

Introduction to Test Driven Development



Dario Campagna Head of Research and Development

# Let's start with Development



## Now add Test Driven

Software development practice

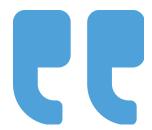
Clean code that works

Test first

Small steps, fast feedback

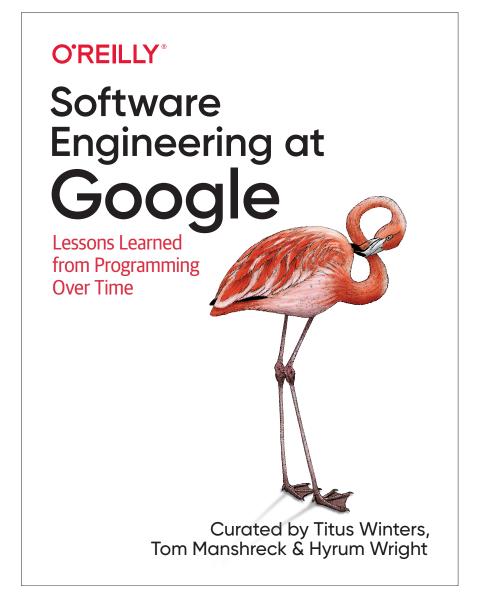


## Clean code


Easy to understand

Easy to evolve

Easy to maintain


Sustains delivery pace





Your project is **sustainable** if, for the expected life span of your software, you are capable of reacting to whatever **valuable change** comes along, for either technical or business reasons.

Software Engineering at Google



Free digital version



### **Example of Ugly Code**

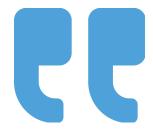
TerrariaClone class from the GitHub repository <u>TerrariaClone</u>.

- > 6500 lines of code
- > 1300 lines of code for init() method
- Deeply nested if and for statements
- Many other "issues"

```
if (ic != null) {
3057
                           if (ic.type.equals("workbench")) {
3058
                               for (ux=0; ux<3; ux++) {
3059
                                   for (uy=0; uy<3; uy++) {</pre>
3060
                                       if (mousePos[0] >= ux*40+6 && mousePos[0] < ux*40+46 &&
                                           mousePos[1] >= uy*40+inventory.image.getHeight()+46 &&
3061
3062
                                           mousePos[1] < uy*40+inventory.image.getHeight()+86) {</pre>
                                           checkBlocks = false;
3063
3064
                                           if (mouseClicked) {
                                               mouseNoLongerClicked = true;
3065
3066
                                               moveItemTemp = ic.ids[uy*3+ux];
3067
                                               moveNumTemp = ic.nums[uy*3+ux];
3068
                                               if (moveItem == ic.ids[uy*3+ux]) {
3069
                                                   moveNum = (short)inventory.addLocationIC(ic, uy*3+ux, moveItem, moveNum, moveDur);
3070
                                                   if (moveNum == 0) {
3071
                                                       moveItem = 0;
                                                   inventory.removeLocationIC(ic, uy*3+ux, ic.nums[uy*3+ux]);
                                                   if (moveItem != 0) {
3077
                                                       inventory.addLocationIC(ic, uy*3+ux, moveItem, moveNum, moveDur);
3079
                                                   moveItem = moveItemTemp;
3080
                                                   moveNum = moveNumTemp;
3081
3083
3084
3085
3086
                               if (mousePos[0] >= 4*40+6 \&\& mousePos[0] < 4*40+46 \&\&
3087
                                   mousePos[1] >= 1*40+inventory.image.getHeight()+46 &&
3088
                                   mousePos[1] < 1*40+inventory.image.getHeight()+86) {</pre>
3089
                                   checkBlocks = false;
3090
                                  if (mouseClicked) {
3091
                                       if (moveItem == ic.ids[9] && moveNum + ic.nums[9] <= MAXSTACKS.get(ic.ids[9])) {</pre>
3092
                                           moveNum += ic.nums[9];
3093
                                           inventory.useRecipeWorkbench(ic);
3094
                                       if (moveItem == 0) {
3096
                                           moveItem = ic.ids[9];
3097
                                           moveNum = ic.nums[9];
3098
                                           if (TOOLDURS.get(moveItem) != null) {
3099
                                               moveDur = TOOLDURS.get(moveItem);
3100
3101
                                           inventory.useRecipeWorkbench(ic);
3102
```



