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Control Systems

Theory and applications
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Overview (1)

Linear Control (time domain)
Introduction

*Dynamical Linear Systems
*Observability & Controllability

*PID Controllers

eLuenberger Observer

Linear Control (frequency domain) NOT IN THIS COURSE



Overview (2)

*Optimal Control and KF Estimation

*Optimal Control (LQR)
*Model Predictive Control
*Kalman Filtering

*Control Laboratory

*Matlab/Simulink
*Kalman Filtering and Optimal Control
*Cart-pole




Control Systems History
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*\Water Clock

*Alexandria
(Ctesibius, 3" century BC)

*Centrifugal Governor

*Windmills
(C. Huygeens, 17t century)

*Steam Engine
(J. Watt, 1788)

e Ly’
Flo. 4 —Governor and Throttle. Valve.




Control Systems History
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*First Automatic Transmission
(Hydramatic, General Motors, 1939)



Control Systems History
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https://www.youtube.com/watch?v=XggxeuFDaDU

Linear Control (time domain)



Control Systems Fundamentals

REQUIRED

*Dynamical System MODEL
*Control Input

*Reference Signal

CHALLANGES
*Missing/Noisy Information
*Physical limitations
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Dynamical Systems (1)
Past history (state) influences future output

. Continuous Time VS. Discrete Time

i=f(z), tel0,00) t(k+1) = f(z(k), k=0,1,2,...
. Autonomous VS. Non-autonomous

i = f(z) t = [(z,u)
 Linear VS. Non-linear

iy = —2 T = i

. . 50 0.4

To = 05’}31 + To + 0.4u To = 05331 + Slﬂ(fﬂg) + —

U



Dynamical Systems (2)

. SISO VS. MIMO
T =Ax+b-u r = Ax + Bu
y = Cx(= 0.521) y = Cx
. Time Invariant VS. Time Variant
z = f(z,u) x(t) = fla(t), u(t), )
it = Ax + Bu z(t) = A(t)x(t) + B(t)u(t)
. Deterministic VS. Non-Deterministic (Stochastic, noisy, etc.)
_— 2 —
PR B r(k+1)=—-2+v)x(k)" —x(k) + u(k)
y— 050 y(k) = 0.52(k) +n

v~ N(p,0),n~U(0,1)



Dynamical Systems (3)

LTI systems --- State-Space representation ZL’(O) = T, T € R"

i(t) = Ax(t) + Bul(t) A‘fl: iA;T r(k+1)= Adar(k) + Bau(k)
y(t) = Ca(t) + Du(t) oo A e o8 y(k) = Cx(k) + Duf(k)
A
CHET I




Dynamical Systems (3)

LTI systems ---

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

Output response (continuous time)

Ad — EA&T
Bd — A_l (EA&.’T .
[ ——

t
y(t) ={Ce*aoH C/ e=7) Bu(r)dr
0

Free Response
(homogeneous

solution)

+ Du(t)

Effect of input

Output response (discretektir?e)

y(k)

1=0

— CAkzg + C Z Aﬁ_l_inu(i) + Du(k)

1)B

State-Space representation ZL’(O) = T, T € R"

r(k+1)= Adar(k) + Bau(k)

y(k) = Cx(k) + Du(k)

Stability condition (Hurwitz)

x(t) = et

//”’/
a < () a >0
\ ; //

real(ezg(A)) <0

r(k) = a”
o<t a>1
|€ig(Ad)| <1



State-Space Realizations

Similarity Transformations

@ The choice of a state-space model for a given system is not unique.

@ For example, let T be an invertible matrix, and consider a coordinate
transpormation x = TX, i.e., ¥ = T 'x. This is called a similarity
transformation.

@ The standard state-space model can be written as

X = Ax+Bu. Tx = ATX+ Bu,

y = x+ Du. y = CTx+ Du.
Ie.,

X = (T'AT)%+ (T 'B)u= A%+ Bu

y = (CT)%+ Du= C%+ Du.

