Compufaﬂonal Physics
week V

October 21, 2024

Maria Peressi
Universita degli Studi di Trieste - Dipartimento di Fisica
Sede di Miramare (Strada Costiera 11, Trieste)
e-mail: peressi@units.it
tel.: +39 040 2240242

mailto:peressi@units.it

Part | -
Random numbers
with non uniform

distributions

M. Peressi - UniTS - Laurea Magistrale in Physics
Laboratory of Computational Physics - week V

2

last lecture:

generation of real (pseudo)random numbers
with uniform distribution in [0;]

pu(x)$

1

Pu()

{

1 0<az<]1
0 otherwise

Random numbers
with non uniform distributions:

p(z) /’“\
/0

/o

How can we generate random numbers with a given
distribution p(x) ?

Random numbers
with non uniform distributions:

p(z) /’“\
/0

/o

|) inverse transformation method (general)

2) rejection method (even more general)

3) some “ad hoc” methods: e.g. for the gaussian distribution:
the Box-Muller algorithm, the central limit theorem

5

|) inverse transformation method (general)

Problem: Generate sample of a random variable
(or variate) X with a given distribution p.

Solution: 2-step process

e Generate a random variate uniformly distributed in [0, 1] .. also
called a random number

e Use an appropriate transformation to convert the random number
to a random variate of the correct distribution

|) inverse transformation method - the idea

p(x): desired
distribution,-
function"

P(x):
cumulative
distribution
function of p(x)

|) inverse transformation method - the idea

P(x) intuitive rationale:a uniform (here regular!) sampling in y

A
1 P(x):
cumulative
y distribution

function of p(x)

|) inverse transformation method - the idea

P(x) intuitive rationale:a uniform (here regular!) sampling in y

1

A

gives a sampling in x with density proportional to p(x)
P(x):
cumulative

distribution
function of p(x)

|) inverse transformation method - algorithm

—— cumulative distribution function P(x)

/_J:O p(x)dx =1

1
LY

|
I
1
I
|
I
;7
I
I
I

T

_l - * 1
a x=P (v) b

Let p(z) be a desired distribution, and y = P(x) = / p(z')dz’ the corresponding cumulative distribution.
— o0
Assume that P~1(y) is known.
e Sample y from an equidistribution in the interval (0,1). (i.e., use py(y))

e Compute z = P~ 1(y).

Ghe variable x then has the desired probability density p(x). y
y = P(z) = dy = dP(z) = py(y)dy = dP(x) (since p,(y) =1for 0 <y <1)
But: dP(z) = p(x)dz, therefl(gre p(x)dx = py(y)dy

|) inverse transformation method - examples

1
—a CLSCESb
I) p(z) = { 0 otherwise
0 r<a
v= P [kl =2 <<y
1 x>0
(b—a)+a
0 z <0
2) p(x)_{ae—ax .CE>0

0 xr <0
y= P@)={| @ "2,

r=——In(1—y) or (same distribution!)

a
I

o{x)

P(_x) —

o3

3 .- 5 a 7

r=——1Iny

a

|) inverse transformation method - examples

1 o{x)
— a<zxz<b : o
) o) ={ 7 2= '
0 otherwise
0 r<a :
v= P [kl =2 <<y
1 x>b : /
(b B a) y A
O £T < O 0.0 \ /II o
4 by — _
2) p() {a/e_a’x €T Z O n«\\x/
_ _J0 z <0 "I\
of =
1
r=——In(1—y) or (same distribution!) = ——1Iny

a a
12

Codes available on moodle

expdev.f90

subroutine expdev(x)

REAL, intent (out) :: x

REAL ::r

do
call random number(r)
if(r > 0) exit

end do

x = -log(r)

END subroutine expdev

2) rejection method (general)

Let [a,b] be the allowed range of values of the variate z, and p,, the maximum of the distribution p(z).