## Ugly code is


Rigid

Fragile

Inseparable

Opaque





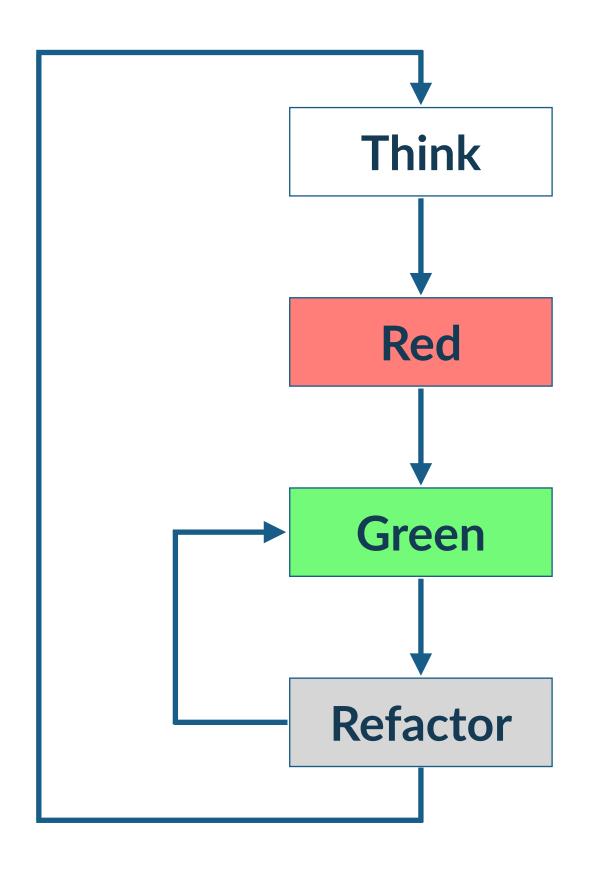
The nature of code is to grow ugly.

