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Overview (1)

•Linear Control (time domain)
•Introduction

•Dynamical Linear Systems

•Observability & Controllability

•PID Controllers

•Luenberger Observer

•Linear Control (frequency domain) NOT IN THIS COURSE



Overview (2)

•Optimal Control and KF Estimation
•Optimal Control (LQR)

•Model Predictive Control

•Kalman Filtering

•Control Laboratory
•Matlab/Simulink

•Kalman Filtering and Optimal Control

•Cart-pole



Control Systems History

•Water Clock
•Alexandria
(Ctesibius, 3rd century BC)

•Centrifugal Governor
•Windmills
(C. Huygeens, 17th century)

•Steam Engine
(J. Watt, 1788)



Control Systems History

•First Automatic Transmission 
(Hydramatic, General Motors, 1939)



Control Systems History

•Classical control theory
formalized from circuits theory

Tacoma Bridge Collapse

https://www.youtube.com/watch?v=XggxeuFDaDU


Linear Control (time domain)



Control Systems Fundamentals

REQUIRED

•Dynamical System MODEL

•Control Input

•Reference Signal

CHALLANGES

•Missing/Noisy Information

•Physical limitations



Past history (state) influences future output

● Continuous Time                     vs.              Discrete Time

● Autonomous                           vs.              Non-autonomous

• Linear                                          vs.              Non-linear

Dynamical Systems (1)



Dynamical Systems (2)

● SISO                                        vs.            MIMO

● Time Invariant vs. Time Variant

● Deterministic                          vs.            Non-Deterministic (Stochastic, noisy, etc.)



Dynamical Systems (3)
●LTI systems --- State-Space representation



Dynamical Systems (3)
● LTI systems --- State-Space representation

● Output response (continuous time)

● Output response (discrete time)

Free Response
(homogeneous
solution)

Effect of input

Stability condition (Hurwitz)



State-Space Realizations



LTI Systems Properties Discrete case

Reaching a state

“Observing” the initial state



LTI Systems Properties

Conditions for all LTI systems:

●Controllability

●Observability

Discrete case

Reaching a state

“Observing” the initial state



LTI Systems Properties

● Pair (A,B) is “Controllable”

● Pair (A,C) is “Observable”

● LTI System                            is a “minimal state-space realization” if it is both observable and 
controllable.

● Example:  



non-LTI Systems (example)
Is the inverted pendulum (cartpole) controllable?

In non-linear systems Controllability and Observability Matrices represent LOCAL properties.



non-LTI Systems (example)
Is the inverted pendulum (cartpole) controllable?

In non-linear systems Controllability and Observability Matrices represent LOCAL properties.



non-LTI Systems (example)

Linearization



Reference Tracking
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Given a reference trajectory r(t), design u(t) such that x(t) closely follows r(t)

Control objectives:

• Reject disturbances (if there is some perturbation in state, making it get back to initial state)

• Follow reference trajectories (if we want the system to have a certain 𝒙𝒓𝒆𝒇 )

• Make system follow some other “desired behavior”



Open-loop or feed-forward control

 Control action does not depend on plant output

 Cheaper, no sensors required. 

 Quality of control generally poor without human 
intervention

Open-loop vs. Closed-loop control
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Plant Controller
𝐢(𝑡) 𝐮(𝑡) 𝐲(𝑡)

Plant Controller

𝐢(𝑡) 𝐮(𝑡) 𝐲(𝑡)

∑

Feed-back control

 Controller adjusts controllable inputs in 
response to observed outputs

 Can respond better to variations in disturbances

 Performance depends on how well outputs can 
be sensed, and how quickly controller can track 
changes in output

Feed-back



Proportional Controller 
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𝐱(𝑡)
ሶ𝐱 = 𝐴𝐱 + 𝐵𝐮𝐮 = 𝐾𝑃(𝐫 − 𝐱)

𝐫(𝑡) 𝐮(𝑡)

∑
+

−
Controller Plant

 Common objective: make plant state track the reference signal 𝐫(𝑡)

 𝑒 = 𝑟 − 𝑥 is the error signal

 Closed-loop dynamics: ሶ𝐱 = 𝐴𝐱 + 𝐵𝐾𝑃 𝐫 − 𝐱 = 𝐴 − 𝐵𝐾𝑃 𝐱 + 𝐵𝐾𝑃𝐫

 pick 𝐾𝑃 s.t. the composite system is asymptotically stable, i.e. pick 𝐾𝑃 such that eigenvalues of 𝐴 − 𝐵𝐾
have negative real-parts

reference signal
gain



 eigs 𝐴  are values of λ that satisfy the equation det(𝐴 − 𝜆𝐼) = 0

 Note eigs 𝐴 = 6, 1 ⇒ unstable plant!