1. Sample a pair of equidistributed random numbers, = € [a,b] and y € [0, p,,]-

2. Ifly < p(z), accept x as the next random number, otherwise return to step 1.

- 0 """ Due toVon Newmann (1947).
| re:lect \ - L Applicable to almost all distributions.
oy L p(x) .+ Can be inefficient if the area of the
e S A . rectangle [a,b] ® [0,pm] is large compared
b (xR eeeP . to the area below the curve p(x)
| - [no exercises on that]
a X b

3) gaussian distribution

How to produce numbers with gaussian distribution?

- Inverse transformation method: impossible
The cumulative distribution function P(x) cannot be analytically calculated!

- Rejection method: inefficient

15

3) gaussian distribution - Box-Muller technique

1 1 2 5
_ —x°/(207)
r) = — e
p() O\ 27

Hint: consider the distribution in 2D instead of ID (here 0 =1):

p(x)p(y)dady = (2m)~F e~ = H9)/2 dudy

3) gaussian distribution - Box-Muller technique

1 1 22 /(952
p(z) = = —= e~/
O 2T

Hint: consider the distribution in 2D instead of ID (here 0 =1):

p(x)p(y)dady = (2m)~F e~ = H9)/2 dudy

Use polar coordinates: 7" = \/$2 + y? , 0 = arctan (y/-ﬁl?), def.:. p = 7“2/2

|/

3) gaussian distribution - Box-Muller technique

1 1 22 /(952
p(z) = = —= e~/
O 2T

Hint: consider the distribution in 2D instead of ID (here 0 =1):

p(x)p(y)dady = (2m)~F e~ = H9)/2 dudy

Use polar coordinates: 7" = \/$2 + y? , 0 = arctan (y/x), def.:. p = 7“2/2
—> dxdy =r dr df = dp db

and therefore:

p(x)p(y) dz dy = p(p,0) dp db = (27)~" e~* dp df

3) gaussian distribution - Box-Muller technique

p(x) = %

6—:132/(202)
27T

Hint: consider the distribution in 2D instead of ID (here 0 =1):

p(x)p(y)dady = (2m)~F e~ = H9)/2 dudy

Use polar coordinates: 7" = \/$2 + y? , 0 = arctan (y/:c), def.:. p = 7“2/2
—> dxdy =r dr df = dp db

and therefore:

p(x)p(y) dz dy = p(p,0) dp db = (27)~" do

r =rcosfh = +/2pcosb
y {@exponentlally distributed —) y=rsinf = /2psiné
6 uniformly distributed in|0, 27] z,y have gaussian distribution
with () = (y) =0 and o =1

3) gaussian distribution - Box-Muller recipe #|

x =rcosf = ./2pcosf

£ 1P exponentially distributed —) y=rsinl = +/2psinf
¢ uniformly distributed in|0, 27] x,y have gaussian distribution
with (r) = (y) =0 and o =1

Recipe #1| (BASIC FORM):

{X,Y uni f. distrib. in [0, 1] { 7= rcosh = V=3I X cos(2rY)

p = —In(X) distributed with p(p) = e "3, . _
0 =2rY distributed with (2m) " 'p, y=rsinf = v—2InX Sln(27TY)

NOTE:
X,y are normally distributed and statistically independent. Gaussian variates with given variances Oy,

Oy are obtained by multiplying x and y by 0x and 0oy respectively
20

3) gaussian distribution - Box-Muller recipe #2

x =1rcosf = +/2pcosb

£ 1P exponentially distributed —) y=rsinl = +/2psinf
¢ uniformly distributed in|0, 27] x,y have gaussian distribution

with (r) = (y) =0 and o =1

Recipe #2 (POLAR FORM) (implemented in boxmuller.£f90) :

(X, Y uniformly distributed in [—1,1]; (r =+/—21n R2 {
take (X,Y") only within the unitary circle; __ R
= R’=X?4+Y?is X Y
. uniformly distributed in [0,1] 9 y=+v—2InR R
/ N since: " "
v 27 \ .S
" \ COSH—R, SmH—R
Advantages: avoids the calculations
1 of sin and cos functions