Bas Vodde

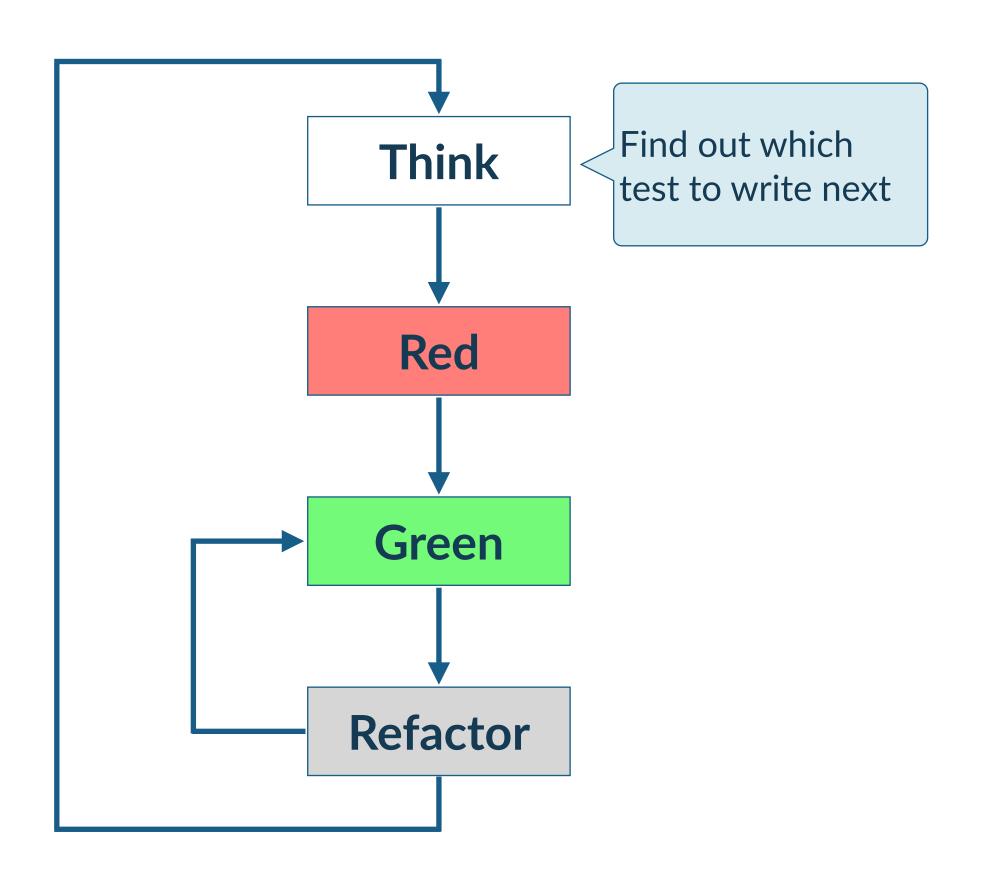




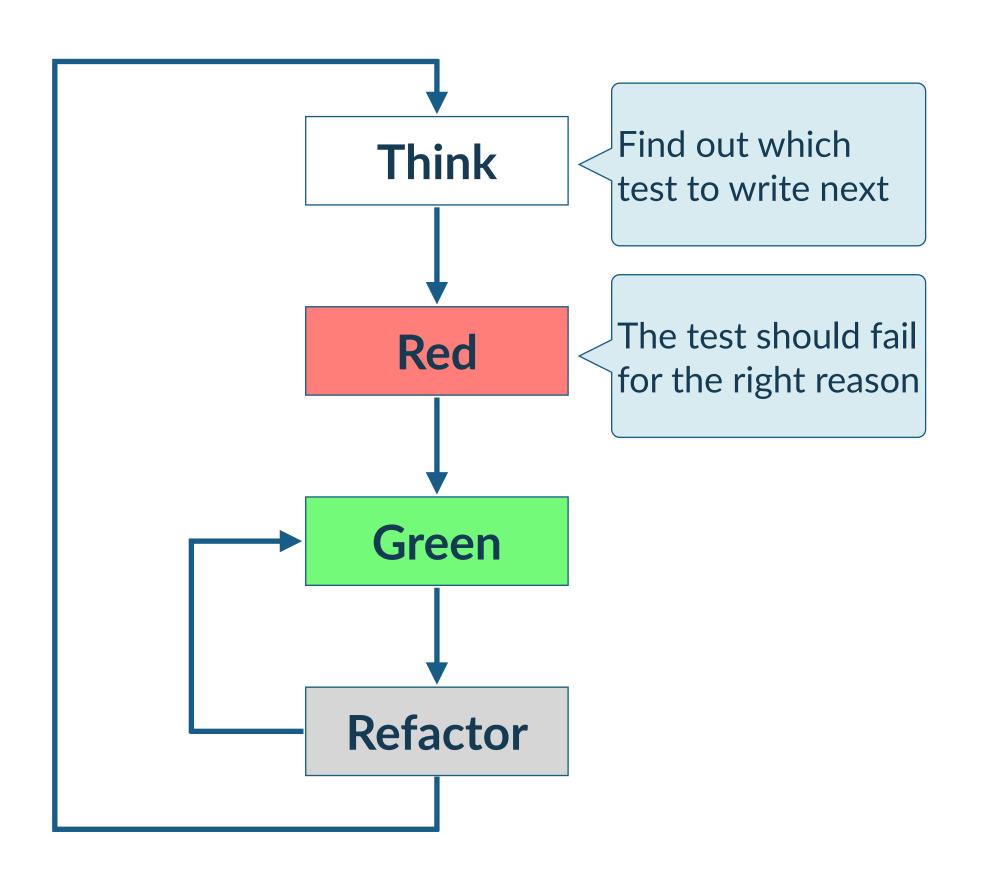
# Why does code grow ugly?


