
Bash Advanced and Scripting
Course titleCourse title

Bash Lecture 2 - Advanced

Introduction to bash 2/88

★ Bibliography:

https://www.rigacci.org/docs/biblio/online/sysadmin/toc.htm

https://www.tldp.org/LDP/abs/html/

★ Learning Materials:

http://www.ee.surrey.ac.uk/Teaching/Unix/

https://github.com/gtaffoni/Learn-Python/blob/
master/Lectures/ShellLecture01.pdf

https://github.com/gtaffoni/Learn-Python/blob/
master/Lectures/ShellLecture02.pdf

https://github.com/bertocco/bash_lectures

Traditional service delivery
Bibliography and learning materials

https://www.rigacci.org/docs/biblio/online/sysadmin/toc.htm
https://www.tldp.org/LDP/abs/html/

Introduction to bash 3/88

★ Bash scripting programming:
– Editors
– Scripts and redirection
– Variables
– Main programming elements (if, for while,…)
– Examples (using files)
– Basic `sed`
– Basic `awk`

Traditional service delivery
Arguments of this lesson

Introduction to bash 4/88

Many shells have scripting abilities:

Put multiple commands in a script and the shell

executes them as if they were typed from the

keyboard.

Most shells offer additional programming

constructs that extend the scripting feature into a

programming language.

Traditional service delivery
Shell scripting abilities

Introduction to bash 5/88

 Editor

★In dictionary.cambridge.org: is a piece of software for

editing text on a computer

★In www.merriam-webster.com: is a computer program

that permits the user to create or modify data (such as

text or graphics) especially on a display screen

Traditional service delivery
Editors

http://www.merriam-webster.com/

Introduction to bash 6/88

 In Linux, text editor are of two kinds:

★ graphical user interface (GUI) based

– gedit

– bluefish

– lime ……...

★ command line text editors (console or terminal)

– nano

– pico

– vi/vim

– emacs …….

Traditional service delivery
Editor types

Introduction to bash 7/88

Nano is the built-in basic text editor for many popular linux distros.
It doesn’t take any learning or getting used to, and all its commands and
prompts are displayed at the bottom.
★ Use Nano if:

– You’re new to the terminal

– you just need to get into a file for a quick change.
Compared to more advanced editors in the hands of someone who
knows what they’re doing, some tasks are cumbersome and non-
customizable.
★ How to Nano:

from your terminal, enter `nano` and the filename you want to edit.
If the file doesn’t already exist, it will once you save it.
Commands are listed across the bottom and are triggered with the
Control (CTRL) key. For example, to find something in your file, hold
CTRL and press W, tell it what you’re searching for, and press Enter.
Press CTRL+X to exit, then follow the prompts at the bottom of the
screen.

Traditional service delivery
Nano

Introduction to bash 8/88

Emacs has so many available features like a terminal, calculator,
calendar, email client, web browser, and Tetris, it’s often spoken of as an
operating system itself.
Starting Emacs is relatively simple, but more you learn, the more there is
to learn.

★ How to Emacs:
Emacs commands are accessed through keyboard combinations of
CTRL or ALT and another keystroke. When you see shortcuts that read
C-h or M-x, C stands for the control key and M stands for the Alt key (or
Escape, depending on your system).

Enter `emacs` in your terminal, and access the built-in tutorial with C-h t.
That means, while holding CTRL, press H, then T.

Or, try key combination C-h r to open the manual within Emacs. You can
also use the manual as a playground; just remember to quit without
saving by pressing key combination C-x C-c.

Traditional service delivery
GNU emacs

Introduction to bash 9/88

★ Emacs wiki
https://www.emacswiki.org/emacs/SiteMap

★ GNU Guided Tour
https://www.gnu.org/software/emacs/tour/

★ Cornell Emacs Quick Reference
https://www.cs.cornell.edu/courses/cs312/2006fa/software/quick-emacs.html

Traditional service delivery
Helpful Emacs links

https://www.emacswiki.org/emacs/SiteMap
https://www.gnu.org/software/emacs/tour/

Introduction to bash 10/88
 http://www.di.unipi.it/~bozzo/fino/appunti/node2.htmla

Traditional service delivery
Main Emacs commands

Introduction to bash 11/88

Vi, typically comes with your distro-of-choice.
Vim is a vi successor with some improvements. It runs by default on
OS X and some Linux distributions when `vi` is run.

VI has two modes of operation (is a “modal” editor):

● Command mode for navigating files: commands which
cause action to be taken on the file

● Insert mode for editing text: in which entered text is inserted
into the file.

Because Vi is navigated through the use of keyboard
commands and shortcuts, it is better experienced than
explained.

Traditional service delivery
vi/vim

Introduction to bash 12/88

Enter `vi` or `vim` in your terminal.
When you enter Vi, you begin in command mode and navigate using keyboard
commands and the H, J, K, and L keys to move left, down, up, and right,
respectively (but arrows use is possible in the most recent versions).

To enter in editing mode press:
‘a’ to append to the file
‘i’ to insert
pressing the <Esc> (Escape) key turns off the Insert mode.