Codes available on moodle

boxmuller.f90

22

A look at the boxmuller.f90 code

SUBROUTINE gasdev(rnd)
IMPLICIT NONE
REAL, INTENT(OUT) :: rnd
REAL ::r2,x,y
REAL, SAVE :: g
LOGICAL, SAVE :: gaus_stored=false.
it (gaus_stored) then
rnd=g
gaus_stored=.false.
else
do
call random_number(x)
call random_number(y) L. .
x=2.4%-. 2 examples of optimization!
y=2.%y-1.
r2=x**2+y**2
if (r2>0..and.r2 < |.) exit
end do X
r2=sqrt(-2.*log(r2)/r2) z=v—-2InR? = = X\/—2In R?/R?
rnd=x*r2 It
g=y*r2
gaus_stored=.true.

end If
END SUBROUTINE gasdev

23

A look at the gasdev.c code

#include <math.h>

float gasdev(long *xidum)

{

float ranl(long *idum);
static int iset=0; Every two calls

static double gset; uses the random number

double fac,rsq,vl,v2; : .
already generated in the previous call
if (iset == 0) {
do { .. .
vi=2.0xranl(idum)-1.0; 2 examples of optimization!
v2=2.0%ranl(idum)-1.0;
rsq=v1lxv1l+v2*v2;
} while (rsq >= 1.0 || rsq == 0.0);

fac=sqrt(-2.0xlog(rsq)/rsq);—>» since: x=+v—-2InR2 E:X\/—ﬂnRZ/RZ
gset=vlxfac; R

iset=1; (thus avoiding the calculation of
} el;ﬁtﬁ”‘ Lloat) y2rTac)) another V to calculate R separately)
iset=0;

return (float)gset:;

24

3) gaussian distribution:
the central limit theorem

Consider a continuous random variable x with probability density f(x).
characterized by (z"") :/xmf(x) dr and 0,° = (x%) — (z)?.

Consider ¥ S.t. 1y, corresponding to the average of n values of z:

1

Suppose that we make many measurements of y. The variable y 1s
distributed according to a probability density P(y) # f(z)

quantities of interest are the mean (y), the variance o,° = (y*) — (y)?, and P(y) itself.

25

3) gaussian distribution:
the central limit theorem

The random variable:

1
Yy = yn25($1+$2+---+xn)

1s distributed according to:
P(y) : gaussian distribution

with: <y>=<x> O‘y%()},}/\/ﬁ
v

(Therefore, the sample mean of a random sample 1s better than a single observation)

provided (x) and (z?) exist (finite) and n is large!

26

3) gaussian distribution:
the central limit theorem

Analogously, 1s instead of considering the new random variable
as the average we consider just the sum:

y=X/+ X2+ ...+ Xp
it also has a gaussian distribution but with:

<y>=n<x> and o0, = Vn o,

provided (x) and (z?) exist (finite) and n is large!

27

0.08

0.06 -

0.04

0.02-

3) gaussian distribution:
the central limit theorem

Note: large enough n needed to obtain the gaussian distribution.

Suppose that {(x) 1s uniform: e.g., playing dice:

n=2 not enough

mu=7.034100, sigma®=5.904537
T T T T T

1 2 3 4 5 6 7 8 9 10 1 12

28

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

n=100 OK

media=35.132200, varianza=29.248723

50

!
60

3) gaussian distribution:
the central limit theorem

The previous example was for UNIFORM distribution (dice)
but the central limit theorem work also with random deviates x
with NON UNIFORM distribution; e.g. with exponential distribution:

e *, itax>0

M@ =30ir 2<0.

