A
l Introduction to Test Driven Development
o

' g ‘ Dario Campagna

L et’s start with
Development

Software development practice

N OW Ad d d TeSt Clean code that works
Driven Test first

Small steps, fast feedback

Easy to understand

Easy to evolve

Clean code

Easy to maintain

Sustains delivery pace

Your project is sustainable if, for the OREILLY"
expected life span of your software, Software

you are capable of reacting to Engineering at
whatever valuable change comes Google
along, for either technical or business Lessons Learned
reasons. ey %

Software Engineering at Google

Curated by Titus Winters,
Tom Manshreck & Hyrum Wright

Free digital version

https://abseil.io/resources/swe-book

Example of Ugly Code

TerrariaClone class from the GitHub
repository TerrariaClone.

= > 6500 lines of code
= > 1300 lines of code for init() method
= Deeply nested if and for statements

s

= Many other “issues”

if (ic !'= null) {
if (ic.type.equals("workbench")) {
for (ux=0; ux<3; ux++) {
for (uy=0; uy<3; uy++) {
if (mousePos[0] >= ux*x40+6 & mousePos[0] < ux*x40+46 &&
mousePos[1] >= uyx40+inventory.image.getHeight()+46 &&
mousePos[1] < uyx40+inventory.image.getHeight()+86) {
checkBlocks = false;
if (mouseClicked) {
mouseNoLongerClicked = true;
moveItemTemp = ic.ids [uy*3+ux];
moveNumTemp = ic.nums [uy*3+ux];
if (moveItem == ic.ids[uy*3+ux]) {
moveNum = (short)inventory.addLocationIC(ic, uy*3+ux, moveItem, moveNum, moveDur);
if (moveNum == @) {
moveltem = 0;

}
}
else {
inventory.removeLocationIC(ic, uy#*3+ux, ic.nums[uy*3+ux]);
if (moveItem != 0) {
inventory.addLocationIC(ic, uy*3+ux, moveItem, moveNum, moveDur);
}
moveItem = moveItemTemp;
moveNum = moveNumTemp;
}

}
if (mousePos[0] >= 4*40+6 && mousePos[0] < 4%40+46 &&
mousePos[1] >= 1x40+inventory.image.getHeight()+46 &&
mousePos[1] < 1x40+inventory.image.getHeight()+86) {
checkBlocks = false;
if (mouseClicked) {
if (moveItem == ic.ids[9] && moveNum + ic.nums[9] <= MAXSTACKS.get(ic.ids[91)) {
moveNum += ic.nums[9];
inventory.useRecipeWorkbench(ic);
}
if (moveItem == 0) {
moveltem = ic.ids[9];
moveNum = ic.nums[9];
if (TOOLDURS.get(moveItem) != null) {
moveDur = TOOLDURS.get(moveItem);
}

inventory.useRecipeWorkbench(ic);

https://github.com/raxod502/TerrariaClone

Rigid

Fragile

Ugly code is

Inseparable

Opaque

The nature of code Is to grow
ugly.

Bas Vodde

We have no time to clean it

W hy d O eS CO d e We need to go “faster”
grow ugly? We are afraid of breaking it

Fear prevents us to clean it

Test Driven Development (TDD) Cycle

[Refactor

Test Driven Development (TDD) Cycle

Find out which
test to write next

Refactor

Test Driven Development (TDD) Cycle

Find out which
test to write next

The test should fail
for the right reason

Refactor

Test Driven Development (TDD) Cycle

Find out which
test to write next

The test should fail
for the right reason

Make the test pass
quickly!

Refactor

Test Driven Development (TDD) Cycle

Find out which
test to write next

The test should fail
for the right reason

Make the test pass
quickly!

< How can we make
the code better?

Refactor

Test Infrastructure

Things we need to practice TDD Why?