To exit Vim without saving, press ESC to enter command mode, then press :
(colon) to access the command line (a prompt appears at the very bottom) and
enter q!.
To save and quit, you could use that prompt and the key combination :wq, or
hold down SHIFT and press Z two times (the shortcut SHIFT+ZZ).

The : (colon) operator begins many commands like :help for help, or :w to
save.

If you’re stuck at the prompt and don’t remember the operator you want to use,
enter : (colon), then press CTRL+D for a list of possibilities.

Traditional service delivery
How to Vi or Vim

Introduction to bash 13/88

★ Basic vi Commands
https://www.cs.colostate.edu/helpdocs/vi.html

★ Swathmore’s Tips and Tricks
https://www.cs.swarthmore.edu/oldhelp/vim/home.html

★ Linux Academy’s Vim Reference Guide
https://linuxacademy.com/blog/wp-content/uploads/2016/06/vim-2.png

Traditional service delivery
Helpful VI links

Introduction to bash 14/88

Introduction to bash 15/88

Technologies available in Information Technology are a lot.

Often, to solve a problem, you can choose between

different instruments. The rule to base your choose is:

It does not exist “the best tool” but “the best tool to solve

your specific problem”.

Sometimes different tools are more or less equivalent.

This is the case of editors emacs and vi:

https://en.wikipedia.org/wiki/Editor_war

Traditional service delivery
The editor war

Introduction to bash 16/88

Try an editor and its tutorial,
watch videos on how to use it for your intended purpose,
spend a day or two using it with real files training your fingers.

The best editor for you is the one that makes you feel like
you’re easily getting things done.

Traditional service delivery
Choose your editor

Introduction to bash 17/88

A script is, in the simplest case, a list of system

commands stored in a file.

Place commands in a script is useful

● to avoid having to retype them time and again

● to be able to modify and customize the script for a

particular application

● to use the script as a program/command

Traditional service delivery
What is a script

Introduction to bash 18/88

Every script starts with the sha-bang (#!) at the head, followed by
the full path name of an interpreter.
Examples:
#!/bin/sh
#!/bin/bash
#!/usr/bin/perl

This tells your system that the file is a set of commands to be fed to
the command interpreter indicated by the path.

The #! is a special marker that designates a file type, or in this case
an executable shell script (type man magic for more details on this
fascinating topic).

The command interpreter executes the commands in the script,
starting at the top (the line following the sha-bang line), and
ignoring comments.

Traditional service delivery
The sha-bang #!

Introduction to bash 19/88

Traditional service delivery
Execute the script

★ The script execution requires the script has “execute” permissions:
 chmod +rx scriptname (gives everyone read/execute permission)
 chmod u+rx scriptname (gives only the script owner read/execute
 permission)

★ The script can be executed issuing:
./scriptname

★ The script can be made available as a command:

– moving the script to /usr/local/bin (as root), making it available to
all users as a system wide executable. The script could then be
invoked by simply typing scriptname [ENTER] from the
command-line.

– Including the directory containing the script in the user's $PATH

Introduction to bash 20/88

Traditional service delivery
Exercise: a first script

★ Write a script that upon invocation

1) Says “Hello!”

2) shows the time and date

3) The script then saves this information to a logfile

★ Make the script executable

★ Execute the script

★ Make the script available as a command

Introduction to bash 21/88

Traditional service delivery
Special characters (1)

★ Special characters have a meaning beyond its literal meaning

Comments [#]. Lines beginning with a # (with the exception of #!)
This line is a comment.
Comments may also occur following the end of a command.
echo "A comment will follow." # Comment here.
Comments may also follow whitespace at the beginning of a line.
 # Note

Command separator [semicolon ;]. Permits putting two or more commands on the same
line.
echo hello; echo world

Escape [backslash \]. This is a mechanism to express litterally a special character.
For example the \ may be used to escape " and ' echoing a string:
echo This is a double quote \” # This is a double quote

Introduction to bash 22/88

Traditional service delivery
Special characters (2)

Command substitution [backquotes or backticks `]. The `command` construct makes
available the output of command for assignment to a variable.
a=`pwd` (or a=$(pwd)) - (backtick AltGR+’ on Linux, ALT+096 on Windows)
acho $a # display the path of your location

Wild card [asterisk *]. The * character serves as a "wild card", it matches every filename
in a given directory or every character in a string.

Run job in background [and &]. A command followed by an & will run in the background.
 bash$ sleep 10 &
 [1] 850
 [1]+ Done sleep 10
Within a script, commands and even loops may run in the background.
To bring the script in foreground type `fg` or `CTRL Z fg`
To bring the script in background type `fg` or `CTRL Z bg`

Complete reference:
https://www.tldp.org/LDP/abs/html/special-chars.html

Introduction to bash 23/88

 Write a commented command and execute it

 Write two commands on the same row and execute them

 Make the echo of a string containing one or more escaped
characters

 Make the echo of a command (like ls or pwd) output

 Use wildcard to list all files starting with ‘a’ in your directory

Exercise: special characters

Introduction to bash 24/88

Traditional service delivery
Redirection (1)

Each UNIX command (or program) is connected to three communication channels
between the command and its environment:

 Standard input (stdin) where the command read its input
 Standard output (stdout) where the command writes its output
 Standard error (stderr) where the command writes its error

 When a command is executed via an interactive shell, the streams are typically
connected to the text terminal on which the shell is running, but can be changed with
redirection or with a pipeline

Standard Input, Standard Output and Standard Error Symbols:

redirect stdout to a file redirect stderr and stdout to a file

redirect stderr to a file redirect stderr and stdout to stdout

redirect stdout to stderr redirect stderr and stdout to stderr

redirect stderr to stdout

standard input 0<

standard output 1>

standard error 2>

Introduction to bash 25/88

Traditional service delivery
Redirection (2)

Redirection [> &> >& >>].
● Redirect stdout to file (overwrite filename if it already exists):

scriptname > filename
scriptname >> filename # appends the output of ‘scriptname’ to file ‘filename’. If
 # filename does not already exist, it is created

● Redirect stderr to file (overwrite filename if it already exists):
scriptname 2> filename

● Redirect both the stdout and the stderr of command to filename:
command &> filename redirects both the stdout and the stderr of command to filename

● Redirects stdout of command to stderr:
command >&2

● Redirects stderr of command to stdout:
command 2>&1

Introduction to bash 26/88

Traditional service delivery
Redirection: Examples

● Stdout redirected to file
find . -name pippo > find-output.txt

● Stderr redirected to file
find . -name pippo 2> find-errors.txt

● discards any errors that are generated by the find command
find / -name "*" -print 2> /dev/null
/dev/null is a simple device (implemented in software and not corresponding to any
hardware device on the system).
 /dev/null looks empty when you read from it.
 Writing to /dev/null does nothing: data written to this device simply "disappear."
Often a command's standard output is silenced by redirecting it to /dev/null, and this is
perhaps the null device's commonest use in shell scripting:
command > /dev/null

● Redirect both stdout and stderr to file
find . -name pippo &> out_and_err.txt

● Redirect stderr to stdout: find . -name filename 2>&1
● Redirect stdout to stderr: find . -name filename 1>&2

Introduction to bash 27/88

Traditional service delivery
Special characters (3)

Pipe [|]. Passes the output (stdout) of a previous command to the input (stdin) of the
next one, or to the shell. This is a method of chaining commands together.

echo ls -l | sh
Passes the output of "echo ls -l" to the shell,
#+ with the same result as a simple "ls -l".

cat *.lst | sort | uniq
Merges and sorts all ".lst" files, then deletes duplicate lines.

A pipe sends the stdout of one process to the stdin of another. In a typical case, a
command, such as cat or echo, pipes a stream of data to a command that transforms it
in input for processing:

cat $filename1 $filename2 | grep $search_word

Introduction to bash 28/88

Traditional service delivery
Redirection with pipe and tee examples

Examples of redirection of the output of a command to be used as input of another:
● Display the output of a command (in this case ls) by pages:

ls -la | less
● Count files in a directory:

ls -l | wc -l
● Count the number of rows containing of the word “canadesi” in the file vialactea.txt

grep canadesi vialactea.txt | wc -l
● Count the number of words in the rows containing the word “canadesi”

`tee` is useful to redirect output both to stdout and to a file. Example:
find . -name filename.ext 2>&1 | tee -a log.txt
This will take stdout and append it to log file. The stderr will then get converted to
stdout which is piped to tee which appends it to the log and sends it to stdout which
will either appear on the tty or can be piped to another command.

To go deep: https://stackoverflow.com/questions/2871233/write-stdout-stderr-to-a-
logfile-also-write-stderr-to-screen

Introduction to bash 29/88

Traditional service delivery
Exercise: redirection

Create a directory and file tree like this one:
my_examples /ex1.dir
 /ex2.txt
 /ex3.dir
 /ex3.dir/file1.txt
 /ex3.dir/file2.txt
 /ex3.dir/file3.txt

Remove read permissions to directory /ex2.dir
Redirect output on a file. Error is displayed on terminal
Redirect error on a file. Output is displayed on terminal
Verify the content of the files
Stderr redirected to file
Redirect output and errors symultaneously

Use pipe to redirect the output of a command to another command and to a file
Use tee to redirect output both to stdout and to a file

Introduction to bash 30/88

★ Variables are how programming and scripting languages represent
data. A variable is a label, a name assigned to a location holding
data.

★ Standard UNIX variables are split into two categories:
– environment variables:

if set at login, are valid for the duration of the session
– shell variables:

apply only to the current instance of the shell and are used to set
short-term working conditions;

By convention, environment variables have UPPER CASE and shell
variables have lower case names.
★ Environment variables are a way of passing information from the

shell to programs when you run them. Programs look "in the
environment" for variables and if found, will use the values stored.

★ Variables can be set: by the system, by you, by the shell, by any
program that loads another program.

Traditional service delivery
UNIX Variables

Introduction to bash 31/88

Variable in bash are untyped.

★ Bash variables are character strings: can contain a
number, a character, a string of characters.

★ Depending on context, bash permits arithmetic
operations and comparisons on variables. The
determining factor is whether the value of a variable
contains only digits or not.