29

L @

2?
the central limit theorem

...but sometimes it doesn’t work: . mmoyas
06 b |\ xy=0y=20
Cauchy-Lorentz Pl m2y=l
probability density function o I‘ "
1 04 |)
f(x;20,7) = 7
Ty [l | (Zi‘.'—:i‘.'”) } .
4 2 { '
1 i] ! RN
T 2 | A2) = N
i (T o 'T'[]') -7 o Be—x N ———
-3 -4 3 2 -1 J 1 2 3
U;“: L} ' ' ' L} '
blavk=Uzy oy
The Cauchy-Lorentz distribution is an example :} i\ I
) I
of “fat-tailed” distribution. - £
Fat-tailed distributions decay to infinity slower . o
. B | LI
than exponentially. i fron
) ; o1z} X X
For instance, they can decay with a power law: I
fix) ~ x-079 asx — +o0
In some cases the expression "fat-tailed" nnr I N
. ST e M
indicates distributions where 0 < a < 2. e T B S F—

30

(I &

2?
the central Iimitwtheorem

...but sometimes it doesn’t work:

Cauchy-Lorentz Fl ey
probability density function s I 'I ‘.|
1 A l'l \

I 1 le.
T (x—)% + 72
Cumulative 1 T — T 1
distribution : — ﬂfﬂtﬂﬂ(R | 9
{

31

the central |

...but sometimes it doesn’t work:

Cauchy-Lorentz

probability density function

L @

flzyzo,) =

1
-

(— x0)* 4 ’“.f'E]

"=

The mean: f rf(x)dx

— o

which can be rewritten as:
(here for x, =0) Ji)

|mit.theorem

'-V - -
ew

:“I - e

0=

T

2 3y e
fnuan J
vess
-l g
L I L]

— -
bl Al
ST

—

—

Mean and v:griéincle are

rf(x)dr —

is not defined since both terms are infinite; only the Cauchy principal value is defined:

lim rf(x)dr

A—3C —a

not de
/'_] Jalf(z) do

fined

Without a defined mean, it is impossible to define the variance (but the second moment is defined and
it is infinite). Some results in probability theory about expected values, such as the law of large numbers,

do not work in such cases.

Also, the mean of a set of random variates drawn from a Cauchy distribution is no better than a single
observation, because the chance of including extreme values is high.

Student's 7-distribution 0.40
(piu generale) 0.35
0.30
0.25
53
5 0.20
0.15
0.10
0.05
r(%) e E
. 2 v : 0.00
](t,,]= p— .,-'(]"‘_)
v7mI‘ (3) \ n, -
Notiamo che il Imite di questa successione di funzoni pern — o & 2\ 2 1
T n+1 e+l lim (1 + ;) ~ —(n+1)
1 (T) Loz 1 2 e
im f(ty) = — lim ——— lim (1+_ IR
e e /Al () v v/ v2m Varianza _ ",
2 n—2
Sapendo che | primo limite ha ceame risultato L/_ eilsecondoterdeae * . infinita altrimenti
V2

In pratica, prendendo una popolazione di numerosta N molto grande, la variabile aleatoria t tende ad essere una normele standard.

33

Curtosi (dal greco kurtos, gobba) in statistica, termine che indica quanto una distribuzione di dati si allontani da una curva normale
standardizzata (cio¢ se €, rispetto a questa, per la quale I’indice ¢ 0, pil “schiacciata” o meno “schiacciata”). L’indice di curtosi per una
distribuzione discreta X di n elementi ¢ dato da:

(xi o !-1)4

Curt(x)=- - ==
no =

formula

Il

CURTQOSI

34

... a short digression ...

35

Statistical Properties of Price Returns

Simulated Returns (Geometric Brownian Motion)
0.010 | | | | | | | | | | | | | |

0.005

price returns

-0.010}
0 2000 4000 6000 8000 10000 12000
time (min)

Real Returns (Financial Time-Series)

0.010¢

0.005

0.000

price returns

-0.005¢

-0.010¢
0 2000 4000 6000 8000 10000 12000
time (min)

Cont, Empirical properties of asset returns, stylized facts and statistical issues, 2001

MARIO FILIASI - UNIVERSITY OF TRIESTE PhD COURSE - FINAL EXAM - MAR 31, 2015

Statistical Properties of Price Returns

Simulated Returns (Geometric Brownian Motion)
0.010 | | | | | | | | | | | | | |

0.005

price returns
=

—0.005}
-0.010F . : : ; :
0 2000 4000 6000 8000 10000 12000
time (min)
/\ Real Returns (Financial Tyng-Series)
0.010} large-scale events]

