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Particle in a Box

Particle in a Box
The Setup

@ Consider a point particle of mass m confined in a one-dimensional box

of length L. The potential energy V(x) inside the box is zero, and

infinite outside:

0

oo otherwise

V(x) =

The wave functions ¢,
for a particle in a hox
withn=1,2 and 3
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Particle in a Box

Particle in a Box
Schrodinger Equation for 1D Box

@ The time-independent Schrodinger equation inside the box is:
2 ()
2m  dx?

@ The boundary conditions are 1(0) = 0 and (L) = 0.

@ Sine functions satisfy the Schrodinger equation and the boundary
conditions.

= Ey(x)

Daniele Toffoli (UniTS) Exactly Solvable Problems in QM October 16, 2024

5/51



Particle in a Box

Particle in a Box
Solution to the Schrodinger Equation

@ The general solution to the Schrédinger equation is:
./ nTX
n(x) = Asin (—)
L
where n is a positive integer. The normalization condition gives:

2

L
/ |77ZJ,,(X)|2 dx=1 = A=\4/-
0 L

@ Substituting the solutions in the Schrodinger equation, we obtain the
following quantized energy levels:
n’m?h?

E,="2""
2ml?
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Particle in a Box

Particle in a Box
Solution to the Schrodinger Equation

@ For a symmetric infinite square well

V(x) =

L L
0 for — 5 <x<3
oo otherwise

@ solutions can be classified through their parity: with respect to the

origin:
2 nmx
Ynlx) = \ﬂ cos (1)
e n=173)5,...
2 . /nmx
¥nlx) = \ﬂ sin (1)
e n=2,46,...
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Particle in a Box

Particle in a Box

Two- and Three-Dimensional Boxes

@ For a particle in a 2D L, x L, box, the potential is:

V(va) = {

@ The Schrodinger equation is

R (PY(x,y) | PP(xy)\
_2m( o2y )Ew(x,y)

0 forO<x<lLiandO<y<lL,

oo otherwise

with solutions

[ 4 nemx\ . n,m
wnx’n)’(x7y): LXLy SIn< XLX >5|n< yLyy) nX7ny:1727“'

and with energy levels

w2h? [ n? n)2,
2m \ L2 L2
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Particle in a Box

Particle in a Box

Two- and Three-Dimensional Boxes

o Finally in a 3D box, we have

wnx,n%nz(x,y’Z) = LXLS},LZ sin (nzjx> sin (ny[;y) sin (nthz)

@ The energy levels are

252 [ 2 2 2

wehe (ng M, ng

Enxzny:nz = 2 + +
X
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Particle in a Box

Particle in a Box

Two- and Three-Dimensional Boxes

@ Some solutions for the 2D box can be visualized as follows:

w=" ng =1 e =d '.l.-
i : g
5 = ¥ X | ¥
Lo Ln
ng=1, ny ] = Py
gl I
i 5
E ' g X | ¥
Lo Ln
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Quantum Harmonic Oscillator

Quantum Harmonic Oscillator

Introduction

@ The quantum harmonic oscillator describes a particle subject to a
restoring force proportional to its displacement.
@ The potential energy for a harmonic oscillator is:

1
V(x) = Emw2x2

where m is the mass of the particle and w is the angular frequency of
oscillation.
@ The time-independent Schrodinger equation for a harmonic oscillator

is:
h2 d? 1
™ ;f((;() + Emw2x21/1(x) = EY(x)

@ Rearranging gives:

d2 2’mE 2,22
s (P - Y =
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Quantum Harmonic Oscillator

Quantum Harmonic Oscillator
Solution to the Schrodinger Equation

@ Introduce a dimensionless variable £ defined by:

@ The Schrodinger equation becomes:

2
djg(f) L (E - ) () =0

1 _ 2E
where E' = e

@ The solution to the dimensionless Schrodinger equation is:

$n(€) = Npe ¢ /2H,(€)

where H,(&) are the Hermite polynomials and N, is a normalization

constant:
N, = L (E)”“
" V2l \wh
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Quantum Harmonic Oscillator

Quantum Harmonic Oscillator
Solution to the Schrodinger Equation

@ The energy levels of the quantum harmonic oscillator are quantized

and given by:
1
E,= — ) hw
(n + 2>

where n =0,1,2,... is a non-negative integer.