 Let 𝐾 = 𝑘1 𝑘2 . Then, 𝐴 − 𝐵𝐾 =
4 − 2𝑘1 6 − 2𝑘2

1 − 𝑘1 3 − 𝑘2

 eigs 𝐴 − 𝐵𝐾  satisfy equation 𝜆2 + 2𝑘1 + 𝑘2 − 7 𝜆 + 6 − 2𝑘2  = 0
 two distinct solutions 𝜆1, 𝜆2 if (𝜆 − 𝜆1) (𝜆 − 𝜆2) =  𝜆2 + −𝜆1 − 𝜆2 𝜆 + 𝜆1𝜆2

 That means 2𝑘1 + 𝑘2 − 7 = −𝜆1 − 𝜆2  and 6 − 2𝑘2 =  𝜆1𝜆2

 E.g. 𝜆1 = −1 and 𝜆2 = −2 gives 𝑘1 = 4, 𝑘2 = 2. Thus controller with 𝐾 = 4 2  stabilizes the plant!

Designing a pole placement controller
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𝐱(𝑡)
ሶ𝐱 =

4 6
1 3

𝐱 +
2
1

𝐮𝐮 = 𝐾(𝐫 − 𝐱)
𝐫(𝑡) 𝐮(𝑡)

∑
+

−
Controller Plant



Proportional Controller 
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y(𝑡)
ሶ𝐱 = 𝐴𝐱 + 𝐵𝐮

𝒚 = 𝐶𝐱 + 𝐷𝐮
𝐮 = 𝐾𝑃(𝐫 − 𝐲)

𝐫(𝑡) 𝐮(𝑡)

∑
+

−
Controller Plant

reference signal
gain



Proportional Integral Derivative (PID) controllers

𝐲(𝑡)
ሶ𝐱 = 𝐴𝐱 + 𝐵𝐮

𝐲 = 𝐶𝐱 + 𝐷𝐮

𝐫(𝑡)
𝐮(t)

∑
+

−

Controller

Plant

𝐾𝑃𝐞(t)

𝐾𝐼 න
0

𝑡

𝐞 𝜏 𝑑𝜏

𝐾𝐷

𝑑𝐞(𝑡)

𝑑𝑡

∑
+

+

+𝐞(𝑡)

eigs 𝐴  are values of λ that satisfy the equation det(𝐴 − 𝜆𝐼) = 0
Note eigs 𝐴 = 6, 1 ⇒ unstable plant!



Measuring control performance

Overshoot: The difference between the maximum value of the system
output and the desired reference value.

𝐫 = 1 



Measuring control performance

𝐫 = 1 

Rise time: The time difference between the initial time when the reference
signal changes and the time at which the output signal crosses the desired
reference value.



Measuring control performance

𝐫 = 1 

Steady-state error: The difference between the steady-state value of 
the output signal and the value of the reference signal. 



Measuring control performance

𝐫 = 1 

Settling time: The time difference between the initial time when the 
reference signal changes and the time at which the output signal reaches 
its steady-state value.



𝐊𝐏 = 50 𝐊𝐏 = 500 

Measuring control performance



P-only controller
Compute error signal 𝐞 = 𝐫 − 𝒚

Proportional term 𝐾𝑝𝐞: 

𝐾𝑝 proportional gain; 
Feedback correction proportional to error

Cons:

If 𝐾𝑝 is small, error can be large! [undercompensation]
If 𝐾𝑝 is large, 

system may oscillate (i.e. unstable) [overcompensation]
may not converge to set-point fast enough

P-controller always has steady state error or offset error



Compute error signal 𝐞 = 𝐫 − 𝐲

Integral term: 𝐾𝐼 0

𝑡
𝐞 𝜏 𝑑𝜏

• 𝐾𝐼  integral gain; 
• Feedback action proportional to 

cumulative error over time
• If a small error persists, it will add up over time 

and push the system towards eliminating this 
error): eliminates offset/steady-state error

Disadvantages: 
• Integral action by itself can increase instability
• Integrator term can accumulate error and suggest 

corrections that are not feasible for the actuators (integrator windup)
• Real systems “saturate” the integrator beyond a certain value