2 o005
=3
= 0.000 Ll Tl
T
2 0005

0,010}

0 2000 oo _/ 6000 8000 10000 12,000
time (min)

1%t issue

Price returns are not normal

Cont, Empirical properties of asset returns, stylized facts and statistical issues, 2001

MARIO FILIASI - UNIVERSITY OF TRIESTE PhD COURSE - FINAL EXAM - MAR 31, 2015

Empirical Distribution of Price Returns

Empirical Distribution of Returns (superposition of all stocks)
different time-scales — from 1 minute to 2 hours

we————————— ;
i normal distribution s 1

: Student's t-distribution .
1E | (4 degrees) .

0.01

0.001 g

probability density function

104k

- 10 -5 0

price returns / stock volatility

Filiasi, PhD Thesis
Cont, Empirical properties of asset returns, stylized facts and statistical issues, 2001

MARIO FILIASI - UNIVERSITY OF TRIESTE PhD COURSE - FINAL EXAM - MAR 31, 2015

Empirical Distribution of Price Returns

empirical distribution of price returns

I{]E 3 L I . T x T T T T T T T T T

i

ot Typical
[Fluctuations /

0.01

0.001 F

probability density function

. Large Deviations Large Deviation%'
~ (risky events) (risky events)

t
I'[]"ql——' : ' 7 7 7 : : ; x ; x : ; ; g
—10 o] 0 n 10

price returns / stock volatility

Fihasi, PhD Thesis
Cont, Empirical properties of asset returns, stylized facts and statistical issues, 2001

MARIO FILIASI - UNIVERSITY OF TRIESTE PhD COURSE - FINAL EXAM - MAR 31, 2015

Part Il -
Using random numbers
to simulate
random processes

40

Random processes:
radioactive decay

N(t) Atoms present at time t

A Probability for each atom to decay in At
AN (t) Atoms which decay between t and ¢+ At

AN(t) = —AN(t)At

we use the probability A of decay of each atom
to simulate the behavior of the number of atoms left;
we should be able to obtain (on average):

N(t) = N(t =0)e

41

Radioactive decay:
numerical simulation

A scheme for the
simulation

1. Assign a value to the decay constant A <1 (the
probability for each nucleus to decay in a given
interval of time At)

A establishes the time scale; one iteration in the “do loop"”

corresponds to one time step At

2. Start with Nleft = Nstart= total number of
nuclei at time ¢t =20

3. Basic algorithm: for each nucleus left (not yet
decayed):
e Generates a random number 0 < x <1

e if x < A, the nucleus decays and Nleft =
Nleft - 1, otherwise it remains and Nleft is
unchanged.

4. Repeat for each nucleus

5. Repeat the cycle for the next time step

A DO

A call random_number(r)

IF @ S=lambda) THEN
nleft = nleft -1

ENDIF

vEND DO

WRITE (unit=7,fmt=*) t, nleft
if (nleft == 0)dexit
t=t+ |

VYV END DO

! loop on time

DO i=I,nleft ! loop on all the nuclei left

' BASIC ALGORITHM
! update the nuclei left (*)

(*) Notice that the upper bound of the inner loop (nleft) is changed within the execution of the
loop; but with most compilers, in the execution the loop goes on up to the initial value of the
upper bound (nleft); this ensures that the implementation of the algorithm is correct. The

program checkloop.fo0 is a test for the behavior of the loop. Look also at decay_checkloop.f90.
If nleft would be changed (decreased) during the execution, the effect would be an overestimate

of the decay rate. CHECK with your compiler!
42

Programs:

decay.f90
decay checkloop.f90

checkloop.f90

[name:] DO
exit [name]

or [name:] DO
END DO [name]

(is useful in case of nested loops for explicitly indicating which loop we exit from)

Always set a condition to exit from a loop! E.g.:
DO
if (condition)exit
END DO
or:
DO WHILE (.not. condition)

