Introduction to
Control Systems

Theory and applications

Enrico Regolin / Laura Nenzi

Bade plot, &, =1, L=0.19

L

Controller > Plant

Sensors

Phass (deg)

© (radisec)

e e - -

(S Ay 8 Duprene

¥ rodivet fueloys *

el Leiys

& "aodhef Lo b

M Teisie 25

Q EX mmullA

L L

4100 Detnd Lavwon R0 Siae
3 1000 Pog ey Levwn S
et e

3 VAN ECU Mo s Rand

3 VAN Devwigeent Dute Maad

BN e Nt ke
¥ AR Send Nt Rt
sy Accwin
- Oas

—y L over 3l pemadamons 35 11 of Branches reached

Scbaystem “1_SeasorComecton”
B cument sewdation. 85 T1% of branches resched

= @ = nv.muu:nt\mwmp
) Glel% 8 oA 3
Code Ganerslon Caspnes ETOL! Toem
v
RPN Tan gt e s
Code porerinis wnby
o mé fuehyn
futhmtecortroder (L. 10 « 2)
* FudCalodstion 00 = &
wComecton (1D » b
el O Lition
M~ v
Vistainmadher o v Predif mar L
e -
P .
- -
Hpan
| St L Saacas
- Code Covervage Level ’ - Code Covernge Lovel

Subsystem “Seekatecontroler”
Coment simdation. 54 55% of branches reached
over ol sanulationg. 54 55% of tranches reached

== J

X v

JENERAT IN

SERATIN

u (oov (o«uge Leved
prv—— Sebaystem “r_AvtowCaloulaton®

Cument wemdaion 72 22% of brasches reached |
over ol senulations 72 22% of branches -uc'-od ‘

Fie

b;@—d

Code Covernge Leved = a8

Subsystem FueiCaculanon”
Cumiet samdaton 68 71% of ranches teached
over all samulations 54 71% of eanches rached

Dacrete. Tmeintogrator
~ 1)

0 = CGU_A

Optmna Advensed | Decws

X
Cloda/ v

Logang
Dot

Cote 1

y Eral
i

Swat 4 =

Achae th

Overview (1)

Linear Control (time domain)
Introduction

*Dynamical Linear Systems
*Observability & Controllability

*PID Controllers

eLuenberger Observer

Linear Control (frequency domain) NOT IN THIS COURSE

Overview (2)

*Optimal Control and KF Estimation

*Optimal Control (LQR)
*Model Predictive Control
*Kalman Filtering

*Control Laboratory

*Matlab/Simulink
*Kalman Filtering and Optimal Control
*Cart-pole

Control Systems History

MR IR |«

g
5
=
=
=
=
=3
=
=
=
==
o

*\Water Clock

*Alexandria
(Ctesibius, 3" century BC)

*Centrifugal Governor

*Windmills
(C. Huygeens, 17t century)

*Steam Engine
(J. Watt, 1788)

e Ly’
Flo. 4 —Governor and Throttle. Valve.

Control Systems History

st L LLLULH] e

*First Automatic Transmission
(Hydramatic, General Motors, 1939)

Control Systems History

Stage - | Uncompensated Bode Plot

*Classical control theory o, SO0 (iinte o), Pm=d92deg @205k
. . . 50! RHP zero, 16.2 kHz
formalized from circuits theory
g 40
C4 B 30 ESR zero, 284 kHz
R £ 20/
] 2 “ 2 PR2 i " Double pole, 463 kHz
I (V]
7 1100Q _ ° |~
45.0nF 1. 3 e ! s —
10.0V R4 — _ | 360 . : i
|50Hz 1000 45.0nk s1sr Maximum phase delaydue to RHP zero
0 g 270/
3
o 225
0 2 180
o
% sl M
= 11| M | PP | PEEPEIPTTT | PP TP | PEEPEIPTPr | PR
10’ 10° 10" 10 10° 10°

Tacoma Bridge Collapse Froquency ()

https://www.youtube.com/watch?v=XggxeuFDaDU

Linear Control (time domain)

Control Systems Fundamentals

REQUIRED

*Dynamical System MODEL
*Control Input

*Reference Signal

CHALLANGES
*Missing/Noisy Information
*Physical limitations

Sel Error

Controller

Controller

oulpul
wi't)
—

Process

Process
varnable
vl

pomt + efrl
"HJ—iﬁzi;}———F-

Feedback

-

o

Dynamical Systems (1)
Past history (state) influences future output

. Continuous Time VS. Discrete Time

i=f(z), tel0,00) t(k+1) = f(z(k), k=0,1,2,...
. Autonomous VS. Non-autonomous

i = f(z) t = [(z,u)
 Linear VS. Non-linear

iy = —2 T = i

. . 50 0.4

To = 05’}31 + To + 0.4u To = 05331 + Slﬂ(fﬂg) + —

U

Dynamical Systems (2)

