;
print out partial sums:

print out the result as a
function of “i”

implicit none
integer :: N, i, k
real :: sum
real, dimension (:), allocatable :: rnd

print*,' Insert how many random numbers >'
read(*,*)N
allocate (rnd(N))
call random_number(rnd)

print*,' Insert the order of momentum >'
read(*,*)k

sum = 0.

open (unit=1,file='momentumk.dat')

do i=1,N
sum = sum + rnd(i)**k
write(1,*)i,sum/i, abs(sum/i - 1./(k+1))
! sum/i is the PARTIAL sum of the sequence for the momentum k
end do

rantest_es3_simplest.f90

 4

Test on one sequence, several momenta

also here print
the results as a
function of “i”

…
allocate (rnd(N))
call random_number(rnd)
…
allocate(sum(kmax))
..
sum = 0.

do k = 1, kmax ! Loop for the different momenta

do i=1,N
sum(k) = sum(k) + rnd(i)**k
write(klabel,*)i, sum(k)/i, abs(sum(k)/i - 1./(k+1))
! sum(k)/i is the PARTIAL sum of the sequence for the momentum k
end do ! I

close(klabel)
end do ! k

rantest_es3_simple.f90

 5

k=1
k=3
k=7

the higher is the order of the momentum, the
more meaningful is the test
(two functions may have the same average
(<x>) although they are very different!):

check the behavior for higher-order momenta!

Test on one sequence, several momenta

 6

very small deviations from the expected
behavior could be accidental;

check the overall behavior, and try also
changing the seed!

Test on different sequences for a given momentum

 7

3. Intrinsic generators

Consider the subroutine that generates random numbers: e.g., in For-
tran 90 random number() is an intrinsic procedure generating real random
numbers in the range [0,1[. The argument of the subroutine random number()
is real, has intent out, and can be a scalar or an array.
See for instance rantest intrinsic.f90 (don’t worry about the seed of
the sequence). Note in the example the use of the dynamical allocation
of memory (the instruction allocatable) for the array x and the use of
print instruction with a specified format.

(a) Produce a sequence (long enough) of random numbers in [0,1[with
the intrinsic generator of your favorite compiler. Test uniformity and
correlation (see points b) e c) of Ex. 2) on this sequence. What do
you see? Any di↵erence with respect to Ex. 2?

(b) (optional) For a quantitative test of uniformity consider the moment
of order k:

hxk
i =

1

N

NX

i=1

xk
i =

Z 1

0
dx xk P (x) + O(1/

p

N).

For the uniform distribution pu(x) in [0,1[, i.e. for

pu(x) =
n
1 for 0  x  1
0 outside

we have hxk
i = 1/(k + 1). Consider the sequence

�����
1

N

NX

i=1

xk
i �

1

k + 1

�����

and study the asymptotic behaviour for large N . If the behaviour is
⇠ 1/

p
N , then the distribution is random and uniform. Do the test

for k=1, 3, 7, and N=100, 10.000, 100.000.

(c) (optional) A quantitative test for correlation is to calculate

C(k) =
1

N

NX

i=1

xixi+k ⇡

Z 1

0
dx

Z 1

0
dy xy P (x, y).

For the uniform distribution pu(x) with x and y totally uncorrelated,
we have C(k) = 1/4. If our random number distribution is uniform
enough and with small correlation, we expect C(k) � 1/4 ⇠ 1/

p
N .

What can you tell about the sequence above?

3

3. Intrinsic generators

Consider the subroutine that generates random numbers: e.g., in For-
tran 90 random number() is an intrinsic procedure generating real random
numbers in the range [0,1[. The argument of the subroutine random number()
is real, has intent out, and can be a scalar or an array.
See for instance rantest intrinsic.f90 (don’t worry about the seed of
the sequence). Note in the example the use of the dynamical allocation
of memory (the instruction allocatable) for the array x and the use of
print instruction with a specified format.