@ You can check that the time response is exactly the same for the two models
(A,B,C,D) and (A, B, C,D)!



LTl Systems Properties

Discrete case

r(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k)

Reaching a state

Ug, U, ... UN-1

e @

“Observing” the initial state
YN sYN—-1,---Y0




LTl Systems Properties

Conditions for all LTI systems:

Controllability

< rank(C) =n

C=[B,AB,A’B,..., A" 'B]

Observability

C
C'A
CA?

I CAn—l

< rank(0) =n

Discrete case

r(k+ 1) = Az(k) + Bu(k)
y(k) = Cx(k)

Reaching a state

Ug, U, ... UN-1

e @

“Observing” the initial state
YN sYN—-1,---Y0




LTl Systems Properties

Pair (A,B) is “Controllable”
Pair (A,C) is “Observable”

& rank(C) =n
& rank(0) =n

LTI System S : { A, B, C'}is a “minimal state-space realization” if it is both observable and
controllable.

0 0 0 1 0 0

Example: Co=10 0 O] Opg= 1|0 1 0

So: {Ao, B,C}, & :{A1,B,C)} R 11 0]
_ _ rank(Cy) = rank(Qgy) = 2

B =10 1] C=[1 0 0 0 1 0 o

Ag = |1 0 = 1 2 3 0 0 1
0 L rank(Cy) =3  rank(Oy) =3



non-LTI Systems (example)

Is the inverted pendulum (cartpole) controllable?

u+m16?% sinf®—m g cos 6 sin6

p = M +m sin 62

éj _ g sinﬁ‘g—cms@jﬁ H__‘ \

In non-linear systems Controllability and Observability Matrices represent LOCAL properties.




non-LTI Systems (example)

Is the inverted pendulum (cartpole) controllable?

_ u+ml6? sinf@—m g cos O sin 6

p = M +m sin 62
éj __ gsinf—cosfp

l

]

In non-linear systems Controllability and Observability Matrices represent LOCAL properties.

&= f(x,u),

eq.point zg, ug

i = Azr + Bu

_ Of(x,u)
d - o |:E::I.‘[),U:U{]
B — Of(x,u)

A

| =TI, U=Ug

AT
T = {p: D, 0, {9}

of _
u

1

[O-‘ (M + m(

1 —cos?(6))’

— cos(#)

T m(1 - o2 (0))



non-LTI Systems (example)

i=0,00=0,0=0, up=0
Linearization ( 0 0 0 )

0 1 0 0] i 0
. | o g o tle |
T = f(x,u), eq.point zq,ug 00 o o | -1/ |
r = Ax + Bu , _ (m+ Mg
M
M=1 m=0.1, ¢g=981, [ =0.5
_ Of(z,u) ] _
A= = emrg g 0 10 2
_ Of(xz,u) -
E o 3u |;[:=:r;0ju,=u0 C N 0 —2 U —43
2 0 —43 0 |




Reference Tracking

X = Ax + Bu

Controller Plant

Given a reference trajectory r(t), design u(t) such that x(t) closely follows r(t)

Control objectives:
* Reject disturbances (if there is some perturbation in state, making it get back to initial state)

» Follow reference trajectories (if we want the system to have a certain Xref )
« Make system follow some other “desired behavior”



Open-loop vs. Closed-loop control

Open-loop or feed-forward control
Control action does not depend on plant output
Cheaper, no sensors required.