★There is no need to declare a variable, just assigning a
value to its reference will create it.

Traditional service delivery
bash variables

Introduction to bash 32/88

It must distinguish between the name (left value) of a variable and its value
(right value).

If variable1 is the name of a variable,
then $variable1 is a reference to its value, i.e. the data item it contains.

$variable1 is actually a simplified form of ${variable1}. In contexts where the
$variable syntax causes an error, the longer form ${variable} may work.

Referencing (retrieving) the variable value is called variable substitution.

=> No space permitted on either side of = sign when initializing variables.

Example:
a=375 # Initialize variable
hello=$a # No space permitted on either side of = sign when initializing variables.
^ ^
What happens if there is a space? Bash will treat the variable name as a program to
execute, and the = as its first parameter. TRY
#
echo hello # hello ## Not a variable reference, just the string "hello" ...
echo $hello # 375 ## This *is* a variable reference, i.e. shows the value.
echo ${hello} # 375 ## Likewise a variable reference, as above.

Traditional service delivery
bash variables: assignment (1)

Introduction to bash 33/88

In the previous slide: “In contexts where the $variable syntax causes
an error, the longer form ${variable} may work”. This is called variable
disambiguation.

Example:
If the variable $type contains a singular noun and we want to
transform it on a plural one adding an ‘s’, we can't simply add an ‘s’
character to $type since that would turn it into a different variable,
$types.
Although we could utilize code contortions such as
echo "Found 42 "$type"s"

the best way to solve this problem is to use curly braces:
echo "Found 42 ${type}s",
which allows us to tell bash where the name of a variable starts and
ends

Traditional service delivery
assignment disambiguation with {}

Introduction to bash 34/88

Try:

1) STR=’Hello World!’
 echo $STR

2) Try assignment and echo the variable content:

a=5324

a=(1 3 4 6 5 “otto”) # array

3) Very simple backup script example:
 OF=/tmp/my-backup-$(date +%Y%m%d).tgz
 tar -czf $OF ./subdir_of_where_i_am

Traditional service delivery
Exercise: bash variables

Introduction to bash 35/88

“naked variable”, i.e. lacking ‘$’ in front, is when a variable is being assigned,
rather than referenced.
Assignment simple
a=879 ; echo "The value of \"a\" is $a."

Assignment using 'let' (arithmetic expression)
let a=16+5; echo "The value of \"a\" is now $a."

In a 'for' loop (see for details later in this lesson):
echo -n "Values of \"a\" in the loop are: "
for a in 7 8 9 11
do
 echo -n "$a "
done

In a 'read' statement (also a type of assignment):
echo -n "Enter \"a\" "
read a
echo "The value of \"a\" is now $a."

Traditional service delivery
bash variables: assignment examples

Introduction to bash 36/88

#!/bin/bash
With command substitution

a=$(echo Hello\!) # Assigns result of 'echo' command to 'a' ...
echo $a

a=$(ls -l) # Assigns result of 'ls -l' command to 'a'
echo $a # Unquoted, however, it removes tabs and newlines.

echo "$a" # The quoted variable preserves whitespace.

Traditional service delivery
bash variables: assignment examples(2)

Introduction to bash 37/88

Try different variable assignments and print the variable
content to standard output

 Simple assignment

 Command output assignment

Exercise 3: practice with variables assignment

Introduction to bash 38/88

Quoting means just that, bracketing a string in quotes.
This has the effect of protecting special characters in the string from
reinterpretation or expansion by the shell or shell script. (A character is "special"
if it has an interpretation other than its literal meaning. For example, the asterisk
* represents a wild card character in Regular Expressions).

Partial quoting consists in enclosing a referenced value in double quotes (" ... ").
This does not interfere with variable substitution. Sometimes referred also as
"weak quoting."

Full quoting consists in using single quotes ('...').
It causes the variable name to be used literally, and no substitution will take
place.

Examples (Try):
a=352
echo $a # 352
echo “$a” # 352
echo ‘$a’ # $a
=> Quoting a variable preserves whitespaces.

Traditional service delivery
bash variables: quoting

Introduction to bash 39/88

In a bash script:

 Assign a variable
 Print the variable value
 Print a string containing the variable value
 Print a string containing the partial quoted variable
 Print the same string fully quoted
 Assign a variable containing multiple spaces
 Print this new variable
 Print this new variable quoted

 Run the script
 Run the script redirecting the output on a file

Traditional service delivery
Exercise 2: variables assignment and quoting

Introduction to bash 40/88

Traditional service delivery
Bash Arithmetic Expansion (1)

★Arithmetic expansion provides a powerful tool for
performing (integer) arithmetic operations.
Translating a string into a numerical expression is
relatively straightforward using `expr`, backticks,
double parentheses, or let.