. SISO VS. MIMO
T =Ax+b-u r = Ax + Bu
y = Cx(= 0.521) y = Cx
. Time Invariant VS. Time Variant
z = f(z,u) x(t) = fla(t), u(t),)
it = Ax + Bu z(t) = A(t)x(t) + B(t)u(t)
. Deterministic VS. Non-Deterministic (Stochastic, noisy, etc.)
_— 2 —
PR B r(k+1)=—-2+v)x(k)" —x(k) + u(k)
y— 050 y(k) = 0.52(k) +n

v~ N(p,0),n~U(0,1)

Dynamical Systems (3)

LTI systems --- State-Space representation ZL’(O) = T, T € R"

i(t) = Ax(t) + Bul(t) A‘fl: iA;T r(k+1)= Adar(k) + Bau(k)
y(t) = Ca(t) + Du(t) oo A e o8 y(k) = Cx(k) + Duf(k)
A
CHET I

Dynamical Systems (3)

LTI systems ---

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

Output response (continuous time)

Ad — EA&T
Bd — A_l (EA&.’T .
[——

t
y(t) ={Ce*aoH C/ e=7) Bu(r)dr
0

Free Response
(homogeneous

solution)

+ Du(t)

Effect of input

Output response (discretektir?e)

y(k)

1=0

— CAkzg + C Z Aﬁ_l_inu(i) + Du(k)

1)B

State-Space representation ZL’(O) = T, T € R"

r(k+1)= Adar(k) + Bau(k)

y(k) = Cx(k) + Du(k)

Stability condition (Hurwitz)

x(t) = et

//”’/
a < () a >0
\ ; //

real(ezg(A)) <0

r(k) = a”
o<t a>1
|€ig(Ad)| <1

State-Space Realizations

Similarity Transformations

@ The choice of a state-space model for a given system is not unique.

@ For example, let T be an invertible matrix, and consider a coordinate
transpormation x = TX, i.e., ¥ = T 'x. This is called a similarity
transformation.

@ The standard state-space model can be written as

X = Ax+Bu. Tx = ATX+ Bu,

y = x+ Du. y = CTx+ Du.
Ie.,

X = (T'AT)%+ (T 'B)u= A%+ Bu

y = (CT)%+ Du= C%+ Du.

@ You can check that the time response is exactly the same for the two models
(A,B,C,D) and (A, B, C,D)!

LTl Systems Properties

Discrete case

r(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k)

Reaching a state

Ug, U, ... UN-1

e @

“Observing” the initial state
YN sYN—-1,---Y0

LTl Systems Properties

Conditions for all LTI systems:

Controllability

< rank(C) =n

C=[B,AB,A’B,..., A" 'B]

Observability

C
C'A
CA?

I CAn—l

< rank(0) =n

Discrete case

r(k+ 1) = Az(k) + Bu(k)
y(k) = Cx(k)

Reaching a state

Ug, U, ... UN-1

e @

“Observing” the initial state
YN sYN—-1,---Y0

LTl Systems Properties

Pair (A,B) is “Controllable”
Pair (A,C) is “Observable”

& rank(C) =n
& rank(0) =n

LTI System S : { A, B, C'}is a “minimal state-space realization” if it is both observable and
controllable.

0 0 0 1 0 0

Example: Co=10 0 O] Opg= 1|0 1 0

So: {Ao, B,C}, & :{A1,B,C)} R 11 0]
_ _ rank(Cy) = rank(Qgy) = 2

B =10 1] C=[1 0 0 0 1 0 o

Ag = |1 0 = 1 2 3 0 0 1
0 L rank(Cy) =3 rank(Oy) =3

non-LTI Systems (example)

Is the inverted pendulum (cartpole) controllable?

u+m16?% sinf®—m g cos 6 sin6

p = M +m sin 62

éj _ g sinﬁ‘g—cms@jﬁ H__‘ \

In non-linear systems Controllability and Observability Matrices represent LOCAL properties.

non-LTI Systems (example)

Is the inverted pendulum (cartpole) controllable?

_ u+ml6? sinf@—m g cos O sin 6

p = M +m sin 62
éj __ gsinf—cosfp

l

]

In non-linear systems Controllability and Observability Matrices represent LOCAL properties.