Quality of control generally poor without human
intervention

i(t)
—>

u(t)

Controller —»

y(t)

Plant —»

Feed-back control

Controller adjusts controllable inputs in
response to observed outputs

Can respond better to variations in disturbances

Performance depends on how well outputs can
be sensed, and how quickly controller can track
changes in output

i(t)

u(t)
Controller —»

Plant

y(t)

Feed-back




Proportional Controller

reference signal

(1) / u(t) X(t)
—>»u = K, (r —Xx) » X =Ax+ Bu >
+
B Controller Plant

Common objective: make plant state track the reference signal r(t)
e =1 — x is the error signal
Closed-loop dynamics: X = AX + BKp(r — xX) = (A — BKp)X + BKpr

pick Kp s.t. the composite system is asymptotically stable, i.e. pick Kp such that eigenvalues of (A — BK)
have negative real-parts



Designing a pole placement controller

r(t) u(t) L6 , x(t)
—>+ —>»u = K(r —Xx) —»{ X (1 3)x+(1)u
- Controller Plant

eigs(A) are values of A that satisfy the equation det(4A — AI) = 0
Note eigs(A) = 6,1 = unstable plant!

let K = (k; k). Then, A — BK = (4 —2ky 6- Zkz)

1—k, 3-k

eigs(4 — BK) satisfy equation A2 + (2k; + k, — 7)1 + (6 — 2k,) =0
two distinct solutions 14,4, if (A —211) (A —21,) = 22 +(=A; — 1,1 + 414,
That means 2k; + ko — 7 =—-A; — A, and 6 — 2k, = A4,
E.g. Ay = —1land A, = =2 gives k; = 4,k, = 2. Thus controller with K = (4 2) stabilizes the plant!



Proportional Controller

reference signal

@)

u

/

= Kp(r—y)

u(t)

—( 3 )—>
_I_

Controller

L
X = AX + Bu y(2
y = (CX+ Du
Plant




Proportional Integral Derivative (PID) controllers

eigs(A) are values of A that satisfy the equation det(A — AI) = 0
Note eigs(4) = 6,1 = unstable plant!

Controller
—> Kpe(t)
r(t) e(t) " + L y(t)
—(5 N KIJ edr |—p u(t)| x = Ax + Bu G
+ 0 + y =(Cx+ Du
5 : de(t) Plant
dt




Measuring control performance

Step Response with Proportional Control
1.2 T T T T T T T

Q

8

%‘ Overshoot: The difference between the maximum value of the system
§ 0.6 output and the desired reference value.
T
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Measuring control performance

1.2

Step Response with Proportional Control

T | | | T T |

o
oo
T

Rotational velocity (rad/s)
o c
EsS (o))
|

9
N
I

o
—

o

Rise time: The time difference between the initial time when the reference
signal changes and the time at which the output signal crosses the desired

reference value.

l | ] | ] | l | ]

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds) (seconds)



Measuring control performance

Step Response with Proportional Control
1.2 T T T T T T T T

AN

Steady-state error: The difference between the steady-state value of
the output signal and the value of the reference signal.

Rotational velocity (rad/s)
o c (
EsS (o))
|

o
N
]

o
—

1 1 | l | |

0 0.5 1 1.5 2 2.5 3 3.5 < 4.5
Time (seconds) (seconds)



Measuring control performance

Step Response with Proportional Control
1.2 1 T T T T T T T r

ot
o

Settling time: The time difference between the initial time when the
reference signal changes and the time at which the output signal reaches

its steady-state value.

Rotational velocity (rad/s)
o c
EsS (o))
|

9
N
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o
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1 | | | | )
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds) (seconds)
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Measuring control performance

Step Response with Proportional Control Step Response with Proportional Control

1 T T T T 1.6 T T T T T T T T

Th i |
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P-only controller

Compute errorsignale =r —y
Proportional term K, e:
K, proportional gain;
Feedback correction proportional to error
Cons:
If K, is small, error can be large! [undercompensation]
If K, is large,

system may oscillate (i.e. unstable) [overcompensation]
may not converge to set-point fast enough

P-controller always has steady state error or offset error



Pl-controller

Com pute error signal e=r—y Step Besponse }with Proportional Contrql

t
Integral term: K; [ e(t)dt
* K, integral gain; g
* Feedback action proportional to B
cumulative error over time 2
* If a small error persists, it will add up over time -
and push the system towards eliminating this E .
error): eliminates offset/steady-state error g
(@)
B o
T
DlsadvantageSI % 05 1 1.5 2 2.5 3 3.5 4 a5 5