@ The wavefunctions are:

mw 1 2 mw
_ —mwx?/(2h)
Un(x) — T"n!e H, <1/ - x>

where H,, are Hermite polynomials. For n = 0:

mw 1/4 —MmMwXx 1
dolx) = () emmentia
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Quantum Harmonic Oscillator

Quantum Harmonic Oscillator
Solution to the Schrodinger Equation

a12y(€); R
08k H
02 .
P ) R .
4 2 9 2 4k < 2 o 2 4k
a2y (€) allyy (&R
08 08
06 h 06
04 1 n=1 Q4
02
0 K
- 2 o9 2 4 & -4 20

08

06

o tyy(8)
08
0.6

0
02
-04
0.6
08
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Quantum Harmonic Oscillator

Quantum Harmonic Oscillator

The correspondence principle

@ The classical probability density, P.(x) is given by
1 2dx dx

P(x)==—=—""=
T v m(x@ — x2)%

e T: period

e xg: amplitude of the periodic motion

curve), having a total energy

@ Classical and quantum mechanics agree for large quantum numbers
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Quantum Harmonic Oscillator

Quantum Harmonic Oscillator

2D Harmonic Oscillator

@ For a two-dimensional (isotropic) harmonic oscillator with potential:

1
Vix,y) = 5me (2 + y?)

@ The time-independent Schrodinger equation is:

. (a%(x, y) +6‘2w(x,y)>

1
" om Ix2 y? +Smw? (P +y2)(x,y) = EY(x,y)

2
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Quantum Harmonic Oscillator

Quantum Harmonic Oscillator

2D Harmonic Oscillator

@ The energy levels are:
Enen, = (nx +ny + 1) hw
where n, and n, are non-negative integers. The wavefunctions are:

ﬂ)nx,ny (Xa Y) = wnx(x)d}ny (Y)

with:

mw 1 2 mw
Y e —mwx?/(2h) o~
U() = |/ o e Hn< ; x>
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Finite Potential Barrier

Finite Potential Barrier

Introduction

o Consider a particle of energy E approaching a potential barrier of
height Vo and width a. The potential V(x) is given by:

0 for x <0
V(x) =< Vo for0<x<a
0 for x > a

@ Some of the incoming wave function is expected to pass through the
barrier and the rest to be reflected.

V()

Vo

0
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Finite Potential Barrier

Finite Potential Barrier
Schrédinger Equation and Boundary Conditions
@ The time-independent Schrodinger equation is:
12 d*(x)
2m  dx?

+ V(x)9(x) = Ev(x)

@ In regions:
o For x < 0 (Region I): V(x) =0

R d?p(x)
_% dx2 - E¢(X)
e For 0 < x < a(Region Il): V(x) =V
h? d?
IE 0D | Vi) = Evl)
e For x > a (Region Ill): V(x) =0
R d*p(x)
_ﬂ dx2 - EQZ)(X)
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Finite Potential Barrier

Finite Potential Barrier

Solution in Region | and Ill

@ In regions | and Ill, the solutions have a forward and a backward
moving free particle portion, but with different ratios.

¢I(X) — Aeikx + Be—lkx
¢///(X) = Ceikx + Deflkx

where k = 22’—2E D = 0 assuming a particle incident to the left of

the barrier (boundary condition).

° The boundar2/ conditions at x = 0 and x = a require continuity of

and 4¥&)
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Finite Potential Barrier

Finite Potential Barrier

Solution in Region Il

@ In Region Il (0 < x < a), the Schrédinger equation becomes:

d? 2m(Vo — E
) = 220

@ Define k = \/%, where k is real for E < V. The

wavefunction in this region is:
1/)//(X) = Fe™ + Ge™™

@ Thus the wave function in this region does not have a sinusoidal
character but a decaying profile.
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Finite Potential Barrier

Finite Potential Barrier
Matching Boundary Conditions

@ For continuity, the solutions and their derivatives must match at the
two boundaries.

e At x =0:
¥1(0) =v¢y(0) = A+B=F+G
di(x)|  _ dvu(x) ; _
dx x=0 dx x=0 — Ik(A B) - K(F G)
o At x = a:
Yi(a) = y(a) = Ce*@ = Fer? 4 Ge "2
d@bll(X) N dwm(x) . ika _ ra Cva
dx s T T dx s — ikCe'"? = k(Fe Ge™"9)
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Finite Potential Barrier

Finite Potential Barrier

Transmission and Reflection Coefficients (case E<Vq)

@ Define the transmission coefficient T and reflection coefficient R:

|A|2 V§ sinh?(ka)

AR |7 4E(Vo - E)
@ The coefficients are related by R+ T =1

. |C|2_[1 V025inh2(/<a)}l
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Finite Potential Barrier