★ Backticks examples:
z=15
z=$(expr $z + 3)
echo $z

Introduction to bash 41/88

Traditional service delivery
Demonstrating some of the uses of 'expr'

Arithmetic Operators
a=$(expr 5 + 3)
echo "5 + 3 = $a"

a=$(expr $a + 1)
incrementing a variable
echo "a + 1 = $a"

modulo
a=$(expr 5 % 3)
echo "5 mod 3 = $a"

Introduction to bash 42/88

Traditional service delivery
Bash Arithmetic Expansion (2)

★Parentheses examples:
$((EXPRESSION)) is arithmetic expansion.
Not to be confused with + command substitution.
Examples:
n=0
echo "n = $n" # n = 0
((n += 1)) # Increment.
echo "n = $n" # n = 1

(($n += 1)) # is incorrect!
echo (($n += 1))

Introduction to bash 43/88

Traditional service delivery
Bash Arithmetic Expansion (3)

★`let` let does exactly what (()) do.
Examples:
z=0
let z=z+3
let "z += 3" # Quotes permit the use of spaces in

 # variable assignment.
 # The 'let' operator actually performs

 # arithmetic evaluation,
 # rather than expansion.
echo $z

Introduction to bash 44/88

Traditional service delivery
`set`

`set` sets shell attributes (and positional parametrs)
Example:
$ set foo=baz
$ echo "$1"
foo=baz

Note that baz is not assigned to foo, it simply becomes a literal positional
parameter.
`set` also prints variables that are not exported.
To see other possible operations: `help set`.
Note: `export` exports to children of the current process, by default they are
not exported.
Example:$ foo=bar
$ echo "$foo"
bar
$ bash -c 'echo "$foo"'

$ export foo
$ bash -c 'echo "$foo"'
bar

Introduction to bash 45/88

Traditional service delivery
Array in bash

★Initialize an array: arrays in Bash can contain both numbers and
strings:

– Initialization with all elements of the same type (numbers)
myArray=(1 2 4 8 16 32 64 128)

– Initialization with mixed types elements
myArray=(1 2 "three" 4 "five")

★Make sure to leave no spaces around the equal sign. Otherwise,
Bash will treat the variable name as a program to execute, and the
= as its first parameter!

Introduction to bash 46/88

Traditional service delivery
Retrieve array elements in bash

★Although Bash variables don't generally require curly brackets,
they are required for arrays.
In turn, this allows us to specify the index to access:
echo ${myArray[1]} returns the second element of the array
(indexes starts from zero).

★Not including brackets
echo $allThreads[1] leads Bash to treat [1] as a string and output
it as such.

Introduction to bash 47/88

Traditional service delivery
Some useful array operations

Syntax Result

arr=() Create an empty array

arr=(1 2 3) Initialize array

${arr[2]} Retrieve third element

${arr[@]} Retrieve all elements

${!arr[@]} Retrieve array indices

${#arr[@]} Calculate array size

arr[0]=3 Overwrite 1st element

arr+=(4) Append value(s)

str=$(ls) Save ls output as a string

arr=($(ls)) Save ls output as an array of files

${arr[@]:s:n} Retrieve n elements starting at index s

Introduction to bash 48/88

Traditional service delivery
Exercise: retrieve array elements

★Initialize three arrays:

– One with only numbers

– One with only strings

– One with mixed elements

★ Retrieve the first, and the third element of each one

★ Write a script that:

– enter the home directory (hint. HOME environmental variable);

– save all the files in the home directory as bash array;

– print the last element of the array

Introduction to bash 49/88

Traditional service delivery
Conditional execution

 Conditional statements:

★If … then

★ If … then … else

★ If … then … elif

★ case

Introduction to bash 50/88

The if construction allows you to specify different courses of action to be
taken in a shell script, depending on the success or failure of a
command.

The most compact syntax of the if command is:

if TEST-COMMANDS; then COMMANDS; fi

Which is the same, less compact:

if TEST-COMMANDS
 then COMMANDS
fi

The TEST-COMMAND list is executed, and if its return status is one (True), the
COMMANDS are executed. The return status is the exit status of the last
command executed, or zero if the condition tested is False.

Traditional service delivery
Conditional statement “if...then”

Introduction to bash 51/88

● Testing exit status
The ? variable holds the exit status of the previously executed command
(the most recently completed foreground process).
Example
Test to check if a command has been successfully executed:

ls -l
if [$? -eq 0]
 then echo 'That was a good job!'
fi

● Numeric comparisons
The example below use numerical comparisons:

num=$(less work.txt | wc -l)
echo $num
If [["$num" -gt "150"]]
then echo ; echo "you've worked hard enough for today."
fi

Traditional service delivery
Example of conditional statement “if...then”

Introduction to bash 52/88

Relational operators
● -lt (<) lower-than
● -gt (>) greather-then
● -le (<=) lower-equal
● -ge (>=) greather-equal
● -eq (==) equal
● -ne (!=) not equal

Boolean operators
● && and
● || or
● | not

Files operators:
● if [-x "$filename"]; then # if filename is executable
● if [-e "$filename"]; then # if filename exists
● …………….

Traditional service delivery
Main conditional operators

Introduction to bash 53/88

The [[]] construct is the more versatile Bash version of [].
This is the extended test command.

No filename expansion or word splitting takes place between [[and]], but
there is parameter expansion and command substitution.

file=/etc/passwd
if [[-e $file]]
then
 echo "Password file exists."
fi

Using the [[...]] test construct, rather than [...] can prevent many logic
errors in scripts. For example, the &&, ||, <, and > operators work within a
[[]] test, despite giving an error within a [] construct.