) ) ) ) . Time (seconds) (seconds)
* Integral action by itself can increase instability

* Integrator term can accumulate error and suggest
corrections that are not feasible for the actuators (integrator windup)

* Real systems “saturate” the integrator beyond a certain value



Pl-controller

Integrator windup




PD-controller

Compute error signale =r —y

Derivative term K e:
* K, derivative gain;
* Feedback proportional to how fast
the error is increasing/decreasing

Purpose:

* “Predictive” term, can reduce overshoot:
if error is decreasing slowly, feedback is slower

e Can improve tolerance to disturbances

Disadvantages:

 Still cannot eliminate steady-state error
* High frequency disturbances can get amplified

Rotational velocity (rad/s)

o
e

o

Step Response with Proportional Control

o

0.5

1

1;5 é 2.5 i; 3;5
Time (seconds) (seconds)

4

4.5

5



PID-controller

Step Response with Proportional Control
1.2 T T T T T T T T T

)

©
(o))
I

Rotational velocity (rad/s)

o
N

0 0.15 1| 1.15 é 2:5 C; 3i5 L‘1 4{5
Time (seconds) (seconds)



PID controller in practice

May often use only Pl or PD control
Many heuristics to tune PID controllers, i.e., find values of Kp, K;, K
Several recipes to tune, usually rely on designer expertise

E.g. Ziegler-Nichols method: increase Kp till system starts oscillating with

1.2K* 3

period T (say till Kp = K*), then set Kp = 0.6K",K; = - ,Kp = 4—OK*T

Matlab/Simulink has PID controller blocks + PID auto-tuning capabilities

Work well with linear systems or for small perturbations,

For non-linear systems use “gain-scheduling”
* (i.e. using different Kp, K;, Kp gains in different operating regimes)



Gain Scheduling Example

Calibration Routine Example
Used for NONLINEAR / unknown systems
K_p= f p (state, param_set)
K_i=f_i(state, param_set)
K d=f_d (state, param_set)
Ly Sensor/Observer loss = g(stability, risetime, overshoot, etc.)
.
:EJ 1 while not (end condition):
™ loss = run_system (param_set)
- optimization_step(param_set)
'>| Kpe(t) I
t y(t)
K,foe(r)dr »
50

Controller




Observation

Problem:Control

r(t)
design with

(partially) unknown state

Solution: ﬂEL)Q dt) u(f)
- Luenberger Observer

? e(t) _Ij?l u(t)

y(t)

y(t)




Luenberger Observer

e State-space representation A A ~
TOPARETER x:AerBqu@y—y)
e 1= Ax+ Bu O S
y = Cx C Y=t Control design
_ > arameters
u=xres — ) P
eObserver Error satisfies: e = (A — LC)@

eRequired: Observability, Controllability

Overall system is stable
ePole Placement :> iff both observer and

controller are stable
K 6%9(1‘4 — BK) — {)‘cla T /\Cﬂ}
L:eig(A" —LC) ={o1,..., Aon}



Example - DC Motor

Torque k¢

Resistor ' Inductor L

Displacement #

Current ¢
Voltage V, ' . .
oltage ) Back EMF k¢ b =0.1 # friction coefficient ( Nm/(rad/sec) )
- \ 1 ‘ _ | = 0.01 # mechanical inertia (Kg*rm”"2)
\ Damping resistance bf k = 0.01 # motor torque constant (Nm/A)
Inertial resistance 1§ R =1 # armature resistance (Ohm)

L = 0.5 # armature inductance (H)

State-space

r.epresentation —b / T ]C 0
. d’L t | :A B p— p—
Idev + b@ — ki —

wz[ef"} u = V; C=I[ 0




Modern Control Theory:

Optimal Control, MPC



* Optimal Control / LQR

« MPC



(Nonlinear) Optimal Control

t = f(x,u,t)
reR" ueR™
I’(t(}) = X

» Minimization of cost function |t (t)] over time interval [to, 1]

Jlu(t)] = §($(t1),t1l —I—/IL(:I:}u}t)dt

to
Final State Rating — \———

Integral Cost

X
* Find solution T .= { }
U



LQR Control (finite time, discrete)

r(k+1) = Ax(k) + Bu(k), zeR",ueR™
T—1

J=x(T)Qx(T)+ Y [z(k)Qz(k)+ u(k) Ru(k)], Q,R>0
k=0

e Solution



LQR Control (finite time, discrete)

r(k+1) = Ax(k) + Bu(k), zeR",ueR™
T—1

J=x(T)Qx(T)+ Y [z(k)Qz(k)+ u(k) Ru(k)], Q,R>0
k=0

e Solution
» u(k) = —K(k)x(k)
x(1,)

 Dependson finaltimeT




LQR Control (finite time, discrete)

= Ax(k) + Bu(k), e R",ueR™
E+ D= o) + Bul), 2 RER™ 4 50 sy

N\

T=
J=x(T)YQu(T) + Y [(k)'Qu(k) + u(k) Ru(k)], Q,R>0
k=0

e Solution

. u(k) = —K(k)z(k)

Depends on final time T

P(T)=qQ

K(k)=(R+ B'P(k+1)B)""(B'P(k+1)A)

. }uT—l)

P(k—1)= A'P(k)A — (AP(k)B)(R+ B'P(k)B) " (B'P(k)A) + Q



LQR Control (finite time, discrete)

:A (k) + Bu(k), xeR",ueR™
\ :> J = @(A,B,Q,R?aﬁo,’lbg,...,uT_l)

J = \Q} Z ) Qu(k) +u(k) Ru(k)], Q,R>0
* Solution

u(k) = — K (k)z(k)

- Does not depend on initial condition!

K(k)=(R+ B'P(k+1)B)""(B'P(k+1)A)

P(k—1)=APk)A— (AP(k)B)(R+DB'P(k)B) '(B'P(k)A) +Q




LQR Control (infinite time, discrete)

r(k+1)= Ax(k) + Bu(k), zeR", ueR™

J = [2(k) Qu(k) +u(k) Ru(k)], Q,R>0
* Solution
px*( 1)
u(k) = —Kux(k)

x(1,)
K = (R+ B'PB)"!(B'PA) \

P=APA—- (APB)(R+BPB) "(B'PA)+Q ARE

—— =



 Optimal Control / LOR
- MPC



Model Predictive Control

the controller) to predict the plant’s future evolution,

Main idea: Use a dynamical model of the plant (inside  r® ;

and optimize the control signal over possible futures

ast 4 future : past
R , optimal: PSSl
¢——— optimization at time step / ————p»! predictio |

control
output at

target

ontrol
output at
timer~]

L

|
| |
[ |
[ |
time / ! |
' |
| |
% ()ptin]llm CO“"OI SCquence i :
‘A 1 L | | l — -
|
|

-

4

t+1 HE

t+1

predictive horizon —— ™ receding

Image from: https://tinyurl.com/yaej43x5

— - ——

™~

-

\/

——— Optimization at time step 7+1

% optimum control sequence 4. ;
‘A I 1 I |

Model- Ju(t) y(t)
based p—#{ Plant >
Optimizer
Sensor readings
future optimal
- I prediction



Why MPC?