PI-controller



Integrator windup

PI-controller



Compute error signal 𝐞 = 𝐫 − 𝐲

Derivative term 𝐾𝑑 ሶ𝐞: 
• 𝐾𝑑  derivative gain; 
• Feedback proportional to how fast 

the error is increasing/decreasing

Purpose:
• “Predictive” term, can reduce overshoot: 

if error is decreasing slowly, feedback is slower
• Can improve tolerance to disturbances

Disadvantages:
• Still cannot eliminate steady-state error
• High frequency disturbances can get amplified

PD-controller



PID-controller



• May often use only PI or PD control

• Many heuristics to tune PID controllers, i.e., find values of 𝐾𝑃 , 𝐾𝐼 , 𝐾𝐷

• Several recipes to tune, usually rely on designer expertise

• E.g. Ziegler-Nichols method: increase 𝐾𝑃 till system starts oscillating with 

period 𝑇 (say till 𝐾𝑃 = 𝐾∗), then set 𝐾𝑃 = 0.6𝐾∗, 𝐾𝐼 =
1.2𝐾∗

𝑇
, 𝐾𝐷 =

3

40
𝐾∗𝑇

• Matlab/Simulink has PID controller blocks + PID auto-tuning capabilities

• Work well with linear systems or for small perturbations,

• For non-linear systems use “gain-scheduling” 
• (i.e. using different 𝐾𝑃, 𝐾𝐼, 𝐾𝐷 gains in different operating regimes)

PID controller in practice
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Gain Scheduling Exam ple

   
 

 
 

 

Controller

Plant

 

 

 
 

 

  

Sensor/Observer

Calibration Routine Example

K_p = f_p (state, param_set)
K_i = f_i (state, param_set)
K_d = f_d (state, param_set)

loss = g(stability, risetime, overshoot, etc.)

while not (end condition):

loss = run_system (param_set)
optimization_step(param_set)

Used for NONLINEAR / unknown systems



Observation

R

R

• Problem:Control 

⁃ design with
(partially) unknown state

• Solution:

⁃ Luenberger Observer

Obs



Luenberger Observer

●State-space representation

●

●Observer Error satisfies:

●Required: Observability, Controllability

●Pole Placement

Control design 
parameters

Overall system is stable 
iff both observer and
controller are stable



Exam ple - DC Motor

State-space 
representation

b = 0.1  # friction coefficient ( Nm/(rad/sec) )
I = 0.01 # mechanical inertia (Kg*m^2)
k = 0.01 # motor torque constant (Nm/A)
R = 1    # armature resistance (Ohm)
L = 0.5  # armature inductance (H)



Modern Control Theory:

Optimal Control, MPC
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Summary

• Opt im al Cont rol /  LQR

• MPC

• Robust  Cont rol via SM Generat ion



(Nonlinear) Optimal Control

• Minimization of cost function over time interval

• Find solution



LQR Control (finite time, discrete)

• Solution



LQR Control (finite time, discrete)

• Solution

•

• Depends on final time T



LQR Control (finite time, discrete)

• Solution

•

• Depends on final time T
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•

–
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•

ARE
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Summary

• Opt im al Cont rol / LQR

• M PC

• Robust  Cont rol via SM Generat ion



Model Predictive Control

Main idea: Use a dynamical model of the plant (inside 
the controller) to predict the plant’s future evolution, 
and optimize the control signal over possible futures

Image from: https://tinyurl.com/yaej43x5



Why MPC?

•Optimal control with constraints (input, output and states)

•ideal for MIMO (Multi Input Multi Output) systems

•linear and nonlinear models

•RECEDING HORIZON PRINCIPLE
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Receding 
Horizon 
Principle

• Closed Loop solut ion (no 
const raints, LQR)

• Open Loop solut ion 
(const raints)



Linear MPC (1)



Linear MPC (2)



(Non-)Linear MPC

•Linear formulation:

•Nonlinear formulation:



17/10/2024



Kalman Filtering



What is state estimation?

• Given a “black box” component, we can try to use a linear or nonlinear 

system to model it (maybe based on physics, or data-driven)

• Model may posit that the plant has  internal states, but we typically have 

access only to the outputs of the model (whatever we can measure using a 

sensor)

• May need internal states to implement controller: how do we estimate 

them?