Traditional service delivery
Condition check

Introduction to bash 54/88

Traditional service delivery
Exercise: True and false result

a=3

(($a>10))
echo $? # print 1 because the condition is false

(($a>2))
echo $? # print 0 because the condition is true

Introduction to bash 55/88

 #!/bin/bash
 s1='string'
 s2=''
 if [$s1 != $s2]
 then
 echo "s1 ('$s1') is not equal to s2 ('$s2')"
 fi
 if [$s1 = $s1]
 then
 echo "s1('$s1') is equal to s1('$s1')"
 fi

 Some issue? Try the [[]] construct

Traditional service delivery
Strings comparison example (try)

Introduction to bash 56/88

Try:

if [[X == X$variable_to_check]]
 then
 echo “variable is empty”
 else
 echo “variable value is $variable_to_check”
fi

Then try:

variable_to_check=”I_am_not_empty”
if [[X == X$variable_to_check]]
 then
 echo “variable is empty”
 else
 echo “variable value is $variable_to_check”
fi

Traditional service delivery
Check if a variable is empty example

Introduction to bash 57/88

a=3

if ["$a" -gt 0]
then
 if ["$a" -lt 5]
 then
 echo "The value of \"a\" lies somewhere between 0 and 5."
 fi
fi

Same result as:

if ["$a" -gt 0] && ["$a" -lt 5]
then
 echo "The value of \"a\" lies somewhere between 0 and 5."
fi

Traditional service delivery
Nested conditional if...then statement

Introduction to bash 58/88

if [condition-true]
then
 command 1
 command 2
 ...
else # Adds default code block executing if original condition tests false.
 command 3
 command 4
 ...
fi

Note:
When if and then are on same line in a condition test, a semicolon must
terminate the if statement. Both if and then are keywords. Keywords (or
commands) begin statements, and before a new statement on the same
line begins, the old one must terminate.

Traditional service delivery
Conditional statement “if...then...else”

Introduction to bash 59/88

Write a simple example of the construct if...then...else

Suggestion:
Basic example of if .. then ... else:
 #!/bin/bash
 if ["foo" = "foo"]; then
 echo expression evaluated as true
 else
 echo expression evaluated as false
 fi

Example of condition with variables:
 #!/bin/bash
 t1="foo"
 t2="bar"
 if ["$t1" = "$t2"]; then
 echo expression evaluated as true
 else
 echo expression evaluated as false
 fi

Traditional service delivery
Exercise: “if...then...else”

Introduction to bash 60/88

elif is a contraction for else if. The effect is to nest an inner if/then construct
within an outer one.

 if [condition1]
 then
 command1
 command2
 else if [condition2]
 then
 command3
 command4
 else
 default-command
 fi

Traditional service delivery
Conditional statement “else if and elif”

 if [condition1]
 then
 command1
 command2
 elif [condition2]
 then
 command3
 command4
 else
 default-command
 fi

Introduction to bash 61/88

Translate the previously seen “Nested if...then” example in an “if...elif” form

Traditional service delivery
Exercise: “else if and elif”

Introduction to bash 62/88

The BASH CASE statement takes some value once and test it multiple times.
Use the CASE statement if you need the IF-THEN-ELSE statement with many ELIF
elements.
Syntax:
case $variable in
 pattern-1)
 commands
 ;;
 pattern-2)
 commands
 ;;
 pattern-3|pattern-4|pattern-5)
 commands
 ;;
 pattern-N)
 commands
 ;;
 *)
 commands
 ;;
esac

Traditional service delivery
Case

Introduction to bash 63/88

#!/bin/bash
printf 'Which Linux distribution do you know? '
read DISTR

case $DISTR in
 ubuntu)
 echo "I know it! It is an operating system based on Debian."
 ;;
 centos|RedHat)
 echo "Hey! It is my favorite Server OS!"
 ;;
 windows)
 echo "Very funny..."
 ;;
 *)
 echo "Hmm, seems I've never used it."
 ;;
esac

Traditional service delivery
Exercise: case

Introduction to bash 64/88

Traditional service delivery
Loops

 Loop statements:

★ for

★ while

★ until

Introduction to bash 65/88

Executes an iteration on a set of words.
It is slightly different from other languages (like C) where the iteration is done
respect to a numerical index.