*Optimal control with constraints (input, output and states)
eideal for MIMO (Multi Input Multi Output) systems

*l[inear and nonlinear models

*RECEDING HORIZON PRINCIPLE

” At any time instant £, based on the available process information, solve the
optimization problem with respect to the future control sequence |u(k), ..., u(k+
N —1)| and apply only its first element u°(k). Then, at next time instant k41, a
new optimization problem is solved, based on the process information available
at time k + 1, along the prediction horizon [k + 1,k + N|.” (Camacho)



A Y,
— (21(0), y£(0))

Receding
Horizon | N/

u n ’ . /
oA’ g :
)
.'i.” 4 p .
/
¥ )
PG O Sk )

* Closed Loop solution (no
constraints, LQR) (27(0), 4 (0))
* Open Loop solution S o i M
(C on St Failn t S) m== Predicted trajectory

® Predicted coordinates XY
Rt,' ) . » r

{ . Sensor coordinates XY
e

N—-1

=~
i
||

(llz(k 4+ )15 + lJu(k + D)%) + llz(k+ NS
=0



Linear MPC (1)

z(k+1) = Ax(k) + Bu(k), x€R" uecR™

1—1
v(k+i) = A'w(k) + Y A" Bu(k + j),

i=0

X (k)= Az(k) + BU(k) =

z(k+1) C u(k)
x(k + 2) u(k +1)
X (k) = : ., U(k) = 5
z(k+ N —1) u(k + N — 2)
- z(E+N) | u(k+ N —1)

1 >0

Ax

=




Linear MPC (2)
r(k+1) = Az(k) + Bu(k),

reR" ueR™

1—1
o(k+i) = A'w(k)+ Y A7 'Bu(k+j), i>0

i=0

X (k) = Az(k) + BU (k)

. B 0 0
AB B 0

AN-25 AN-35 AN-4g ...

_AN—IB AN—QB AN—BB

0 0]
0 0

. =

0
AB B




(Non-)Linear MPC

s = |z, u, Au]T

N

Jupc =Y (lle(@) — 2" (@G + [Jui) — u* @)IF + [|Au(i) — Au*(0)[3r)
i=1

sLinear formulation: minimize Jypo(s)

S
subject to  Aeqs = beg,
Aineqs <_: bin&:q

*Nonlinear formulation: minimize Jypo(x,w)
I F )

subjeét to
z(k+1) = f(x(k),u(k)),
h(xz(k),u(k)) <0




Issues with MPC

Feasibility
Stability Conflicting Requirements
Computation (several solutions depending on needs)

Robustness formulation: system affected by process and measurement noise

Margin Margin Margin
retained v returned retained
Y A ! ! : ‘ A | ! !
Y i -_I h Y "\ H
max| | Plan max] § O\ Plan
. 5 Constraints E \\\\ Constraints
Constraints , I ~ o
tightening ’ ’ = ~L o>

I.c IHI- 1 k-ll-z k-l.-3 k+4 k k+1 k+2 k+3 k+4




Kalman Filtering



What is state estimation?

* Given a “black box” component, we can try to use a linear or nonlinear
system to model it (maybe based on physics, or data-driven)

« Model may posit that the plant has internal states, but we typically have
access only to the outputs of the model (whatever we can measure using a
sensor)

* May need internal states to implement controller: how do we estimate
them?

 State estimation: Problem of determining internal states of the plant



Deterministic vs. Noisy case

Typically sensor measurements are noisy (manufacturing imperfections, environment
uncertainty, errors introduced in signal processing, etc.)

In the absence of noise, the model is deterministic: for the same input you always
get the same output

dx

Can use a simpler form of state *ac — AX+ ButLy-y)

estimator called an observer "y =CX+Du o= ¢ =(A—LC)e
(e.g. a Luenberger observer)

*u(t) = _K]qrﬁ(t)’
In the presence of noise, we use a state estimator, such as a Kalman Filter

Kalman Filter is one of the most fundamental algorithm that you will see in
autonomous systems, robotics, computer graphics, ...