&= f(x,u),

eq.point zg, ug

i = Azr + Bu

_ Of(x,u)
d - o |:E::I.‘[),U:U{]
B — Of(x,u)

A

| =TI, U=Ug

AT
T = {p: D, 0, {9}

of _
u

1

[O-‘ (M + m(

1 —cos?(6))’

— cos(#)

T m(1 - o2 (0))

non-LTI Systems (example)

i=0,00=0,0=0, up=0
Linearization (0 0 0)

0 1 0 0] i 0
. | o g o tle |
T = f(x,u), eq.point zq,ug 00 o o | -1/ |
r = Ax + Bu , _ (m+ Mg
M
M=1 m=0.1, ¢g=981, [=0.5
_ Of(z,u)] _
A= = emrg g 0 10 2
_ Of(xz,u) -
E o 3u |;[:=:r;0ju,=u0 C N 0 —2 U —43
2 0 —43 0 |

Reference Tracking

X = Ax + Bu

Controller Plant

Given a reference trajectory r(t), design u(t) such that x(t) closely follows r(t)

Control objectives:
* Reject disturbances (if there is some perturbation in state, making it get back to initial state)

» Follow reference trajectories (if we want the system to have a certain Xref)
« Make system follow some other “desired behavior”

Open-loop vs. Closed-loop control

Open-loop or feed-forward control
Control action does not depend on plant output
Cheaper, no sensors required.

Quality of control generally poor without human
intervention

i(t)
—>

u(t)

Controller —»

y(t)

Plant —»

Feed-back control

Controller adjusts controllable inputs in
response to observed outputs

Can respond better to variations in disturbances

Performance depends on how well outputs can
be sensed, and how quickly controller can track
changes in output

i(t)

u(t)
Controller —»

Plant

y(t)

Feed-back

Proportional Controller

reference signal

(1) / u(t) X(t)
—>»u = K, (r —Xx) » X =Ax+ Bu >
+
B Controller Plant

Common objective: make plant state track the reference signal r(t)
e =1 — x is the error signal
Closed-loop dynamics: X = AX + BKp(r — xX) = (A — BKp)X + BKpr

pick Kp s.t. the composite system is asymptotically stable, i.e. pick Kp such that eigenvalues of (A — BK)
have negative real-parts

Designing a pole placement controller

r(t) u(t) L6 , x(t)
—>+ —>»u = K(r —Xx) —»{ X (1 3)x+(1)u
- Controller Plant

eigs(A) are values of A that satisfy the equation det(4A — AI) = 0
Note eigs(A) = 6,1 = unstable plant!

let K = (k; k). Then, A — BK = (4 —2ky 6- Zkz)

1—k, 3-k

eigs(4 — BK) satisfy equation A2 + (2k; + k, — 7)1 + (6 — 2k,) =0
two distinct solutions 14,4, if (A —211) (A —21,) = 22 +(=A; — 1,1 + 414,
That means 2k; + ko — 7 =—-A; — A, and 6 — 2k, = A4,
E.g. Ay = —1land A, = =2 gives k; = 4,k, = 2. Thus controller with K = (4 2) stabilizes the plant!

Proportional Controller

reference signal

@)

u

/

= Kp(r—y)

u(t)

—(3)—>
I

Controller

L
X = AX + Bu y(2
y = (CX+ Du
Plant

Proportional Integral Derivative (PID) controllers

eigs(A) are values of A that satisfy the equation det(A — AI) = 0
Note eigs(4) = 6,1 = unstable plant!

Controller
—> Kpe(t)
r(t) e(t) " + L y(t)
—(5 N KIJ edr |—p u(t)| x = Ax + Bu G
+ 0 + y =(Cx+ Du
5 : de(t) Plant
dt

Measuring control performance

Step Response with Proportional Control
1.2 T T T T T T T

Q

8

%‘ Overshoot: The difference between the maximum value of the system
§ 0.6 output and the desired reference value.
T

c

o)

8

O

s

0 J | | l 1 1 | l | |

0 0.5 1 1.5 2 2.5 3 3.5 < 4.5
Time (seconds) (seconds)

Measuring control performance

1.2

Step Response with Proportional Control

T | | | T T |

o
oo
T

Rotational velocity (rad/s)
o c
EsS (o))
|

9
N
I

o
—

o

Rise time: The time difference between the initial time when the reference
signal changes and the time at which the output signal crosses the desired

reference value.

l |] |] | l |]

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds) (seconds)

Measuring control performance

Step Response with Proportional Control
1.2 T T T T T T T T

AN

Steady-state error: The difference between the steady-state value of
the output signal and the value of the reference signal.

Rotational velocity (rad/s)
o c (
EsS (o))
|

o
N
]

o
—

1 1 | l | |

0 0.5 1 1.5 2 2.5 3 3.5 < 4.5
Time (seconds) (seconds)

Measuring control performance

Step Response with Proportional Control
1.2 1 T T T T T T T r

ot
o

Settling time: The time difference between the initial time when the
reference signal changes and the time at which the output signal reaches

its steady-state value.