Syntax: for CONDITION; do
 COMMANDS
 done
Examples:
 #!/bin/bash
 for i in $(ls); do
 echo item: $i
 done

C-like for:
 #!/bin/bash
 for i in $(seq 1 10)
 do
 echo $i
 done

Traditional service delivery
for loop

Introduction to bash 66/88

Counting:
#!/bin/bash
for i in {1..25}
do
 echo $i
done

or:
#!/bin/bash
for ((i=1 ; i<=25 ; i++))
do
 echo $i
done

Counting on "n" steps
#!/bin/bash
for i in {0..25..5}
do
 echo $i
done

That will count with 5 to 5
steps.

for loop examples (try)
Counting backwards
#!/bin/bash
for i in {25..0..-5}
do
 echo $i
done

Acting on files
#!/bin/bash
for file in ~/*.txt
do
echo $file
done

That example will just list all
files with "txt" extension. It is
the same as ls *.txt

Calculate prime numbers
#!/bin/bash
read -p "How many prime
numbers ?: " num
c=0
k=0
n=2

numero=$[$num-1]
while [$k -ne $num]; do
 for i in `seq 1 $n`;do
 r=$[$n%$i]
 if [$r -eq 0]; then
 c=$[$c+1]
 fi
 done

 if [$c -eq 2]; then
 echo "$i"
 k=$[$k+1]
 fi
 n=$[$n+1]
 c=0
done

Introduction to bash 67/88

break statement is used to break the loop before it actually finish executing.
You are looking for a condition to be met, you can check the status of a variable for that condition.
Once the contidition is met, you can break the loop. Pseudo-code example:

for i in [series]
do
 command 1
 command 2
 command 3
 if (condition) # Condition to break the loop
 then
 command 4 # Command if the loop needs to be broken
 break
 fi
 command 5 # Command to run if the "condition" is never true
done

With the use of if ... then you can insert a condition, and when it is true, the loop will be broken
with the break statement

Traditional service delivery
break statement in for loop

Introduction to bash 68/88

continue stop the execution of the commands in the loop and jump to the next value in the series.
It is similar to continue which completely stop the loop.

Pseudo-code example:

for i in [series]
do
 command 1
 command 2
 if (condition) # Condition to jump over command 3
 continue # skip to the next value in "series"
 fi
 command 3
done

Traditional service delivery
continue statement in for loop

Introduction to bash 69/88

The script start with a=1 & move to
inner loop and when it reaches b=4,
it break the outer loop.

Exercise:
In this same script, use break
instead of break 2, to break inner
loop & see how it affects the output.

Traditional service delivery
break statement in iteration

break command is used to exit out of current loop completely before the
actual ending of loop.
Break command can be used in scripts with multiple loops. If we want to exit
out of current working loop whether inner or outer loop, we simply use break
but if we are in inner loop & want to exit out of outer loop, we use break 2.
Example
#!/bin/bash
Breaking outer loop from inner loop
for ((a = 1; a < 5; a++))
do
echo “outer loop: $a”
for ((b = 1; b < 100; b++))
do
if [$b –gt 4]
then
break 2
fi
echo “Inner loop: $b ”
done
done

Introduction to bash 70/88

continue command is used in script to skip current iteration of loop &
continue to next iteration of the loop.

Example
#!/bin/bash
using continue command
for i in 1 2 3 4 5 6 7 8 9
do
if [$i –eq 5]
then
echo “skipping number 5”
continue
fi
echo “I is equal to $i”
done

Traditional service delivery
continue statement in iteration

Introduction to bash 71/88

Executes one or more instructions while a condition is true.
It stops when the control condition is true or when the execution is intentionally
stopped by the programmer with an explicit interruption instruction (break or
continue)

Syntax:
 while CONDITION; do
 COMMANDS
 done

Example:

 #!/bin/bash
 counter=0
 while [$counter -lt 10]; do
 echo The counter is $counter
 let counter=counter+1
 done

Traditional service delivery
while loop

Introduction to bash 72/88

Interrupt the loop at number … (try)
#!/bin/bash

num=1
while [$num -lt 10]
do
if [$num -eq 5]
then
echo “$num equal to 5 so I interrupt the loop”
break
fi
echo $num
let num+=1
done
echo “Loop is complete”

Traditional service delivery
Example of break statement in while loop

Introduction to bash 73/88

Executes one or more instructions until a condition is false.

Syntax:
 until CONDITION; do
 COMMANDS
 done

Example:
 #!/bin/bash
 counter=20
 until [$counter -lt 10]; do
 echo counter $counter
 let counter-=1
 done

until loop

Introduction to bash 74/88

Until is similar to while, but it is a slightly difference:
Until is executed while the condition is false,
While is executed while the condition is true.
What means it?

Try the following code and check the output:

num=1
while [[$num -lt 10]]
do
if [[$num -eq 5]]
then
break
fi
echo $num
let num=num+1
done
echo “Loop while is complete”

until vs. while

num1=1
until [[$num1 -lt 10]]
do
if [[$num1 -eq 5]]
then
break
fi
echo $num1
let num1=num1+1
done
echo “Loop until is complete”

Introduction to bash 75/88

${myArray[@]} return all the elements of an array
replace the numeric index with the @ symbol can be tought as standing
for all.

Example: Loop on all elements of the array:

myArray=(1, 3, 5, ”try” , ”this” ,1)

for t in ${myArray[@]}; do
 echo array element $t
done

Loop through array elements

Introduction to bash 76/88

${!allThreads[@]} returns all the indexes in an array.

Example: Loop on all indexes of the array:

myArray=(1, 3, 5, ”try” , ”this”, 1)

for i in ${!myArray[@]}; do
 echo “Array element ${i} is = ${myArray[$i]}”
done

Loop through array indices

Introduction to bash 77/88

Functions are use to group sets of commands logically related making them
reusable without the need to re-write them.