END DO
NOTE: first is better (“if () ..exit” can be placed everywhere in the loop,
whereas DO WHILE must execute the loop up to the end)

44

Radioactive decay:
results of numerical simulation

NG |
results of decay simulation
A (N vs t) with N=1000
) N(t) ~ No exp(- a t)
. . . ‘ t
o (N(t):) ' ' ' ' T decaydatu1:(og62) |
g 1 | semilog plot (log(N) vs t)
| | =>log(N(t)) = log No-a't
M%% | =>slope is -a
“;mwmmmm _t

45

Radioactive decay:
results of numerical simulation

f.0

Semilog plots of the results of

simulations for the same decay

rate and different initial

number of atoms:

almost a straight line, but with
important deviations

Yoo moo w0 mwo =0 o w0 (Stochastic) for small N

time

4.0

2.0

log (M)

2.4

1.0

Stochastic simulations give reliable results when obtained:
- on average and for large numbers
- fine discretisation of time evolution

(in the exercise: change A; compare the value obtained from the simulation with the one inserted;
does the “quality” of the results change with A?)

46

Other random processes:
order and disorder

A box is divided into two parts communicating through a

small hole. One particle randomly can pass through the hole
per unit time, from the left to the right or viceversa.

N,..(t): number of particles present at time t in the left side
Given N,(0), what is N .(t) ?

(more on that in a future Lecture)
47

Other random processes:

random walks

(see next lecture)

miscellanea

list of EXERCISES;

more on fortran90,
fit, gnuplot...

LIST OF EXERCISES V week

Random numbers with non uniform distributions

|) exponential distribution generated with Inverse Transformation Method

2) another distribution generated with ad-hoc algorithms (compare!), including Inverse
Transformation Method

3) gaussian distribution generated with Box-Muller algorithm

4) gaussian distribution generated with the central limit theorem

5) other random distributions (different algorithms, subroutines from the web...). [optional]

To do:implementation of the algorithms (or understanding...), histogram, fit...

50

Making histograms: use int() or similar intrinsic functions?

e.g. Ex. 2:

Suppose you want to generate a random variate x in (-1,1) with distri-

bution .
_ 2\—1/2
p(z) = =(1—a*)~"2

7

' ' (my) ol)
€T = Cos(T loel 1 | —
— x = sin(27y) forl2 —s= y =Px) =J —(1=x*)7" dx

14 | x =sinm(2y—1) ‘forl.3 ‘ -1 7

n_rafix) 1) 1 1

= — arcsin(x) |, = — arcsin(x) + —
- —arcsin(o) 1, = —aresin(x) +
1
and invert...
£ o8)
c)
ve b1 71 - Here:
y [S e different histograms, from
| = e distributions generated
0.2 with different algorithms
i ' ‘ o | | ‘ | | ‘
1 05 0 05 ! => how to do these histograms?

51

Making histograms: use int() or similar intrinsic functions?

AINT(A[,KIND])

- Real elemental function

- Returns A truncated to a whole number. AINT(A) is the largest integer which is smaller
than |A|, with the sign of A. For example, AINT(3.7) is 3.0, and AINT(-3.7) is -3.0.

- Argument A is Real; optional argument KIND is Integer

ANINT(A[,KIND])

- Real elemental function

- Returns the nearest whole number to A. For example, ANINT(3.7) is 4.0, and AINT(-3.7) is
-4.0.

- Argument A is Real; optional argument KIND is Integer

FLOOR(A,KIND)

- Integer elemental function

- Returns the largest integer < A. For example, FLOOR(3.7) is 3, and FLOOR(-3.7) is -4.
- Argument A is Real of any kind; optional argument KIND is Integer

- Argument KIND is only available in Fortran 95

INT(A[,KIND])

- Integer elemental function

- This function truncates A and converts it into an integer. If A is complex, only the real
part is converted. If A is integer, this function changes the kind only.

- A is numeric; optional argument KIND is Integer.

NINT(A[,KIND])
- Integer elemental function
- Returns the nearest integer to the real value A.