Random variables and statistics refresher

For random variable w, E|w] : expected value of w, also known as mean
Suppose E[x] = u : then var(w) : variance of w, is E[(w — u)?]
For random variables x and y, cov(x, y): covariance of x and y

cov(x,y) = E[(x — E(x)(y — E(y)]
For random vector X, [E|x]is a vector
For random vectors, X € R™ andy € R", cross-covariance matrix is m X n
matrix: cov(x,y) = E[(x — E[x])(y — E[yD]
w ~ N(u,d?) : wis a normally distributed variable with mean u and
variance o



Data fusion example

Using radar and a camera to estimate the distance to the lead car:
Measurement is never free of noise
Actual distance: x
Measurement with radar: z; = x + v, (v; ~ N(uy, 012) is radar noise)
With camera: z, = x + v, (v, ~ N(ly, 05) is camera noise)
How do you combine the two estimates?

Use a weighted average of the two estimates, prioritize more likely

measurement
~ _ (z1/0) +(22/0F) _ _ _ a5
b= erased) = kz, + (1 — k)z,, where k = pra

2 .2
6'2= 0'10'2 /v

H1 = 170-12 =1
Uy, = 2,02 =0.5

i =1.67,0%=0.33

2 2
01 +O'2 A

Observe: uncertainty reduced, and mean is closer to measurement with
lower uncertainty




Multi-variate sensor fusion

Instead of estimating one quantity, we want to estimate n quantities, then:

Actual value is some vector X

Measurement noise for i'" sensor is v; ~ N(p;, %;), where p; is the mean
vector, and X; is the covariance matrix

A = X7 1is the information matrix

For the two-sensor case:
)/Z — (Al + Az)_l(Alzl + A2Z2), and 2 — (Al + Az)_l



Motion makes things interesting

What if we have one sensor and making repeated measurements of a
moving object?

Measurement differences are not all because of sensor noise, some of it is
because of object motion

Kalman filter is a tool that can include a motion model (or in general a
dynamical model) to account for changes in internal state of the system

Combines idea of prediction using the system dynamics with correction
using weighted average (Bayesian inference)



Stochastic Difference Equation Models

We assume that the plant (whose state we are trying to estimate) is a
stochastic discrete dynamical process with the following dynamics:

X, = AXy_1 + Buy + wy, (Process Model)
v, = HX;, + v, (Measurement Model)

Xy, Xp—1 State attime k,k — 1 n Number of states
Uy Input at time k m Number of inputs
W Random vector representing noise in the plant, w ~ N(0, Q) p Number of outputs
Vi Random vector representing sensor noise, v ~ N (0, Ry) A nxmn matri>.<
Zy Output at time k fl ;l >>: ::;tr:)u(x




Kalman Filter
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Step |: Prediction

* We assume an estimate of X at time kK — 1, fusing information
obtained by measurements till time k — 1: this is denoted X _1 k-1

* We also assume that the error between the estimate X _4,—, and
the actual X;_; has 0 mean, and covariance Pj_1|x_1

* Now, we use these values and the state dynamics to predict the value
of X7

* Because we are using measurements only up to time k — 1, we can
denote this predicted value as X ,—1, and compute it as follows:

Xp|k—1 = AXg_1)xk—1 + Bug



Step I: Prediction

Pk|k—1 — COV(Xk — ik|k—1) — COV(AXk_l + Buk + W, — Aﬁk—1|k—1 —
Buk)
— ACOV(Xk_l — ﬁk—1|k—1)AT + COU(WR)
= APy_q k14" + Qg

* Thus, the state and error covariance prediction are:

Xilk—-1 = AXp_qjk-1 + Buy
Prik—1 = APg_q k-1 A" + Qg
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Step II: Correction

* This is where we basically do data fusion between new measurement
and old prediction to obtain new estimate

* Note that data fusion is not straightforward like before because we

don’t really observe/measure x;, directly, but we get measurement
¥, for an observable output!