Rotational velocity (rad/s)
o c
EsS (o))
|

9
N
I

o
—

1 | | | |)
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds) (seconds)

o

Measuring control performance

Step Response with Proportional Control Step Response with Proportional Control

1 T T T T 1.6 T T T T T T T T

Th i |

08 —_
L @)
U % 1-2 H
® o7~ J 2
g =
:é‘o.e- _B\ 1}
(& =
(@] Q
© 05 1 o
> @ 0.8
iel 8 0.6 f
= 03} -
© o
o) Is
C 02! "6 0.4

o

0.1})
0.2
0‘ ! 1 ! 1 | | ! 1 |
o 05 1 15 2 25 3 35 4 45 5 y 1 1 \ l _ | 1 | |
Time (seconds) (seconds) 0 0.5 1 15 2 2.5 3 3.5 4 45

Time (seconds) (seconds)

Kp =50 KP =500

P-only controller

Compute errorsignale =r —y
Proportional term K, e:
K, proportional gain;
Feedback correction proportional to error
Cons:
If K, is small, error can be large! [undercompensation]
If K, is large,

system may oscillate (i.e. unstable) [overcompensation]
may not converge to set-point fast enough

P-controller always has steady state error or offset error

Pl-controller

Com pute error signal e=r—y Step Besponse }with Proportional Contrql

t
Integral term: K; [e(t)dt
* K, integral gain; g
* Feedback action proportional to B
cumulative error over time 2
* If a small error persists, it will add up over time -
and push the system towards eliminating this E .
error): eliminates offset/steady-state error g
(@)
B o
T
DlsadvantageSI % 05 1 1.5 2 2.5 3 3.5 4 a5 5

)))) . Time (seconds) (seconds)
* Integral action by itself can increase instability

* Integrator term can accumulate error and suggest
corrections that are not feasible for the actuators (integrator windup)

* Real systems “saturate” the integrator beyond a certain value

Pl-controller

Integrator windup

PD-controller

Compute error signale =r —y

Derivative term K e:
* K, derivative gain;
* Feedback proportional to how fast
the error is increasing/decreasing

Purpose:

* “Predictive” term, can reduce overshoot:
if error is decreasing slowly, feedback is slower

e Can improve tolerance to disturbances

Disadvantages:

 Still cannot eliminate steady-state error
* High frequency disturbances can get amplified

Rotational velocity (rad/s)

o
e

o

Step Response with Proportional Control

o

0.5

1

1;5 é 2.5 i; 3;5
Time (seconds) (seconds)

4

4.5

5

PID-controller

Step Response with Proportional Control
1.2 T T T T T T T T T

)

©
(o))
I

Rotational velocity (rad/s)

o
N

0 0.15 1| 1.15 é 2:5 C; 3i5 L‘1 4{5
Time (seconds) (seconds)

PID controller in practice

May often use only Pl or PD control
Many heuristics to tune PID controllers, i.e., find values of Kp, K;, K
Several recipes to tune, usually rely on designer expertise

E.g. Ziegler-Nichols method: increase Kp till system starts oscillating with

1.2K* 3

period T (say till Kp = K*), then set Kp = 0.6K",K; = - ,Kp = 4—OK*T

Matlab/Simulink has PID controller blocks + PID auto-tuning capabilities

Work well with linear systems or for small perturbations,

For non-linear systems use “gain-scheduling”
* (i.e. using different Kp, K;, Kp gains in different operating regimes)

Gain Scheduling Example

Calibration Routine Example
Used for NONLINEAR / unknown systems
K_p= f p (state, param_set)
K_i=f_i(state, param_set)
K d=f_d (state, param_set)
Ly Sensor/Observer loss = g(stability, risetime, overshoot, etc.)
.
:EJ 1 while not (end condition):
™ loss = run_system (param_set)
- optimization_step(param_set)
'>| Kpe(t) I
t y(t)
K,foe(r)dr »
50

Controller

Observation

Problem:Control

r(t)
design with

(partially) unknown state

Solution: ﬂEL)Q dt) u(f)
- Luenberger Observer

? e(t) _Ij?l u(t)

y(t)

y(t)

Luenberger Observer

e State-space representation A A ~
TOPARETER x:AerBqu@y—y)
e 1= Ax+ Bu O S
y = Cx C Y=t Control design
_ > arameters
u=xres —) P
eObserver Error satisfies: e = (A — LC)@

eRequired: Observability, Controllability

Overall system is stable
ePole Placement :> iff both observer and

controller are stable
K 6%9(1‘4 — BK) — {)‘cla T /\Cﬂ}
L:eig(A" —LC) ={o1,..., Aon}

Example - DC Motor

Torque k¢

Resistor ' Inductor L

Displacement #

Current ¢
Voltage V, ' . .
oltage) Back EMF k¢ b =0.1 # friction coefficient (Nm/(rad/sec))
- \ 1 ‘ _ | = 0.01 # mechanical inertia (Kg*rm”"2)
\ Damping resistance bf k = 0.01 # motor torque constant (Nm/A)
Inertial resistance 1§ R =1 # armature resistance (Ohm)

L = 0.5 # armature inductance (H)

State-space

r.epresentation —b / T]C 0
. d’L t | :A B p— p—
Idev + b@ — ki —

wz[ef"} u = V; C=I[0

Modern Control Theory:

Optimal Control, MPC

* Optimal Control / LQR

« MPC

(Nonlinear) Optimal Control

t = f(x,u,t)
reR" ueR™
I’(t(}) = X

» Minimization of cost function |t (t)] over time interval [to, 1]

Jlu(t)] = §($(t1),t1l —I—/IL(:I:}u}t)dt

to
Final State Rating — \———

Integral Cost

X
* Find solution T .= { }
U

LQR Control (finite time, discrete)

r(k+1) = Ax(k) + Bu(k), zeR",ueR™
T—1

J=x(T)Qx(T)+ Y [z(k)Qz(k)+ u(k) Ru(k)], Q,R>0
k=0

e Solution

LQR Control (finite time, discrete)

r(k+1) = Ax(k) + Bu(k), zeR",ueR™
T—1

J=x(T)Qx(T)+ Y [z(k)Qz(k)+ u(k) Ru(k)], Q,R>0
k=0

e Solution
» u(k) = —K(k)x(k)
x(1,)

 Dependson finaltimeT

LQR Control (finite time, discrete)

= Ax(k) + Bu(k), e R",ueR™
E+ D= o) + Bul), 2 RER™ 4 50 sy

N\

T=
J=x(T)YQu(T) + Y [(k)'Qu(k) + u(k) Ru(k)], Q,R>0
k=0

e Solution

. u(k) = —K(k)z(k)

Depends on final time T

P(T)=qQ

K(k)=(R+ B'P(k+1)B)""(B'P(k+1)A)

. }uT—l)

P(k—1)= A'P(k)A — (AP(k)B)(R+ B'P(k)B) " (B'P(k)A) + Q

LQR Control (finite time, discrete)

:A (k) + Bu(k), xeR",ueR™
\ :> J = @(A,B,Q,R?aﬁo,’lbg,...,uT_l)

J = \Q} Z) Qu(k) +u(k) Ru(k)], Q,R>0
* Solution

u(k) = — K (k)z(k)

- Does not depend on initial condition!

K(k)=(R+ B'P(k+1)B)""(B'P(k+1)A)

P(k—1)=APk)A— (AP(k)B)(R+DB'P(k)B) '(B'P(k)A) +Q

LQR Control (infinite time, discrete)

r(k+1)= Ax(k) + Bu(k), zeR", ueR™

J = [2(k) Qu(k) +u(k) Ru(k)], Q,R>0
* Solution
px*(1)
u(k) = —Kux(k)

x(1,)
K = (R+ B'PB)"!(B'PA) \

P=APA—- (APB)(R+BPB) "(B'PA)+Q ARE

—— =

 Optimal Control / LOR
- MPC

Model Predictive Control

the controller) to predict the plant’s future evolution,

Main idea: Use a dynamical model of the plant (inside r® ;

and optimize the control signal over possible futures

ast 4 future : past
R , optimal: PSSl
¢——— optimization at time step / ————p»! predictio |

control
output at

target

ontrol
output at
timer~]

L

|
| |
[|
[|
time / ! |
' |
| |
% ()ptin]llm CO“"OI SCquence i :
‘A 1 L | | l — -
|
|

-

4

t+1 HE

t+1

predictive horizon —— ™ receding

Image from: https://tinyurl.com/yaej43x5

— - ——

™~

-

\/

——— Optimization at time step 7+1

% optimum control sequence 4. ;
‘A I 1 I |

Model- Ju(t) y(t)
based p—#{ Plant >
Optimizer
Sensor readings
future optimal
- I prediction

Why MPC?

*Optimal control with constraints (input, output and states)
eideal for MIMO (Multi Input Multi Output) systems

*l[inear and nonlinear models

*RECEDING HORIZON PRINCIPLE

” At any time instant £, based on the available process information, solve the
optimization problem with respect to the future control sequence |u(k), ..., u(k+
N —1)| and apply only its first element u°(k). Then, at next time instant k41, a
new optimization problem is solved, based on the process information available
at time k + 1, along the prediction horizon [k + 1,k + N|.” (Camacho)

A Y,
— (21(0), y£(0))

Receding
Horizon | N/

u n ’ . /
oA’ g :
)
.'i.” 4 p .
/
¥)
PG O Sk)

* Closed Loop solution (no
constraints, LQR) (27(0), 4 (0))
* Open Loop solution S o i M
(C on St Failn t S) m== Predicted trajectory

® Predicted coordinates XY
Rt,') . » r

{ . Sensor coordinates XY
e

N—-1

=~
i
||

(llz(k 4+)15 + lJu(k + D)%) + llz(k+ NS
=0

Linear MPC (1)

z(k+1) = Ax(k) + Bu(k), x€R" uecR™

1—1
v(k+i) = A'w(k) + Y A" Bu(k + j),

i=0

X (k)= Az(k) + BU(k) =

z(k+1) C u(k)
x(k + 2) u(k +1)
X (k) = : ., U(k) = 5
z(k+ N —1) u(k + N — 2)
- z(E+N) | u(k+ N —1)

1 >0

Ax

=

Linear MPC (2)
r(k+1) = Az(k) + Bu(k),

reR" ueR™

1—1
o(k+i) = A'w(k)+ Y A7 'Bu(k+j), i>0

i=0

X (k) = Az(k) + BU (k)

. B 0 0
AB B 0

AN-25 AN-35 AN-4g ...