Finite Potential Barrier

Visualization of Solutions (case E<Vy)

(xR

3+

1 1 L I 1 I L

-10 -8 -6 -4 -2 0 2 4 xla

Figure 4.5 The modulus square of the wave function, |y (x)|?, for the case of a rectangular
barrier such that mVoa?/h? = 0.25. The incident particle energy is E = 0.75Vp. The coefficient
Ain (4.73a) has been taken to be A = 1.
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Finite Potential Barrier

Finite Potential Barrier

Application: scanning tunnelling microscope

‘Tunneling current

Quantum corral scheme of a STM

@ Electrical voltage is applied between a needle and the surface.
Current will flow according to the equation above for the transmission
coefficient (case ka >> 1).

e sensitive measure of the height of the needle above the surface
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Particle on a Sphere

Particle on a Sphere

Introduction

o Consider a particle of mass p constrained
to move on the surface of a sphere.

@ The particle’s wave function must satisfy
the Schrédinger equation in spherical
coordinates.

@ Boundary conditions are applied on the

spherical surface, leading to quantization.
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Particle on a Sphere

Particle on a Sphere

Spherical Coordinates

Figure 6.1 The spherical polar coordinates (r.6. ¢) of a point P. The position vector of P with
respect to the origin is r.

@ The spherical coordinates (r, 0, ¢) are used for the spherical surface.

@ The position vector is given by r = r? where r is the radius of the
sphere.

@ The angular coordinates 6 (polar angle) and ¢ (azimuthal angle)
describe the position on the surface.
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Particle on a Sphere

Particle on a Sphere

Schrodinger Equation on a Sphere

@ The Laplacian operator V2 in spherical coordinates is:

| r2or or r2sin @ 00 00 r2sin2 0 0¢?
@ The Schrodinger equation in spherical coordinates for a particle on a
sphere of radius a is:

K2 1 0 NG, 1 9?2
» Linm (s.neae) N szmz} $(6, ) = E(0,0)

where | = pa® is the moment of inertia.
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Particle on a Sphere

Particle on a Sphere

Separation of Variables

@ The wave function (6, ¢) can be separated into:

(0, 0) = ©(0)%(¢)

@ Substituting into the Schrédinger equation and dividing by -

sin —- + WW = —?

do

sinf d de 1 d%¢ 21E
() do
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Particle on a Sphere

Particle on a Sphere
Azimuthal Equation

@ The azimuthal part ®(¢) satisfies:

d’® 5
where m is the azimuthal quantum number.

@ The solution is: 1

V2r

@ The quantum number m is an integer.

elm(;$

®(¢) =
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Particle on a Sphere

Particle on a Sphere

Polar Equation

@ The polar part ©(6) satisfies:

1 d /. do© 21E m?
snddo (9> + [7# - sin2e} ©=0

@ This is the associated Legendre differential equation.

@ Solutions are the associated Legendre functions P,|m|(cos 9).
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Particle on a Sphere

Particle on a Sphere

Spherical Harmonics

@ The solutions to Schrodinger equation are the spherical harmonics:
Y/"(8,¢) = NJ"P["(cos §)e™

where N/™ is a normalization constant, P;"(cosf) are Legendre
polynomials.

real spherical harmonics
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Particle on a Sphere

Particle on a Sphere

Properties of Spherical Harmonics

@ Spherical harmonics are complete and orthonormal set of functions:

2 T
/ / Y™(6, $) Y7 (6, ¢) sin 6 dO dp = 8y Sy
0 0

@ They are eigenfunctions of the square of the orbital angular
momentum operator and of a component of the angular momentum:

L2y =n21(1+1)ym

LY =hmY"

@ The eigenvalue [ is a non-negative integer and m ranges from —/ to /.
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Particle on a Sphere

Particle on a Sphere

Low order spherical harmonics

Spherical harmonic Yim(6, ¢)

1

Y00 = ——5
00 = G2

3\172
io=(-—= 6

34172 ‘
Y1.=1=?(§) sin ge*i®

5 \112 ,
YZ'°=(m) (3cos“8—-1)

151172 )
You1=F(z=) sin6cosge*®

8r 12

15 .2 i
Yora=— sin? get2®
o (2)

! m
0 0
1 0
+1
2 0
*1
+2
3 0
+1
+2
+3

7 \1/2
Y30 = —) (5¢os3 6 — 3 cos6)
167
21\ .
Y341 = ;(— sinB(5cos? 9 — 1)et®
64r

12 )
Y342 = 105 sin? 6 cos fe*2¢
321

S \172 )
y3'*3=;(6347) sin’ ge*3
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Particle on a Sphere

Particle on a Sphere
Polar plots of probability distribution |Yim(0¢)|* = 5 |©m(0)|?
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Particle on a Sphere

Particle on a Sphere

Angular Momentum Quantization

@ Angular momentum in quantum mechanics is quantized
@ Vector model: vector L of length f\//(/ + 1) precesses about the

quantization axis.
o allowed projections on this axis are given by im
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The Hydrogen Atom

The Hydrogen Atom

Introduction

@ The hydrogen atom is the simplest atom consisting of a single
electron bound to a nucleus by the Coulomb force.