We have no time to clean it

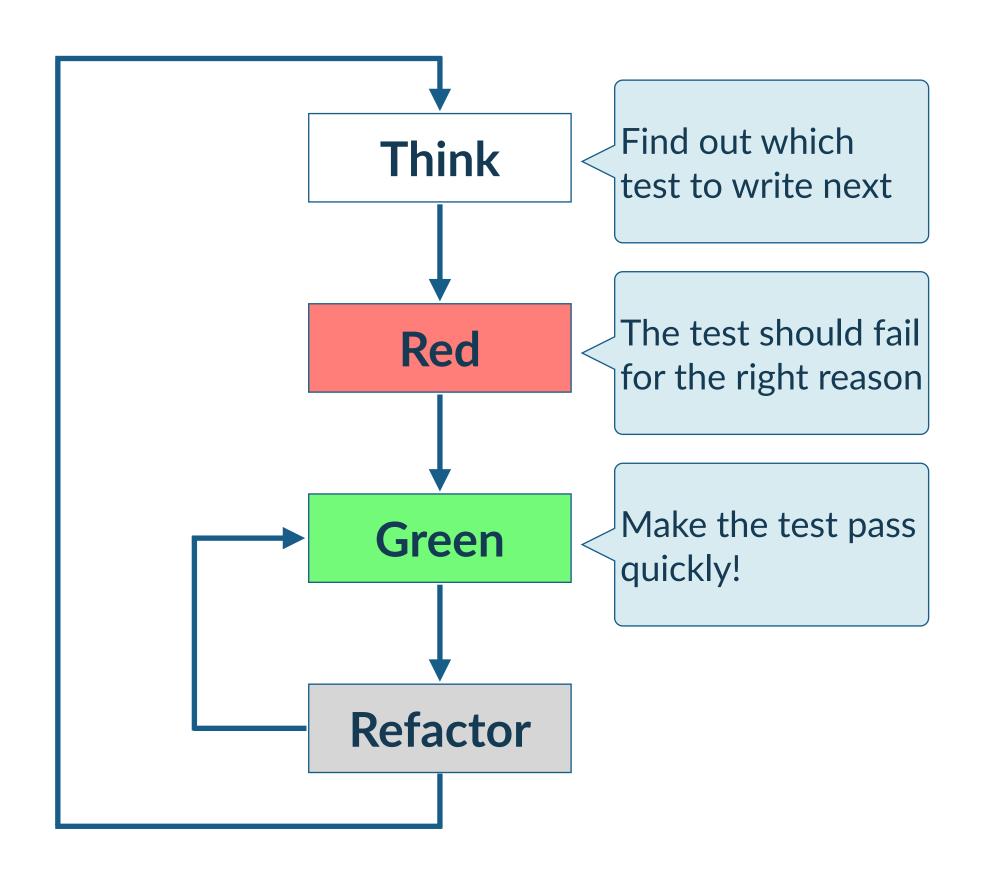
We need to go "faster"