A function does not need to be declared.

Function example:
 #!bin/bash
 function quit {
 exit
 }
 function hello {
 echo Hello!
 }
 hello
 quit
 echo foo

Functions

Syntax: function func_name {
 command1
 command2
 …..
 }

How to call the function in a script:

 func_name

Introduction to bash 78/88

Parameters does not need to be declared.
It is good practice

● to put a comment before the function definition describing parameters and
their meaning

● Read the parameters at the beginning of the function
Function with parameters example:
#!/bin/bash
function quit {
 exit
}
input parameter msg=”a message”
function my_func {
 msg=$1
 echo $msg
}
my_func Hello
my_func World
quit
echo foo

Functions parameters/arguments

Syntax with parameters:
function func_name {
 command1
 command2
 …..
}

How to call the function with
parameters in a script:

func_name para1 param2 ...

Introduction to bash 79/88

cat usage.sh

#!/bin/bash

display_usage() {
 # echo "This script must be run with super-user privileges."
 echo -e "\nUsage:\n$0 [arguments] \n"
}

if less than two arguments supplied, display usage
if [[$# -le 1]]
 then
 display_usage
 exit 1
fi

Add help to a script

Introduction to bash 80/88

Example

 #!/bin/bash
 if [-z "$1"]; then # check if one parameter exists
 echo usage: $0 directory
 exit
 fi
 srcd=$1
 bakd="/tmp/"
 mkdir $bakd
 of=home-$(date +%Y%m%d).tgz
 tar -czf $bakd$of $srcd

Add help to a script

Introduction to bash 81/88

Positional parameters are a series of special variables ($0 through $9) that
contain the contents of the command line.
If my_script is a bash shell script, we could read each item on the command line
because the positional parameters contain the following:
$0 would contain "some_program"
$1 would contain "parameter1"
$2 would contain "parameter2"
…..

This way, if I call my_script with two parameters:
my_script Hello world
Then inside the script I can read them with:
#!/bin/bash
script_name=$0
first_word=$1
second_word=$2
Echo “$script_name says $first_word $second_word

The mechanism is the same to read functions parameters.

Positional parameters

Introduction to bash 82/88

● Example on how to read the user’s input:

 #!/bin/bash
 echo Please, enter your name
 read NAME
 echo "Hi $NAME!"

● Example on how to read multiple user’s input:

 #!/bin/bash
 echo Please, enter your firstname and lastname
 read FN LN
 echo "Hi! $LN, $FN !"
 echo "How are you?"

Traditional service delivery
Read the user’s input examples

Introduction to bash 83/88

In general you can distinguish between
Global
Local Scope
Function

Bash (like Python) doesn't have block scope in conditionals.

It has local scope within functions, it is also possible to use the ‘local’ modifier
which is a keyword to declare the local variables.
Local variables are visible only within the block of code.

Variable scope (visibility) is related mainly to the shell.
Exported variables are visible in all subshells.

Scope of variables

Global
Local

Function

Function

Introduction to bash 84/88

A variable exported is a global variable.

A variable defined in the main body of the script is called a local variable.
• It will be visible throughout the script,
• A variable which is defined inside a function is local to that function.
• It is accessible from the point at which it is defined until the end of the
function, and exists for as long as the function is executing.

• Global variables can have unintended consequences because of their
wide-ranging effects: we should almost never use them

Scope of variables

Introduction to bash 85/88

#!/bin/bash
e=2
echo At beginning e = $e
function test1() {
 e=4
 echo "hello. Now in the function1 e = $e"
}
function test2() {
 local e=4
 echo "hello. Now in the function2 e = $e"
}
test1
echo "After calling the function1 e = $e"

e=2
echo In the file before to call func2 reassign e = $e
test2
echo "After calling the function2 e = $e"

Exercise: Scope of variables

Justify the result !

Introduction to bash 86/88

 Sed is a non interactive editor.
It is generally used to parse and transform text, using a simple, compact
programming language.

It allows to modify a file usinf scripts with instructions for sed editing plus the
filename. Example of string substitution:

 $sed 's/old_text/new_text/g' /tmp/testfile

Sed substitute the string 'old_text' with the string 'new_text' reading from file
/tmp/testfile. The result is redirected to stdout, but it can be redirected also to a
file using '>'

 $sed 12, 18d /tmp/testfile

Sed displays all the rows from 12 to 18. The original file is not modified by this
command, but if you redirect stdout on a new file, if is different from the original
one (try).

Traditional service delivery
Sed

Introduction to bash 87/88

 Awk match a string on the base of a regular expression and execute a required
action:
Create a file /tmp/filetext as follow:
cat filetext <
test123
test
Tteesstt
EOF
 $awk '/test/ {print}' /tmp/filetext
test123
test
The regular expression requires to match the string 'test'
The required action is to 'print'the string containing ‘test’ when found.

 $awk '/test/ {i=i+1} END {print i}' /tmp/filetext
3

Awk

Introduction to bash 88/88

Create a script which launch one of the script you wrote by exercise,
Test the output of the command,
Write if the execution is ok or not.

How to check your scripts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