• State estimation: Problem of determining internal states of the plant



Deterministic vs. Noisy case

Typically sensor measurements are noisy (manufacturing imperfections, environment 
uncertainty, errors introduced in signal processing, etc.)

In the absence of noise, the model is deterministic: for the same input you always 
get the same output

Can use a simpler form of state
estimator called an observer
(e.g. a Luenberger observer)

In the presence of noise, we use a state estimator, such as a Kalman Filter

Kalman Filter is one of the most fundamental algorithm that you will see in 
autonomous systems, robotics, computer graphics, …



 For random variable 𝑤,  𝔼 𝑤  : expected value of 𝑤, also known as mean

 Suppose 𝔼[𝑥] = 𝜇 : then var(w) : variance of 𝑤, is 𝔼 𝑤 − 𝜇 2

 For random variables 𝑥 and 𝑦, cov 𝑥, 𝑦 : covariance of 𝑥 and 𝑦
 cov 𝑥, 𝑦 = 𝔼 (𝑥 − 𝔼(𝑥)(𝑦 − 𝔼 𝑦

 For random vector 𝐱, 𝔼 𝐱 is a vector

 For random vectors, 𝐱 ∈ ℝ𝑚 and 𝐲 ∈ ℝ𝑛 , cross-covariance matrix is 𝑚 × 𝑛 
matrix: cov 𝐱, 𝐲 = 𝔼 𝐱 − 𝔼 𝐱 𝐲 − 𝔼 𝐲 T

 𝑤 ∼ 𝑁 𝜇, 𝜎2  : 𝑤 is a normally distributed variable with mean 𝜇 and 
variance 𝜎

Random variables and statistics refresher
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 Using radar and a camera to estimate the distance to the lead car:

 Measurement is never free of noise

 Actual distance: 𝑥

 Measurement with radar: 𝑧1 = 𝑥 + 𝑣1 (𝑣1 ∼ 𝑁 𝜇1, 𝜎1
2  is radar noise)

 With camera: 𝑧2 = 𝑥 + 𝑣2 (𝑣2 ∼ 𝑁(𝜇2, 𝜎2
2) is camera noise)

 How do you combine the two estimates?

 Use a weighted average of the two estimates, prioritize more likely 
measurement

 ො𝜇  =
Τ(𝑧1 𝜎1

2) + Τ(𝑧2 𝜎2
2) 

Τ(1 𝜎1
2)+ Τ(1 𝜎2

2)
=  𝑘𝑧1 + 1 − 𝑘 𝑧2, where 𝑘 =

𝜎2
2

𝜎1
2+𝜎2

2

 ො𝜎2 =
𝜎1

2𝜎2
2

𝜎1
2+𝜎2

2

 Observe: uncertainty reduced, and mean is closer to measurement with 
lower uncertainty

Data fusion example
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𝜇2 = 2, 𝜎2
2 = 0.5

𝜇1 = 1, 𝜎1
2 = 1

𝜇1 𝜇2

Ƹ𝜇 = 1.67, 𝜎2
2 = 0.33

Ƹ𝜇



 Instead of estimating one quantity, we want to estimate 𝑛 quantities, then:

 Actual value is some vector 𝐱

 Measurement noise for 𝑖th sensor is 𝑣𝑖 ∼ 𝑁 𝛍𝑖 , Σ𝑖 , where 𝛍𝑖 is the mean 
vector, and Σ𝑖 is the covariance matrix 

 Λ = Σ−1 is the information matrix

 For the two-sensor case:
 ො𝐱 = Λ1 + Λ2

−1(Λ1𝐳1 + Λ2𝐳2), and Σ = Λ1 + Λ2
−1

Multi-variate sensor fusion
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 What if we have one sensor and making repeated measurements of a 
moving object?

 Measurement differences are not all because of sensor noise, some of it is 
because of object motion

 Kalman filter is a tool that can include a motion model (or in general a 
dynamical model) to account for changes in internal state of the system

 Combines idea of prediction using the system dynamics with correction 
using weighted average (Bayesian inference)

Motion  makes things interesting
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 We assume that the plant (whose state we are trying to estimate) is a 
stochastic discrete dynamical process with the following dynamics:

 𝐱𝑘 = 𝐴𝐱𝑘−1 + 𝐵𝐮𝑘 + 𝐰𝑘  (Process Model)

𝒚𝑘 = 𝐻𝐱𝑘 + 𝐯𝑘 (Measurement Model)