We are afraid of breaking it

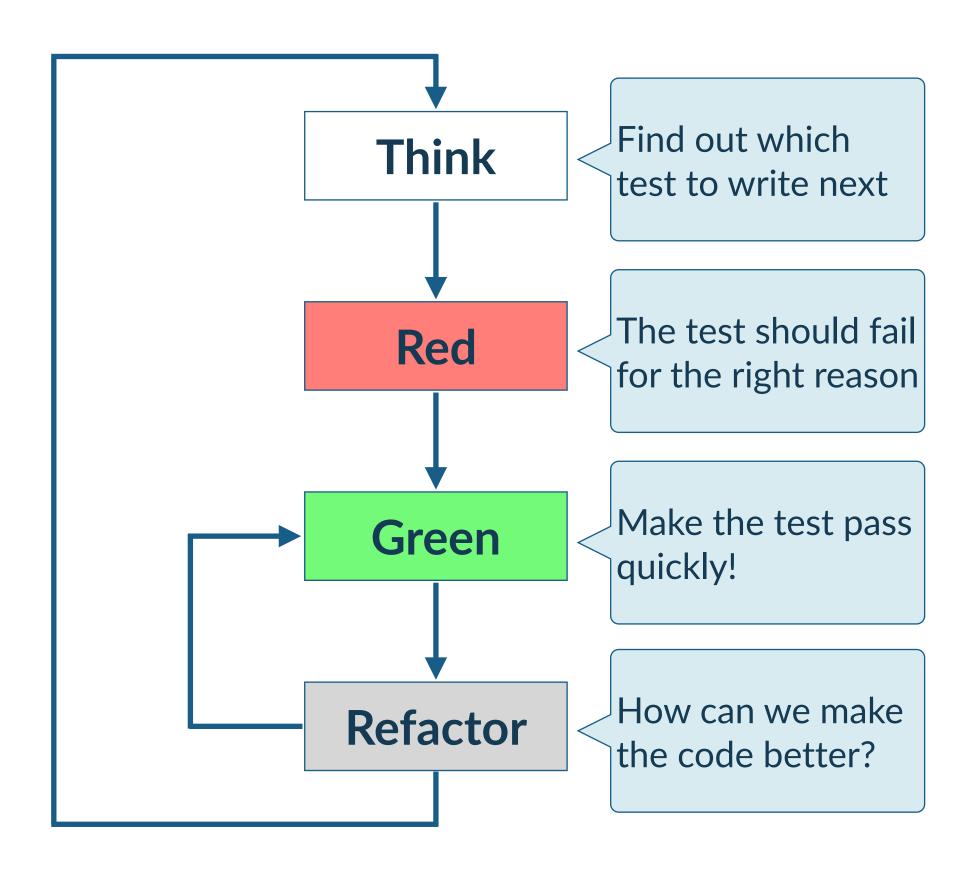
Fear prevents us to clean it




















#### **Test Infrastructure**

Things we need to practice TDD

Automated build

Test framework

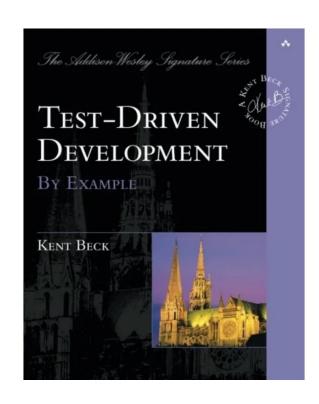
**Assertion library** 

Arrange/Act/Assert

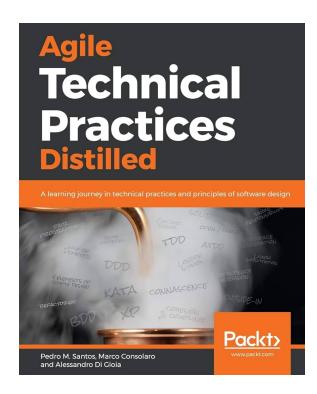
Why?

To run the tests, as fast as possible

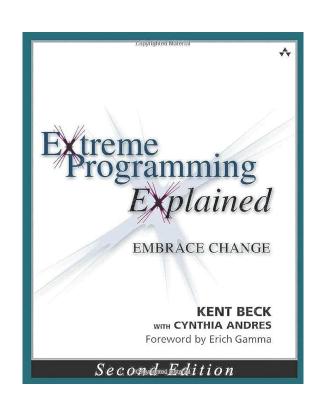
To build the test suite


To check test status

A way to write tests




## Some books about TDD (and more)


Look for them on http://www.biblio.units.it/



Test Driven Development by Example by Kent Beck



Agile Technical Practices Distilled by Pedro Moreira Santos, Marco Consolaro, Alessandro Di Gioia



**Extreme Programming Explained** by Kent Beck



#### **Code Kata**

A system of coding practice incorporating techniques and notions that have been cultivated and polished for decades.

#### **Dave Nicolette**

- The purpose is to practice and internalize programming techniques
- (Some are) Designed to reflect programming problems that have particular shapes





#### How to choose the first test?

- 1.Look at the problem you will work on and list the behaviors you will need to solve it.
- 2.List the tests which, when passed, will demonstrate the presence of code you are confident will implement the desired behaviors.
- 3. Choose the first test to write.
- Usually a nano-test.
- Simple, short, essential.
- Degenerate but useful example.
- Don't underestimate the implicit complexity.





#### **Good tests**

#### Describe

Tests should have names that describe a business feature or behavior.

#### **Avoid**

Technical names and leaking implementation details.

#### Communicate

Tests should clearly express required functionalities to the reader.



## Ways to move forward

#### Fake it

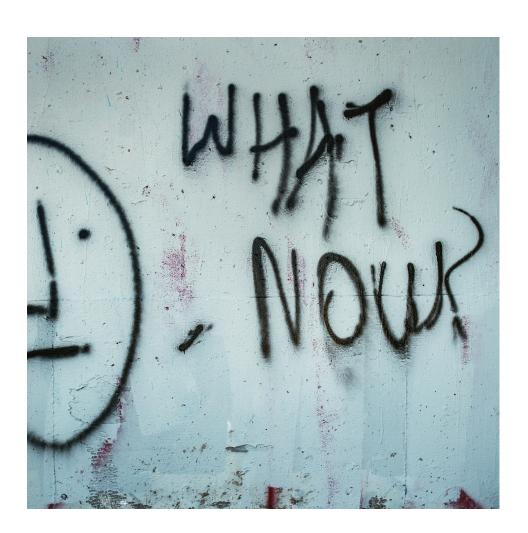
Just return the exact value you need.

Something that works is better than something that doesn't work!

#### **Obvious implementation**

When you are sure of the code you need to write, write it, and see the test go green!

#### **Triangulation**


Write a new and more specific test that forces the code to be more generic.



#### How to choose the next test?

Every test is a question we can ask to the system, a chance to learn something about: the domain, the code, the design.