Automated build To run the tests, as fast as possible
Test framework To build the test suite
Assertion library To check test status

Arrange/Act/Assert A way to write tests

Some books about TDD (and more)
Look for them on http:/www.biblio.units.it/

Rl

-3 Technical
TEST-DRIVEN *.08 Practices

DEVELOPMENT ‘Programming

%lained

KeNT BECK EMBRACE CHANGE

KENT BECK
with CYNTHIA ANDRES
Foreword by Erich Gamma

Test Driven Development Agile Technical Practices Distilled Extreme Programming
by Example by Kent Beck by Pedro Moreira Santos, Marco Explained by Kent Beck
Consolaro, Alessandro Di Gioia

http://www.biblio.units.it/

Code Kata

A system of coding practice incorporating techniques and
notions that have been cultivated and polished for decades.

Dave Nicolette

= The purpose is to practice and internalize programming techniques

= (Some are) Designed to reflect programming problems that have
particular shapes

https://neopragma.com/2020/04/code-katas/

How to choose the first test?

1.Look at the problem you will work on and list the behaviors
you will need to solve it.

2.List the tests which, when passed, will demonstrate the
presence of code you are confident will implement the
desired behaviors.

3.Choose the first test to write.

Usually a nano-test.

Simple, short, essential.

Degenerate but useful example.

Don’t underestimate the implicit complexity.

Good tests

Describe

Tests shou
that descri
feature or

d have names
ne a business

nehavior.

Avoid

Technical names and leaking
Implementation details.

Communicate

Tests should clearly
express required
functionalities to the
reader.

Ways to move forward

Fake it Obvious implementation Triangulation

Just return the exact When you are sure of the code Write a new and more

value you need. you need to write, write it, and specific test that forces
see the test go green! the code to be more

Something that works is generic.

better than something

that doesn’t work!

How to choose the next test?

Every test is a question we can ask to the system, a chance to
learn something about: the domain, the code, the design.

= Use your test list.
= Look for the simple thing that could possibly break.
= The choice is heavily influenced by previous tests.

Refactor to remove duplication

Types of duplication Wait Rule of Three

Code, data, knowledge. Avoid removing duplication Extract duplication only
too soon, as this may lead you when you see it for the
to extract the wrong third time.

abstractions.

Duplication of knowledge

public class Cylinder {

private final double radius;
private final double height;

public Cylinder (double radius, double height) {
this.radius = radius;
this.height = height;

}

public double volume() {
return Math.PI * Math.pow(radius, 2) * height;

}

public double surface() {
return 2 * Math.PI * Math.pow(radius, 2) + 2 * Math.PI * radius * height;

}

Duplication of knowledge

public class Cylinder {

private final double radius;
private final double height;

public Cylinder (double radius, double height) {
this.radius = radius;
this.height = height;

}

public double volume() {
returniMath.PI * Math.pow(radius, 2) * height;

}

public double surface() {
return 2 * Math.PI * Math.pow(radius, 2) + 2 * Math.PI * radius * height;

}

Duplication of knowledge

Extract method.

public class Cylinder {

private final double radius;
private final double height;

public Cylinder (double radius, double height) {
this.radius = radius;
this.height = height;

}

public double volume() {
return baseSurface() * height;

}

public double surface() {
return 2 * baseSurface() + 2 * Math.PI * radius * height;

}

private double baseSurface() {
return Math.PI * Math.pow(radius, 2);

}

Duplication of knowledge

Extract method.

public class Cylinder {

private final double radius;
private final double height;

public Cylinder (double radius, double height) {
this.radius = radius;
this.height = height;

}

public double volume() {
return baseSurface() * height;

}

public double surface() {
return 2 * baseSurface() + 2 * Math.PI * radius * height;

}

private double baseSurface() {
return Math.PI * Math.pow(radius, 2);

}

Duplication of hard coded data

@Test

public void productNotFound() throws Exception {
Display display = new Display();
Sale sale = new Sale(display);

sale.onBarcode("99999");

assertEquals("Product not found for 99999", display.getText());

public class Sale {
private Display display;

public Sale(Display display) {
this.display = display;
}

public void onBarcode(String barcode) {

display.setText("Product not found for 99999");
}

Duplication of hard coded data

@Test

public void productNotFound() throws Exception {
Display display = new Display();
Sale sale = new Sale(display);

sale.onBarcode("99999");

assertEquals("Product not found for 99999", display.getText());

public class Sale {
private Display display;

public Sale(Display display) {
this.display = display;
}

public void onBarcode(String barcode) {

display.setText("Product not found fori99999");
}

Duplication of hard coded data

Replace literal value with variable.