Stochastic Difference Equation Models
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𝐱𝑘, 𝐱𝑘−1 State at time 𝑘,𝑘 − 1 

𝐮𝑘 Input at time 𝑘

𝐰𝑘 Random vector representing noise in the plant, 𝐰 ∼ 𝑁(𝟎, 𝑄𝑘)

𝐯𝑘 Random vector representing sensor noise, 𝐯 ∼ 𝑁(𝟎, 𝑅𝑘) 

𝐳𝑘 Output at time 𝑘

𝑛 Number of states

𝑚 Number of inputs

𝑝 Number of outputs

𝐴 𝑛 × 𝑛 matrix

𝐵 𝑛 × 𝑚 matrix

𝐻 𝑝 × 𝑛 matrix



Kalman Filter



Step I: Prediction

• We assume an estimate of 𝐱 at time 𝑘 − 1, fusing information 
obtained by measurements till time 𝑘 − 1: this is denoted ො𝐱𝑘−1|𝑘−1

• We also assume that the error between the estimate ො𝐱𝑘−1|𝑘−1 and 
the actual 𝐱𝑘−1 has 0 mean, and covariance 𝑃𝑘−1|𝑘−1

• Now, we use these values and the state dynamics to predict the value 
of 𝐱𝑘

• Because we are using measurements only up to time 𝑘 − 1, we can 
denote this predicted value as ො𝐱𝑘|𝑘−1, and compute it as follows:

ො𝐱𝑘|𝑘−1 ≔ 𝐴ො𝐱𝑘−1|𝑘−1 + 𝐵𝐮𝑘



Step I: Prediction

• Thus, the state and error covariance prediction are:

𝑃𝑘|𝑘−1  = cov 𝐱𝑘 − ො𝐱𝑘|𝑘−1  = cov൫

൯

𝐴𝐱𝑘−1 + 𝐵𝐮𝑘 + 𝑤𝑘 − 𝐴ො𝐱𝑘−1|𝑘−1 −

𝐵𝐮𝑘

= 𝐴cov 𝐱𝑘−1 − ො𝐱𝑘−1|𝑘−1 𝐴𝑇 + 𝑐𝑜𝑣(𝑤𝑘)

= 𝐴𝑃𝑘−1|𝑘−1𝐴𝑇 + 𝑄𝑘

ො𝐱𝑘|𝑘−1 ≔ 𝐴ො𝐱𝑘−1|𝑘−1 + 𝐵𝐮𝑘

𝑃𝑘|𝑘−1 ≔ 𝐴𝑃𝑘−1|𝑘−1𝐴𝑇 + 𝑄𝑘



Kalman Filter



Step II: Correction

• This is where we basically do data fusion between new measurement 
and old prediction to obtain new estimate

• Note that data fusion is not straightforward like before because we 
don’t really observe/measure 𝐱𝑘  directly, but we get measurement 
𝒚𝑘, for an observable output!

• Idea remains similar: Do a weighted average of the prediction ො𝐱𝑘|𝑘−1 
and new information

• We integrate new information by using the difference between the 
predicted output and the observation 



Step II: Correction

• Predicted output: ෝ𝒚𝑘 = 𝐻𝑘 ො𝐱𝑘|𝑘−1

• We denote the error in predicted output as the innovation 
𝐳𝑘  ≔ 𝐲𝑘 − 𝐻𝑘 ො𝐱𝑘|𝑘−1

• Covariance of innovation 
𝑆𝑘 = co𝑣 𝐳𝑘 =  𝑐𝑜𝑣(𝐻𝑘𝐱𝑘 + 𝐯𝑘  − 𝐻𝑘 ො𝐱𝑘|𝑘−1) =  𝑅𝑘 + 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇

• Then to do data fusion is given by:
ෝ𝒙𝑘|𝑘  ≔ ෝ𝒙𝑘|𝑘−1 + 𝐾𝑘𝑧𝑘

• Where, 𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇𝑆𝑘

−1 is the (optimal) Kalman gain. It minimizes the 
least square error

• Finally, the updated error covariance estimate is given by:

𝑃𝑘|𝑘 ≔ 𝐼 − 𝐾𝑘𝐻𝑘  𝑃𝑘|𝑘−1



Innovation 𝐳𝑘  ≔ 𝐲𝑘 − 𝐻𝑘 ො𝐱𝑘|𝑘−1

Innovation Covariance 𝑆𝑘 ≔ 𝑅𝑘 + 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇

Optimal Kalman Gain 𝐾𝑘 ≔ 𝑃𝑘|𝑘−1𝐻𝑘
𝑇𝑆𝑘

−1

State estimate at time k ෝ𝒙𝑘|𝑘 ≔ ෝ𝒙𝑘|𝑘−1 +𝐾𝑘 𝐳𝑘

Covariance estimate at time k 𝑃𝑘|𝑘 ≔ 𝐼 − 𝐾𝑘𝐻𝑘 𝑃𝑘|𝑘−1

Step II: Correction



Kalman Filter



 Let’s take a simple one-dimensional example

 Kalman filter prediction equations become:

 ො𝑥𝑘|𝑘−1 ≔ 𝑎 ො𝑥𝑘−1|𝑘−1 + 𝑏𝑢 ; 𝜎𝑘|𝑘−1
2 ≔ 𝑎2𝜎𝑘−1|𝑘−1

2  +  ด𝜎𝑞
2

 Also, the correction equations become:

 Innovation: 𝑧𝑘 ≔ 𝑦𝑘 − ො𝑥𝑘|𝑘−1,   Sk = 𝜎𝑟
2 + 𝜎𝑘|𝑘−1

2

 Optimal gain: 𝑘 =  ൗ𝜎𝑘|𝑘−1
2 (𝜎𝑟

2 + 𝜎𝑘|𝑘−1
2 ), 

 Updated state estimate: ො𝑥𝑘|𝑘 ≔ ො𝑥𝑘|𝑘−1 + 𝑘(𝑦𝑘 − ො𝑥𝑘|𝑘−1)

 I.e. updated state estimate: ො𝑥𝑘|𝑘 ≔ 1 − 𝑘  ො𝑥𝑘|𝑘−1 + 𝑘𝑦𝑘  (Weighted average!)

one-dimensional example

prior uncertainty
in estimate

uncertainty
in process

prior uncertainty
in estimate



Extended Kalman Filter

• We skipped derivations of equations of the Kalman filter, but a fundamental 
property assumed is that the process model and measurement model are both 
linear.

• Under linear models and Gaussian process/measurement noise, a Kalman filter is 
an optimal state estimator (minimizes mean square error between estimate and 
actual state)

• In an EKF, state transitions and observations need not be linear functions of the 
state, but can be any differentiable functions

• I.e., the process and measurement models are as follows:
𝐱𝑘 = 𝑓 𝑥𝑘−1, 𝑢𝑘 + 𝑤𝑘

𝑦𝑘 = ℎ 𝑥𝑘 + 𝑣𝑘



• Functions 𝑓 and ℎ can be used directly to compute state-prediction, 
and predicted measurement, but cannot be directly used to update 
covariances

• So, we instead use the Jacobian of the dynamics at the predicted 
state

• This linearizes the non-linear dynamics around the current estimate

• Prediction updates:

EKF updates

ො𝐱𝑘|𝑘−1 ≔ 𝑓(ො𝐱𝑘−1|𝑘−1, 𝐮𝑘)

𝑃𝑘|𝑘−1 ≔ 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑘
𝑇 + 𝑄𝑘

𝐹𝑘 ≔ ቤ
𝜕𝑓

𝜕𝐱
𝐱=ො𝐱𝑘|𝑘−1,𝐮=𝐮𝑘



• Correction updates:

EKF updates
𝐻𝑘 ≔ ቤ

𝜕ℎ

𝜕𝐱
𝐱=ො𝐱𝑘|𝑘−1

Innovation 𝐳𝑘  ≔ 𝐲𝑘 − ℎ(ො𝐱𝑘|𝑘−1)

Innovation Covariance 𝑆𝑘 ≔ 𝑅𝑘 + 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇

Near-Optimal Kalman Gain 𝐾𝑘 ≔ 𝑃𝑘|𝑘−1𝐻𝑘
𝑇𝑆𝑘

−1

A posteriori state estimate ෝ𝒙𝑘|𝑘  ≔ ෝ𝒙𝑘|𝑘−1 + 𝐾𝑘𝐲𝑘

A posteriori error covariance estimate 𝑃𝑘|𝑘 ≔ 𝑃𝑘|𝑘−1 𝐼 − 𝐾𝑘𝐻𝑘



Simulink Example - Cartpole

• Full-state estimation (Luenberger, Kalman)
• Optimal Control

𝑦 = [𝑝, 𝜃]
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