* |dea remains similar: Do a weighted average of the prediction ﬁk|k_1
and new information

* We integrate new information by using the difference between the
predicted output and the observation



Step II: Correction

* Predicted output: ¥, = HyXg k-1
* We denote the error in predicted output as the innovation
Z = Yr — HiXppr-1

e Covariance of innovation

Sy = cov (zy) = cov(HyXy + Vi — HxRypk—1) = Ry + HyPyj—1Hy
* Then to do data fusion is given by:

Xilk = Xijk-1 + Kizy
* Where, K}, = Pk|k_1H,€S,;1 is the (optimal) Kalman gain. It minimizes the
least square error

* Finally, the updated error covariance estimate is given by:

Pre == (I — KxHy) Pyjk—1



Step Il: Correction

Innovation

Innovation Covariance
Optimal Kalman Gain

State estimate at time k

Covariance estimate at time k

Z =Yk — Hi Xy -1
Sk = Ry + HyPyjo—1 Hy,
Ky = Prx—1Hy S *

Xi|k = Xg|k—1 TKi Zg

Peie = U — KiHy) Pyjg—1



Kalman Filter

2 FuSiom

\NNOBVETION SOVARNAN &
‘—— L)

~\
Kk’-pglk_\u: (”’tecl k-1 u; +Ri)

POF

A ?rec-lic:\"\ oM

>
N B NGawhe) NG RO
(Wokion 'llﬁ')\ Eskinde o“] / (Ceseroekon wedell D

‘zk-Azb_\ +B\Jk;\"l§>t_ i,_ﬁ,}ﬁ_] HK:' 1 e AR VK

)((&t-clzq ,pk-llkq)
Egincye e -\



one-dimensional example

Let’s take a simple one-dimensional example
Kalman filter prediction equations become:

5 © m— < [ 2 © m— 2 2 2
Xk|k-1 = AXg—1)k-1 T bU; Oklk-1 = A" 0k_1jk-1 T Og
N—_— v — HM

prior uncertainty  uncertainty

' ' ' ' in process
Also, the correction equations become: In estimate p

Innovation: zy = yx — X1, Sk = 0F + Opjp—1

Optimal gain: k = 03,,_1/ (67 + 0—1),

Updated state estimate: Xy = Xgjk—1 + k(Y — Xkjk-1)

l.e. updated state estimate: Xy, := (1 — k) Xy x—1 + kyx (Weighted average!)



Extended Kalman Filter

* We skipped derivations of equations of the Kalman filter, but a fundamental
property assumed is that the process model and measurement model are both
linear.

Under linear models and Gaussian process/measurement noise, a Kalman filter is
an optimal state estimator (minimizes mean square error between estimate and
actual state)

In an EKF, state transitions and observations need not be linear functions of the
state, but can be any differentiable functions

l.e., the process and measurement models are as follows:
Xk = f(Xp—1, ug) + wy
Vi = h(xy) + vy



EKF updates

* Functions

f and h can be used directly to compute state-prediction,

and predicted measurement, but cannot be directly used to update
covariances

* SO, we instead use the Jacobian of the dynamics at the predicted

state

* This linearizes the non-linear dynamics around the current estimate
* Prediction updates:

Xk
Py

k—1 = f(ﬁk—1|k—1;uk)
k=1 = FxPr—qjk-1Fi + Qx

sz

_9f
- 0X

X=X |k—1,U=Uk




EKF updates I
e Correction updates: Hj = Ix )
X=Xk|k—1
Innovation Z, =Y — h(Xgk-1)
Innovation Covariance Sk = Ry + HyPyjx—1Hy
Near-Optimal Kalman Gain K, = Pk|k_1H,ZS,§1
A posteriori state estimate Xiik = Xgjk—1 T Ki ¥«

A posteriori error covariance estimate Py = Pk|k_1(1 — K Hy,)



Simulink Example - Cartpole

,

_ u+ml6? sin 0—m g cos @ sinf
) p = M +m sin 02 T
é __ g sin 0 —cos 6p T = {p? D, 0, 9}
[
\

e Full-state estimation (Luenberger, Kalman)
e Optimal Control
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