_AN—IB AN—QB AN—BB

0 0]
0 0

. =

0
AB B

(Non-)Linear MPC

s = |z, u, Au]T

N

Jupc =Y (lle(@) — 2" (@G + [Jui) — u* @)IF + [|Au(i) — Au*(0)[3r)
i=1

sLinear formulation: minimize Jypo(s)

S
subject to Aeqs = beg,
Aineqs <_: bin&:q

*Nonlinear formulation: minimize Jypo(x,w)
I F)

subjeét to
z(k+1) = f(x(k),u(k)),
h(xz(k),u(k)) <0

Issues with MPC

Feasibility
Stability Conflicting Requirements
Computation (several solutions depending on needs)

Robustness formulation: system affected by process and measurement noise

Margin Margin Margin
retained v returned retained
Y A ! ! : ‘ A | ! !
Y i -_I h Y "\ H
max| | Plan max] § O\ Plan
. 5 Constraints E \\\\ Constraints
Constraints , I ~ o
tightening ’ ’ = ~L o>

I.c IHI- 1 k-ll-z k-l.-3 k+4 k k+1 k+2 k+3 k+4

Kalman Filtering

What is state estimation?

* Given a “black box” component, we can try to use a linear or nonlinear
system to model it (maybe based on physics, or data-driven)

« Model may posit that the plant has internal states, but we typically have
access only to the outputs of the model (whatever we can measure using a
sensor)

* May need internal states to implement controller: how do we estimate
them?

 State estimation: Problem of determining internal states of the plant

Deterministic vs. Noisy case

Typically sensor measurements are noisy (manufacturing imperfections, environment
uncertainty, errors introduced in signal processing, etc.)

In the absence of noise, the model is deterministic: for the same input you always
get the same output

dx

Can use a simpler form of state *ac — AX+ ButLy-y)

estimator called an observer "y =CX+Du o= ¢ =(A—LC)e
(e.g. a Luenberger observer)

*u(t) = _K]qrﬁ(t)’
In the presence of noise, we use a state estimator, such as a Kalman Filter

Kalman Filter is one of the most fundamental algorithm that you will see in
autonomous systems, robotics, computer graphics, ...

Random variables and statistics refresher

For random variable w, E|w] : expected value of w, also known as mean
Suppose E[x] = u : then var(w) : variance of w, is E[(w — u)?]
For random variables x and y, cov(x, y): covariance of x and y

cov(x,y) = E[(x — E(x)(y — E(y)]
For random vector X, [E|x]is a vector
For random vectors, X € R™ andy € R", cross-covariance matrix is m X n
matrix: cov(x,y) = E[(x — E[x])(y — E[yD]
w ~ N(u,d?) : wis a normally distributed variable with mean u and
variance o

Data fusion example

Using radar and a camera to estimate the distance to the lead car:
Measurement is never free of noise
Actual distance: x
Measurement with radar: z; = x + v, (v; ~ N(uy, 012) is radar noise)
With camera: z, = x + v, (v, ~ N(ly, 05) is camera noise)
How do you combine the two estimates?

Use a weighted average of the two estimates, prioritize more likely

measurement
~ _ (z1/0) +(22/0F) _ _ _ a5
b= erased) = kz, + (1 — k)z,, where k = pra

2 .2
6'2= 0'10'2 /v

H1 = 170-12 =1
Uy, = 2,02 =0.5

i =1.67,0%=0.33

2 2
01 +O'2 A

Observe: uncertainty reduced, and mean is closer to measurement with
lower uncertainty

Multi-variate sensor fusion

Instead of estimating one quantity, we want to estimate n quantities, then:

Actual value is some vector X

Measurement noise for i'" sensor is v; ~ N(p;, %;), where p; is the mean
vector, and X; is the covariance matrix

A = X7 1is the information matrix

For the two-sensor case:
)/Z — (Al + Az)_l(Alzl + A2Z2), and 2 — (Al + Az)_l

Motion makes things interesting

What if we have one sensor and making repeated measurements of a
moving object?