- A is Real
52

fortran98 intrisinc functions

' ! ! !

int{;:) or ai'nt(x} —
nint{x) or anint{x) =
floor{x)}

53

Example: fit using gnuplot - |

Suppose you want to fit your data (say, ‘data.dat’) with an exponential function.
You have to give: 1) the functional form ; 2) the name of the parameters

gnuplot> f(x) = a * exp (-x*b)

Then we have to recall these informations together with the data we want to fit:
it can be convenient to inizialize the parameters:

gnuplot> a=0. ; b=1. (for example)

gnuplot> fit f(x) ‘data.dat’ via a,b

On the screen you will have something like:

Final set of parameters Asymptotic Standard Error

a=1+/-8.276e-08 (8.276e-06%)
b =10 +/- 1.23e-06 (1.23e-05%)

correlation matrix of the fit parameters:
ab

a 1.000
b 0.671 1.000

It’s convenient to plot together the original data and the fit:

gnuplot> plot f(x), ‘data.dat’ 54

Example: fit using gnuplot - I

If you prefer to use linear regression, use logarithmic data in the data file, or directly
fit the log of the original data using gnuplot:

gnuplot> f(x) = a + b*x

Then we have to recall these informations together with the data we want to fit
(in the following example: x=log of the first column; y=log of the second column):

gnuplot> fit f(x) "data.dat’ u (log($1)):(log($2)) via a,b

Final set of parameters Asymptotic Standard Error

(...gnuplot will work for you....)

Also in this case it will be convenient to plot together the original data and the fit:
gnuplot> plot f(x), ‘data.dat’ u (log($1)):(log($2))
In case of needs, we can limit the set of data to fit in a certain range [x_min:x_max]:

gnuplot> fit [x_min:x_max] f(x) 'data.dat’ u ... via ...

55

LOGARITHM

log returns the natural logarithm

logl0 returns the common (base |0) logarithm

(NOTE: also in gnuplot, log and log10 are defined with the
same meaning)

INTEGER PART
nint(x) and the others, similar but different (see Lect. Il) =>
ex. Il requires histogram for negative and positive data values

possible to label the elements from a negative number or O:
dimension array(-n:m) (e.g, useful for making histograms)
[default in Fortran: n=I; in c and c++:n=0]

56

Array dimension:

default : dimension array([|:]n)
but also using other dimensions e.g.: dimension array(-n:m)

Important to check dimensions of the array when compiling or during
execution !

If not done, it is difficult to interpret error messages (typically:
“segmentation fault”), or even possible to obtain unpredictable results!

Default in gfortran:
boundaries not checked; use compiler option:

gfortran -fcheck=bounds myprogram.f90
(obsolete but still active alternative: -fbounds-check)

Typing (Unix line command):

man gfortran

you can scroll the manual pages and see the possible compilation options
57

Some Fortran compiler options

-fcheck=bounds enables checking for array subscript expressions

-fbacktrace generate extra information to provide source file traceback at run time
Specify that, when a runtime error is encountered or a deadly signal is
emitted (segmentation fault, illegal instruction, bus error or
floating-point exception), the Fortran runtime library should output a
backtrace of the error. This option only has influence for compilation
of the Fortran main program.

-Wall Enables commonly used warning options

58

Structure of a main program with one function or subr.

program name_program (see: expdev.f90 or boxmuller.f90)
implicit none ()

<declaration of variables>

<executable statements>

contains

4 . .
subroutine ... (or function) A
end subroutine)

end program

(*) General suggestion for variable declaration:
Use “implicit none” + explicit declaration of variables

See also the use of module

59

Other programs:

(optional, but useful!)

random.f90 (is a module - generation of rnd
with different distributions)
t _random.f90 (main test program)

to compile:

$gfortran random.f90 t_random.f90
(the module first!)

or in more than one step:
Compile the module with the option -c: this produces .mod and .o (the objects):
gfortran -c random.f90

Compile the main program:

gfortran -c t_random.f90

Finally you link all the files *.0 and produce the executable:

gfortran -o a.out random.o t_random.o ‘0