- Use your test list.
- Look for the simple thing that could possibly break.
- The choice is heavily influenced by previous tests.





### Refactor to remove duplication

#### Types of duplication

Code, data, knowledge.

#### Wait

Avoid removing duplication too soon, as this may lead you to extract the wrong abstractions.

#### Rule of Three

Extract duplication only when you see it for the third time.



```
public class Cylinder {
    private final double radius;
    private final double height;

public Cylinder(double radius, double height) {
        this.radius = radius;
        this.height = height;
    }

public double volume() {
        return Math.PI * Math.pow(radius, 2) * height;
    }

public double surface() {
        return 2 * Math.PI * Math.pow(radius, 2) + 2 * Math.PI * radius * height;
    }
}
```



```
public class Cylinder {
    private final double radius;
    private final double height;

public Cylinder(double radius, double height) {
        this.radius = radius;
        this.height = height;
    }

public double volume() {
        return Math.PI * Math.pow(radius, 2) * height;
    }

public double surface() {
        return 2 * Math.PI * Math.pow(radius, 2) + 2 * Math.PI * radius * height;
    }
}
```



Extract method.

```
public class Cylinder {
    private final double radius;
    private final double height;
    public Cylinder(double radius, double height) {
        this.radius = radius;
        this.height = height;
    public double volume() {
        return baseSurface() * height;
    public double surface() {
        return 2 * baseSurface() + 2 * Math.PI * radius * height;
    private double baseSurface() {
        return Math.PI * Math.pow(radius, 2);
```



Extract method.

```
public class Cylinder {
    private final double radius;
    private final double height;
    public Cylinder(double radius, double height) {
        this.radius = radius;
        this.height = height;
    public double volume() {
        return baseSurface() * height;
    public double surface() {
        return 2 * baseSurface() + 2 * Math.PI * radius * height;
   private double baseSurface() {
        return Math.PI * Math.pow(radius, 2);
```



```
@Test
public void productNotFound() throws Exception {
   Display display = new Display();
   Sale sale = new Sale(display);
   sale.onBarcode("99999");
   assertEquals("Product not found for 99999", display.getText());
}
```

```
public class Sale {
    private Display display;

public Sale(Display display) {
        this.display = display;
    }

public void onBarcode(String barcode) {
        display.setText("Product not found for 99999");
    }
}
```



```
@Test
public void productNotFound() throws Exception {
   Display display = new Display();
   Sale sale = new Sale(display);
   sale.onBarcode("99999");
   assertEquals("Product not found for 99999", display.getText());
}
```

```
public class Sale {
    private Display display;

public Sale(Display display) {
        this.display = display;
    }

public void onBarcode(String barcode) {
        display.setText("Product not found for 99999");
    }
}
```



Replace literal value with variable.

```
@Test
public void productNotFound() throws Exception {
   Display display = new Display();
   Sale sale = new Sale(display);
   sale.onBarcode("99999");
   assertEquals("Product not found for 99999", display.getText());
}
```

```
public class Sale {
    private Display display;

public Sale(Display display) {
        this.display = display;
    }

public void onBarcode(String barcode) {
        display.setText("Product not found for " + barcode);
    }
}
```



Replace literal value with variable.

```
@Test
public void productNotFound() throws Exception {
   Display display = new Display();
   Sale sale = new Sale(display);
   sale.onBarcode("99999");
   assertEquals("Product not found for 99999", display.getText());
}
```

```
public class Sale {
    private Display display;

public Sale(Display display) {
        this.display = display;
    }

public void onBarcode(String barcode) {
        display.setText("Product not found for " + barcode);
    }
}
```



#### **Tests in TDD**

Should be...