Measurement differences are not all because of sensor noise, some of it is
because of object motion

Kalman filter is a tool that can include a motion model (or in general a
dynamical model) to account for changes in internal state of the system

Combines idea of prediction using the system dynamics with correction
using weighted average (Bayesian inference)

Stochastic Difference Equation Models

We assume that the plant (whose state we are trying to estimate) is a
stochastic discrete dynamical process with the following dynamics:

X, = AXy_1 + Buy + wy, (Process Model)
v, = HX;, + v, (Measurement Model)

Xy, Xp—1 State attime k,k — 1 n Number of states
Uy Input at time k m Number of inputs
W Random vector representing noise in the plant, w ~ N(0, Q) p Number of outputs
Vi Random vector representing sensor noise, v ~ N (0, Ry) A nxmn matri>.<
Zy Output at time k fl ;l >>: ::;tr:)u(x

Kalman Filter

2 FuSiom

\NNOBVETION SOVARNAN &
‘—— L)

~\
Kk’-pglk_\u: (”’tecl k-1 u; +Ri)

POF

A ?rec-lic:\"\ oM

>
N B NGawhe) NG RO
(Wokion 'llﬁ')\ Eskinde o“] / (Ceseroekon wedell D

‘zk-Azb_\ +B\Jk;\"l§>t_ i,_ﬁ,}ﬁ_] HK:' 1 e AR VK

)((&t-clzq ,pk-llkq)
Egincye e -\

Step |: Prediction

* We assume an estimate of X at time kK — 1, fusing information
obtained by measurements till time k — 1: this is denoted X _1 k-1

* We also assume that the error between the estimate X _4,—, and
the actual X;_; has 0 mean, and covariance Pj_1|x_1

* Now, we use these values and the state dynamics to predict the value
of X7

* Because we are using measurements only up to time k — 1, we can
denote this predicted value as X ,—1, and compute it as follows:

Xp|k—1 = AXg_1)xk—1 + Bug

Step I: Prediction

Pk|k—1 — COV(Xk — ik|k—1) — COV(AXk_l + Buk + W, — Aﬁk—1|k—1 —
Buk)
— ACOV(Xk_l — ﬁk—1|k—1)AT + COU(WR)
= APy_q k14" + Qg

* Thus, the state and error covariance prediction are:

Xilk—-1 = AXp_qjk-1 + Buy
Prik—1 = APg_q k-1 A" + Qg

Kalman Filter

2 FuSiom

\NNOBVETION SOVARNAN &
‘—— L)

~\
Kk’-pglk_\u: (”’tecl k-1 u; +Ri)

POF

A ?rec-lic:\"\ oM

>
N B NGawhe) NG RO
(Wokion 'llﬁ')\ Eskinde o“] / (Ceseroekon wedell D

‘zk-Azb_\ +B\Jk;\"l§>t_ i,_ﬁ,}ﬁ_] HK:' 1 e AR VK

)((&t-clzq ,pk-llkq)
Egincye e -\

Step II: Correction

* This is where we basically do data fusion between new measurement
and old prediction to obtain new estimate

* Note that data fusion is not straightforward like before because we

don’t really observe/measure x;, directly, but we get measurement
¥, for an observable output!

* |dea remains similar: Do a weighted average of the prediction ﬁk|k_1
and new information

* We integrate new information by using the difference between the
predicted output and the observation

Step II: Correction

* Predicted output: ¥, = HyXg k-1
* We denote the error in predicted output as the innovation
Z = Yr — HiXppr-1

e Covariance of innovation

Sy = cov (zy) = cov(HyXy + Vi — HxRypk—1) = Ry + HyPyj—1Hy
* Then to do data fusion is given by:

Xilk = Xijk-1 + Kizy
* Where, K}, = Pk|k_1H,€S,;1 is the (optimal) Kalman gain. It minimizes the
least square error

* Finally, the updated error covariance estimate is given by:

Pre == (I — KxHy) Pyjk—1

Step Il: Correction

Innovation

Innovation Covariance
Optimal Kalman Gain

State estimate at time k

Covariance estimate at time k

Z =Yk — Hi Xy -1
Sk = Ry + HyPyjo—1 Hy,
Ky = Prx—1Hy S *

Xi|k = Xg|k—1 TKi Zg

Peie = U — KiHy) Pyjg—1

Kalman Filter

2 FuSiom

\NNOBVETION SOVARNAN &
‘—— L)

~\
Kk’-pglk_\u: (”’tecl k-1 u; +Ri)

POF

A ?rec-lic:\"\ oM

>
N B NGawhe) NG RO
(Wokion 'llﬁ')\ Eskinde o“] / (Ceseroekon wedell D

‘zk-Azb_\ +B\Jk;\"l§>t_ i,_ﬁ,}ﬁ_] HK:' 1 e AR VK

)((&t-clzq ,pk-llkq)
Egincye e -\

one-dimensional example

Let’s take a simple one-dimensional example
Kalman filter prediction equations become:

5 © m— < [2 © m— 2 2 2
Xk|k-1 = AXg—1)k-1 T bU; Oklk-1 = A" 0k_1jk-1 T Og
N—_— v — HM

prior uncertainty uncertainty

' ' ' ' in process
Also, the correction equations become: In estimate p

Innovation: zy = yx — X1, Sk = 0F + Opjp—1

Optimal gain: k = 03,,_1/ (67 + 0—1),

Updated state estimate: Xy = Xgjk—1 + k(Y — Xkjk-1)

l.e. updated state estimate: Xy, := (1 — k) Xy x—1 + kyx (Weighted average!)

