

TEM OF WATER SOLUBLE SWNT AND MWNT

Chem. Commun. 2002, 3050-3051

FFF instrumentation

Length Separation of Water-Soluble MWNT-NH₃⁺ by Field Flow Fractionation (FFF)

Fraction B - Amorphous material 100 nm

FFF Fractogram of Water-soluble MWNTs-NH₃⁺

Fraction C - 200-500 nm

FFF Fractogram of Water-soluble MWNTs-NH₃⁺

Fraction D - 600-1500 nm

100 nm

FFF Fractogram of Water-soluble MWNTs-NH₃⁺

FFF Fractogram of Water-soluble MWNTs-NH₃⁺

Fraction F > $5 \mu m$

FFF Fractogram of Water-soluble MWNTs-NH₃⁺

Approach to "Smart" Therapy

Targeting molecule Contrast agent Drug Reporter molecules

SYNTHESIS OF A BIOACTIVE SWNT EICOSAPEPTIDE BY CHEMOSELECTIVE LIGATION

- 1) B-cell epitope from the foot-and-mouth disease virus (FMDV);
- 2) This peptide elicits neutralizing antibody response for protection;
- 3) On SWNT, this peptide keeps the same conformational behavior;
- 4) Antibodies recognize the FMDV peptide attached to SWNT;
- 5) No anti-SWNT antibodies are induced;
- 6) In vivo experiments demonstrate that peptide-nanotube conjugates are immunogenic, eliciting antibody responses of the right specificity.

These findings highlight the potential use of peptide-carbon nanotube conjugates for diagnostic purposes and pave the way for their application in vaccine delivery

Can these monster molecules pass through cell membranes???

Shown to block β -adrenergic activation of adenyl cyclase in permeable cells

Cell Uptake of Fluorescent Carbon Nanotubes

Epifluorescence Microscopy Cont

Confocal Microscopy

FITC-SWNT accumulate mainly in the cytoplasm

Epifluorescence Microscopy

Peptide-SWAT accumulate mainly in the nucleus

Possible mechanisms of membrane trespassing

Cells Cut with a Microtome Knife

HeLa cells incubated with $10\mu M$ MWNT-NH₃⁺Cl⁻ washed, fixed, stained, embedded, sectioned and analysed by TEM (75 kV).

Inside the cell

Cell Uptake of Carbon Nanotubes

Optical videomicroscopy images showing interaction between MWCNT-NH $_3$ and human kidney epithelial 293 (HEK293) cells immediately after addition of CNT onto a cell culture.

The CNT is approaching the cell surface moving on a perpendicular axis to the plasma membrane...

...and then re-aligning its position on a plane parallel to the plasma membrane

Preparation of [111In]DTPA-SWNT for (i.v.) administration

Biodistribution per collected gram of tissue of [111In]DTPA-SWNT (i.v.)

external reference

TEM images of excreted urine samples containing SWNT and MWNT DTPA

The urine samples were centrifuged, and both the supernatant and the precipitate were analyzed. A-B: DTPA-SWNT from the supernatant (scale bar 500 nm); C-E DTPA-MWNT in the supernatant; F-H: DTPA-MWNT from the precipitate (scale bars 100 nm).

Mechanism of CNT Renal Excretion

Mechanism of CNT Renal Excretion

f-MWNT crossing the glomerular filter

Both amphotericin and a fluorophore on f-CNT

	Cryptococcus neoformans	Candida albicans	Saccharomyces cerevisiae	Rhodotorula rubra
1	2.5	> 80	2.5	20
2	> 80	> 80	> 80	>80
3	2.5	20	2.5	5
4	2.5	40	5	5

All the values are given in μ g/mL and represent the MIC (minimal inhibitory concentration)

1 = AmB

 $2 = SWNT-NH_3CI$

3 = MWNT-AmB; 2.6 mg loading 0.6 mmol/g, AmB about 25% of weight of MWNT-AmB

4 = SWNT-AmB; 2.3 mg loading 0.5 mmol/g, AmB about 25% of weight of SWNT-AmB

Antifungal activity of CNT-AmB conjugates

Fungal strain	MWNT-AmB	AmB
C. albicans ATCC 90029	10	> 80
C. albicans L21	10	> 80
C. parapsilosis ATCC 90118	2.5	5
C. parapsilosis L51	2.5	5
C. dubliniensis L70	2.5	1.25
C. tropicalis L42	1.25	2.5
C. lusitaniae 1557VC2	2.5	2.5
C.guillermondii EMAT S	2.5	2.5
C. famata M100	2.5	10
C. famata SA550	20	> 80

Double Functionalization of Carbon Nanotubes

One-pot triple functionalization of carbon nanotubes

Characterization of trifunctionalized SWNTs

Solubility

Sonication of CNTs in DMF (10 mg/mL) for 1 min in a water bath

Pristine SWCNTs

Trifunctionalized SWCNTs

Thermogravimetric analysis (TGA)

Characterization of trifunctionalized SWNTs Raman spectroscopy: D-band

785 nm 785 nm **Pristine SWCNTs** Functionalised SWCNTs **Pristine SWCNTs G-band Functionalised SWCNTs** 0.8-0.8 **D-band** Intensity (a.u.) Intensity (a.u.) 0.4 0.0 1500 2000 2500 1250 1500 1750 3000 Raman shift (cm⁻¹) Raman shift (cm⁻¹)

Functionalization of Carbon Nanotubes with Anticancer Molecules: Methotrexate

Apoptotic Activity of CNT Functionalized with Methotrexate (human breast carcinoma, MCF-7)

Synthesis of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers

This peptide linker is selectively cleaved by proteases over-expressed in tumor cells.

6-hydroxyhexanoic ester is an esterase-sensitive, hydrophobic spacer that has been widely used in prodrug conjugate synthesis.

Cell survival of MCF-7 cells after treatment with MWNT conjugates **2-4** for 24 h (dark grey bars). MTX concentration was kept constant at 10 μ M with and without MWNTs. Light grey bars correspond to the cytotoxicity effects of MWNT **1** devoid of the drug used as control at the same dose of the related MWNT-MTX conjugate. 10 % DMSO was used as a positive control for cytotoxicity. *** indicate statistical significance (p<0.005) between MWNT **3** and MTX alone