(a) Produce a sequence (long enough) of random numbers in [0,1[with
the intrinsic generator of your favorite compiler. Test uniformity and
correlation (see points b) e c) of Ex. 2) on this sequence. What do
you see? Any di↵erence with respect to Ex. 2?

(b) (optional) For a quantitative test of uniformity consider the moment
of order k:

hxk
i =

1

N

NX

i=1

xk
i =

Z 1

0
dx xk P (x) + O(1/

p

N).

For the uniform distribution pu(x) in [0,1[, i.e. for

pu(x) =
n
1 for 0  x  1
0 outside

we have hxk
i = 1/(k + 1). Consider the sequence

�����
1

N

NX

i=1

xk
i �

1

k + 1

�����

and study the asymptotic behaviour for large N . If the behaviour is
⇠ 1/

p
N , then the distribution is random and uniform. Do the test

for k=1, 3, 7, and N=100, 10.000, 100.000.

(c) (optional) A quantitative test for correlation is to calculate

C(k) =
1

N

NX

i=1

xixi+k ⇡

Z 1

0
dx

Z 1

0
dy xy P (x, y).

For the uniform distribution pu(x) with x and y totally uncorrelated,
we have C(k) = 1/4. If our random number distribution is uniform
enough and with small correlation, we expect C(k) � 1/4 ⇠ 1/

p
N .

What can you tell about the sequence above?

3

numerically calculated

from the sequence

expected if the sequence

was

 truly uniform

deviation of <x>k =

log(deviation of <x>k) ~ -1/2 log(N) + cost.’

+ cost.

check the slope of the log-log !!!

do you want to check a power law?

linear regression: much better

A general suggestion:

 8

gnuplot> f(x) = a * x + b

gnuplot> fit f(x) 'data.dat' u (log($1)):(log($2)) via a,b

gnuplot> plot f(x), 'data.dat'

do you want to fit with gnuplot?
Suppose you have the data in two columns, x and y, and you
suspect a power low y = xa + const

Consider that: log(y) = a * log(x) + b

 9

Exercise 4:
use of the seed

integer, dimension(:), allocatable :: seed
integer :: sizer
...
call random_seed(sizer)
! the result depends of the machine architecture!

allocate(seed(sizer))

SUBROUTINE init_random_seed
INTEGER :: i, nseed, clock
INTEGER, DIMENSION(:), ALLOCATABLE :: seed

CALL RANDOM_SEED(size = nseed)
ALLOCATE(seed(nseed))
CALL SYSTEM_CLOCK(clock)

seed = clock/2 + 37 * (/ (i - 1, i = 1, nseed) /)
CALL RANDOM_SEED(PUT = seed)

DEALLOCATE(seed)
END SUBROUTINE

 Exercise 5 (optional):
how to change the seed using the

computer clock

Check how random_seed() works with gfortran.
Do you want to force the seed initialization but not “by hands”?

nrdemo_ran.f90

Exercise 6 - optional

module ran_module
implicit none
public :: ran_func

 contains

FUNCTION ran_func(idum) result(ran)
 ...

...
END FUNCTION ran_func

end module ran_module

program demo
use ran_module
implicit none
integer :: i,idum
real :: x
print*, "idum (<0) = "
read*,idum
x =ran_func(idum)

...
end program demo

main program & modules

You can:
prepare a module: modulename.f90
prepare the main code that uses the module: mainprogram.f90
then:

Compile the module with the option -c: this produces .mod and .o (the objects):

gfortran -c modulename.f90  

Compile the main program:

gfortran -c mainprogram.f90

 
Finally you link all the files *.o and produce the executable:

gfortran -o a.out mainprogram.o modulename.o  

Data input / output
you can:
prepare an input datafile (say, in.dat)

then:
$./a.out < in.dat

Also the output can be redirected:
$./a.out > out.dat

(Note: EVERYTHING is redirected!
You won’t see anything on the screen)