Extended Kalman Filter

* We skipped derivations of equations of the Kalman filter, but a fundamental
property assumed is that the process model and measurement model are both
linear.

Under linear models and Gaussian process/measurement noise, a Kalman filter is
an optimal state estimator (minimizes mean square error between estimate and
actual state)

In an EKF, state transitions and observations need not be linear functions of the
state, but can be any differentiable functions

l.e., the process and measurement models are as follows:
Xk = f(Xp—1, ug) + wy
Vi = h(xy) + vy

EKF updates

* Functions

f and h can be used directly to compute state-prediction,

and predicted measurement, but cannot be directly used to update
covariances

* SO, we instead use the Jacobian of the dynamics at the predicted

state

* This linearizes the non-linear dynamics around the current estimate
* Prediction updates:

Xk
Py

k—1 = f(ﬁk—1|k—1;uk)
k=1 = FxPr—qjk-1Fi + Qx

sz

_9f
- 0X

X=X |k—1,U=Uk

EKF updates I
e Correction updates: Hj = Ix)
X=Xk|k—1
Innovation Z, =Y — h(Xgk-1)
Innovation Covariance Sk = Ry + HyPyjx—1Hy
Near-Optimal Kalman Gain K, = Pk|k_1H,ZS,§1
A posteriori state estimate Xiik = Xgjk—1 T Ki ¥«

A posteriori error covariance estimate Py = Pk|k_1(1 — K Hy,)

Simulink Example - Cartpole

,

_ u+ml6? sin 0—m g cos @ sinf
) p = M +m sin 02 T
é __ g sin 0 —cos 6p T = {p? D, 0, 9}
[
\

e Full-state estimation (Luenberger, Kalman)
e Optimal Control

	Slide 1: Introduction to Control Systems Theory and applications
	Slide 2
	Slide 3: Overview (1)
	Slide 4: Overview (2)
	Slide 5: Control Systems History
	Slide 6: Control Systems History
	Slide 7: Control Systems History
	Slide 8: Linear Control (time domain)
	Slide 9: Control Systems Fundamentals
	Slide 10: Dynamical Systems (1)
	Slide 11: Dynamical Systems (2)
	Slide 12: Dynamical Systems (3)
	Slide 13: Dynamical Systems (3)
	Slide 14: State-Space Realizations
	Slide 15: LTI Systems Properties
	Slide 16: LTI Systems Properties
	Slide 17: LTI Systems Properties
	Slide 18: non-LTI Systems (example)
	Slide 19: non-LTI Systems (example)
	Slide 20: non-LTI Systems (example)
	Slide 21: Reference Tracking
	Slide 22: Open-loop vs. Closed-loop control
	Slide 23: Proportional Controller
	Slide 24: Designing a pole placement controller
	Slide 25: Proportional Controller
	Slide 26: Proportional Integral Derivative (PID) controllers
	Slide 27: Measuring control performance
	Slide 28: Measuring control performance
	Slide 29: Measuring control performance
	Slide 30: Measuring control performance
	Slide 31: Measuring control performance
	Slide 32
	Slide 33: PI-controller
	Slide 34: PI-controller
	Slide 35: PD-controller
	Slide 36
	Slide 37: PID controller in practice
	Slide 38
	Slide 39: Observation
	Slide 40: Luenberger Observer
	Slide 41
	Slide 42: Modern Control Theory: Optimal Control, MPC
	Slide 43
	Slide 44: (Nonlinear) Optimal Control
	Slide 45: LQR Control (finite time, discrete)
	Slide 46: LQR Control (finite time, discrete)
	Slide 47: LQR Control (finite time, discrete)
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Model Predictive Control
	Slide 52: Why MPC?
	Slide 53
	Slide 54: Linear MPC (1)
	Slide 55: Linear MPC (2)
	Slide 56: (Non-)Linear MPC
	Slide 57
	Slide 68: Kalman Filtering
	Slide 69: What is state estimation?​
	Slide 70: Deterministic vs. Noisy case​
	Slide 71: Random variables and statistics refresher
	Slide 72: Data fusion example
	Slide 73: Multi-variate sensor fusion
	Slide 74: Motion makes things interesting
	Slide 75: Stochastic Difference Equation Models
	Slide 76: Kalman Filter
	Slide 77: Step I: Prediction
	Slide 78: Step I: Prediction
	Slide 79: Kalman Filter
	Slide 80: Step II: Correction
	Slide 81: Step II: Correction
	Slide 82: Step II: Correction
	Slide 83: Kalman Filter
	Slide 84: one-dimensional example
	Slide 85: Extended Kalman Filter
	Slide 86: EKF updates
	Slide 87: EKF updates
	Slide 88: Simulink Example - Cartpole