Isolated and composable

Fast and automated

Behavioral and structure-insensitive

Specific and deterministic

Inspiring and predictive

Writable and readable

**Beware of** 

Databases

Network communications

File system

Other shared fixtures

Configurations



## Examples of "not-so-good" tests

```
//Test metodo canBePlaced
@Test
void canBePlacedTest(){
    Piece p= PieceSet.getPossibleSet()[1];
    Board tabella= new Board();
    assertTrue(tabella.canBePlaced(p, new Double[]{2.0,2.0})); //can be placed case
    tabella.getGameBoard()[2][3].setColor(Color.yellow);
    assertFalse(tabella.canBePlaced(p, new Double[]{2.0,2.0})); //occupied tile case
    assertFalse(tabella.canBePlaced(p, new Double[]{3.0,9.0})); //out of gameboard case
//Test metodi place e canBePlaced
@Test
void placeTest(){
    Piece p=PieceSet.getPossibleSet()[1];
    Board tabella=new Board();
    assertTrue(tabella.canBePlaced(p, new Double[]{2.0,2.0})); //can be placed case
    tabella.place(p, new Double[]{2.0, 1.0});
    assertFalse(tabella.canBePlaced(p, new Double[]{2.0,0.0})); //verifico che lo stesso pezzo non possa più essere posizionato
    assertFalse(tabella.canBePlaced(p, new Double[]{2.0,1.0})); // negli spazi già occupati
    assertFalse(tabella.canBePlaced(p, new Double[]{2.0,2.0}));
    assertTrue(tabella.canBePlaced(p, new Double[]{2.0,3.0}));
```



## Examples of "not-so-good" tests

```
//Test metodo addPoints
@Test
void testAddingPoint()
   if (!GraphicsEnvironment.isHeadless()){
       Game game = Game.getInstance();
       int initialScore = game.getScore().points;
        game.addPoints(10);
       assertEquals(10, game.getScore().points - initialScore);
    assertTrue(true);
//Test metodo addPoints
@Test
void testPointsAddedByPiece()
   if (!GraphicsEnvironment.isHeadless()) {
        Game game = Game.getInstance();
       int initialScore = game.getScore().points;
        Piece p = PieceSet.getPossibleSet()[2];
       game.addPoints(p.getSize());
       assertEquals(3, game.getScore().points - initialScore); // Punti primo test + punti secondo
    assertTrue(true);
```



#### Tests and Java exceptions

How to check that an exception is thrown?

#### assertThrows

- Available in JUnit 5
- Returns the exception
- Enables fine-grained control

#### expected attribute

- Available in JUnit 4
- Just checks that an exception is thrown

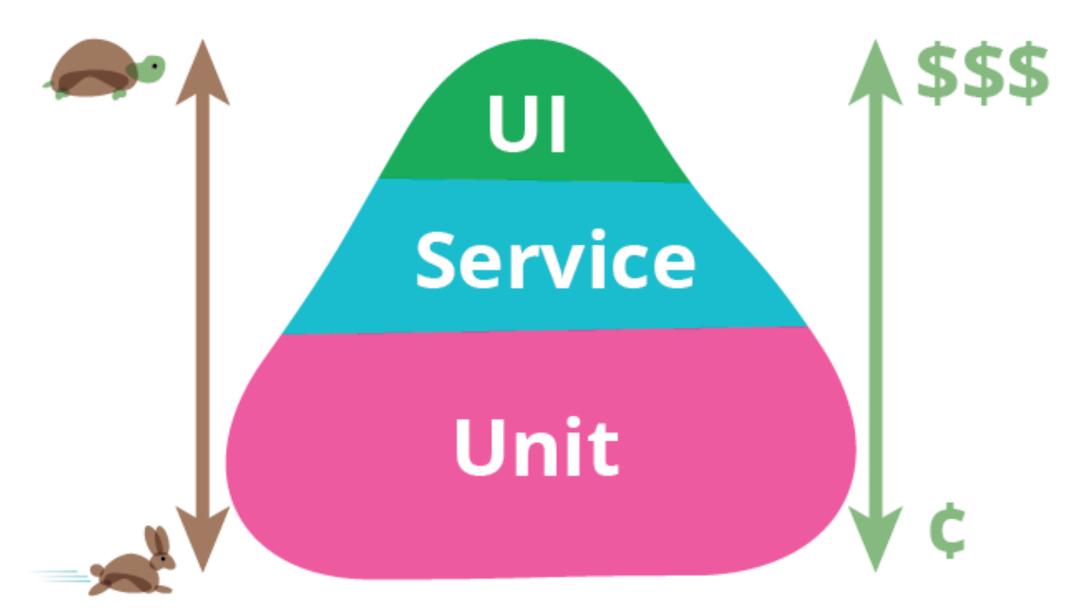
#### **ExpectedException**

- Available in JUnit 4
- To also check the exception message



# Should you **always** practice Test Driven Development?




## TDD is a tool

To get value from a tool, it's necessary to:

- 1. Choose the right tool for the job.
- 2. Use the tool properly.



## **Test Pyramid**



https://martinfowler.com/bliki/TestPyramid.html Copyright © 2012 Martin Fowler

