Artificial Intelligence for Cyber-Physical Systems

Laura Nenzi

Università degli Studi di Trieste I Semestre 2024

Lecture 5: Stochastic (Hybrid) Systems

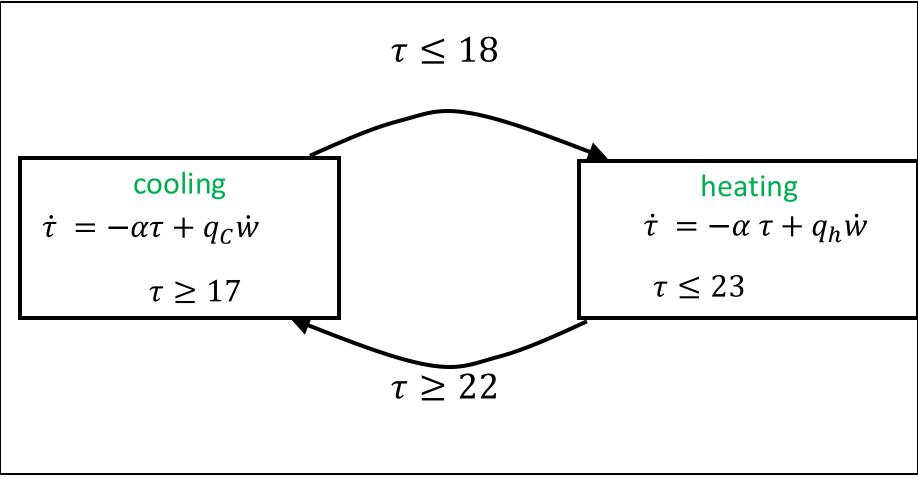
Probabilistic Models

- Models for components that we studied so far were either deterministic or nondeterministic.
- The goal of models is to represent computation or time-evolution of a physical phenomenon.
- These models *do not* do a great job of capturing uncertainty.
- We can usually model uncertainty using probabilities, so probabilistic models allow us to account for likelihood of environment behaviors
- Machine learning/AI algorithms also require probabilistic modelling!

Stochastic Differential Equation Model

State Dynamics with Process Noise:

 $\dot{x} = Ax + Bu + \dot{w}$ (Process Model)


where *w* is process noise (white noise).

Output Equation with Sensor Noise:

 $y = Cx + Du + \eta$ (Measurement Model)

where **n** is sensor/measurement noise (white noise).

Example

Stochastic Difference Equation Models

We assume that the plant (whose state we are trying to estimate) is a stochastic discrete dynamical process with the following dynamics:

 $\mathbf{x}_{k} = A\mathbf{x}_{k-1} + B\mathbf{u}_{k} + \mathbf{w}_{k} \text{ (Process Model)}$ $\mathbf{y}_{k} = H\mathbf{x}_{k} + \mathbf{v}_{k} \text{ (Measurement Model)}$

$\mathbf{x}_k, \mathbf{x}_{k-1}$	State at time $k, k - 1$		
\mathbf{u}_k	Input at time <i>k</i>		
\mathbf{w}_k	Random vector representing noise in the plant, $\mathbf{w} \sim N(0, Q_k)$		
\mathbf{v}_k	Random vector representing sensor noise, $\mathbf{v} \sim N(0, R_k)$		
\mathbf{y}_k	Output at time k		

The Family of Markov Models

Markov Models		Do we have control over the state transitions?	
		No	Yes
Are the states completely	Yes	MC Markov Chain	MDP Markov Decision Process
observable?	No	HMM Hidden Markov Model	POMDP Partially Observable Markov Decision Process

The Memoryless Property

$$p(s_{t+1}|s_{1:t}) = p(s_{t+1}|s_t).$$

The knowledge of the state s_t captures the complete information capturing all the relevant information about the present and the past of the system necessary for predicting its future evolution