@ The system is central to quantum mechanics and explains atomic
spectra.

@ We use spherical coordinates (r, 6, ¢) to account for the spherical
symmetry of the problem.
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The Hydrogen Atom

The Hydrogen Atom

The Schrodinger Equation

@ The time-independent Schrodinger equation for the hydrogen atom in
spherical coordinates is:

m? _, e?
——VY(r) — r) = Ey(r
TN - o) = B0
@ /i is the reduced mass of the electron-nucleus system: i = n':%";‘;

@ The potential energy is given by the Coulomb potential:

e2

V(r)=—

dmegr
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The Hydrogen Atom

The Hydrogen Atom

Separation of Variables

o We separate the wavefunction ¢(r, 8, ¢) into radial and angular
components:

w(rv 07 ¢) = RE/(r) Ylm(97 ¢)
@ The angular part Y;"(6, ¢) is given by a spherical harmonics.

e The radial part Rg(r) satisfies a radial eigenvalue equation.
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The Hydrogen Atom

The Hydrogen Atom

The Radial Equation

@ The radial part of the Schrédinger equation is:

d2ug(r) . [Q,U <E+ e? > B /(/—l—l)] uei(r) =0

dr? K2 4rregr r2

@ Here, ug/(r) = rRe(r) is the reduced radial wavefunction, and / is the
orbital angular momentum quantum number.

@ This equation can be solved to find the energy levels and
wavefunctions.
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The Hydrogen Atom

The Hydrogen Atom

Energy Levels

@ The energy levels of the hydrogen atom are quantized and given by:

pet 1

Eo=—-—t° __~
2(4meg)2h2 n?

@ nis the principal quantum number and can take integer values
n=12,3,...

@ The energy levels are inversely proportional to n?, resulting in the
characteristic spectral lines.
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The Hydrogen Atom

The Hydrogen Atom

Quantum Numbers

@ The hydrogen atom wavefunctions are described by three quantum
numbers:

e n: principal quantum number
e [: orbital angular momentum quantum number
e m: magnetic quantum number
@ These quantum numbers determine the energy, shape, and orientation
of the electron’s probability distribution.
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The Hydrogen Atom

The Hydrogen Atom

Wave Functions

@ The wavefunction ¥ m(r, 0, @) is the product of radial and angular
parts:

Ynim(r, 6, ¢) = Ru(r) Y™ (6, ¢)
@ The radial part R,/(r) depends on the principal quantum number n
and the orbital angular momentum /.

@ The angular part Y;"(8, ¢) is a spherical harmonic that depends on /
and m.
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The Hydrogen Atom

The Hydrogen Atom

Visualization of Orbitals

©

Hydrogen Wave Functi @ The probability density for finding

““ ‘ the electron in the hydrogen atom is
given by an/m(ra 07 ¢)|2

o Different quantum numbers give
rise to different orbital shapes.

@ The radial part influences the size of
the orbital, while the angular part
determines the shape.

(@) »

J
e
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The Hydrogen Atom

The Hydrogen Atom

Degeneracy of Energy Levels

o Each energy level E, is degenerate, meaning multiple states share the
same energy.
@ The degeneracy is determined by the quantum numbers / and m,
which range from:
1=0,1,2,...,n—1
m=—,—1+1,...,1

@ The total degeneracy for a given n is n°.
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The Hydrogen Atom

The Hydrogen Atom

Energy level diagram

E(eV) =0 1 2 3 4
0 0% ————
28E 3
o 3s 3p 3d
34 r —25 _2p
-13.6 - ] —
3 1s
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The Hydrogen Atom

The Hydrogen Atom

Selection Rules and Transitions

@ Electrons can transition between energy levels by absorbing or
emitting a photon.
@ The allowed transitions are governed by selection rules:
o Al=7F1
e Am=0,F1
@ These rules explain the observed spectral lines in hydrogen's emission
and absorption spectra.
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