@Test

public void productNotFound() throws Exception {
Display display = new Display();
Sale sale = new Sale(display);

sale.onBarcode("99999");

assertEquals("Product not found for 99999", display.getText());

public class Sale {
private Display display;

public Sale(Display display) {
this.display = display;
}

public void onBarcode(String barcode) {
display.setText("Product not found for " +
barcode) ;

Duplication of hard coded data

Replace literal value with variable.

@Test

public void productNotFound() throws Exception {
Display display = new Display();
Sale sale = new Sale(display);

sale.onBarcode("99999");

assertEquals("Product not found for 99999", display.getText());

public class Sale {
private Display display;

public Sale(Display display) {
this.display = display;
}

public void onBarcode(String barcode) {
display.setText("Product not found for " +
barcode) ;

Tests in TDD

Should be... Beware of

|solated and composable Databases

Fast and automated Network communications

Behavioral and structure-insensitive :
File system

Specific and deterministic ,
Other shared fixtures
Inspiring and predictive

Configurations
Writable and readable

Examples of “not-so-good” tests

//Test metodo canBePlaced

OTest

void canBePlacedTest(){
Piece p= PieceSet.getPossibleSet()[1];
Board tabella= new Board();
assertTrue(tabella.canBePlaced(p, new Double[]{2.0,2.0})); //can be placed case
tabella.getGameBoard()[2][3].setColor(Color.yellow);
assertFalse(tabella.canBePlaced(p, new Double[]1{2.0,2.0})); //occupied tile case
assertFalse(tabella.canBePlaced(p, new Double[]1{3.0,9.0})); //out of gameboard case

//Test metodi place e canBePlaced

@Test

void placeTest(){
Piece p=PieceSet.getPossibleSet()[1];
Board tabella=new Board();
assertTrue(tabella.canBePlaced(p, new Double[]{2.0,2.0})); //can be placed case
tabella.place(p, new Double[]{2.0, 1.90});
assertFalse(tabella.canBePlaced(p, new Double[]{2.9,0.0})); //verifico che lo stesso pezzo non possa pil essere posizionato
assertFalse(tabella.canBePlaced(p, new Double[]{2.0,1.0})); // negli spazi gia occupati
assertFalse(tabella.canBePlaced(p, new Double[]{2.9,2.0}));
assertTrue(tabella.canBePlaced(p, new Double[]{2.0,3.0}));

Examples of “not-so-good” tests

//Test metodo addPoints
@Test
void testAddingPoint()
{
if (!GraphicsEnvironment.isHeadless()){
Game game = Game.getInstance();
int initialScore = game.getScore().points;
game.addPoints(10);

assertEquals(10, game.getScore().points — initialScore);

assertTrue(true);

//Test metodo addPoints
OTest
void testPointsAddedByPiece()
{
if (!GraphicsEnvironment.isHeadless()) {
Game game = Game.getInstance();
int initialScore = game.getScore().points;
Piece p = PieceSet.getPossibleSet()[2];
game.addPoints(p.getSize());

assertEquals(3, game.getScore().points - initialScore); // Punti primo test + punti secondo

assertTrue(true);

Tests and Java exceptions

How to check that an exception is thrown?

assertThrows

e Available in JUnit 5

e Returns the exception

e Enables fine-grained
control

expected attribute

e Available in JUnit 4
¢ Just checks that an
exception is thrown

ExpectedException

e Available in JUnit 4
e To also check the
exception message

Should you always practice
Test Driven Development?

To get value from a tool, it’s
necessary to:

TDD is a tool

1. Choose the right tool for the job.
2. Use the tool properly.

Dave Nicolette, “Against TDD”, https:/neopragma.com/2019/09/against-tdd/ q‘&;/

Test Pyramid

$$%

Copyright © 2012 Martin Fowler

