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last lecture:

generation of real (pseudo)random numbers
with uniform distribution in [0;1[
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Random numbers  
with non uniform distributions: 

1) inverse transformation method (general) 
How can we generate random numbers with a given 
distribution p(x) ? for the gaussian distribution; the 
central limit theorem
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Random numbers  
with non uniform distributions: 

1) inverse transformation method (general) 
2) rejection method (even more general) 
3) some “ad hoc” methods: e.g. for the gaussian distribution:     
the Box-Muller algorithm, the central limit theorem

@⇢

@t
= r

pu(x) =
n
1 0  x < 1
0 otherwise

p(x)

1

@⇢

@t
= r

pu(x) =
n
1 0  x < 1
0 otherwise

1

5



1) inverse transformation method (general)

Inverse transform method 3 – 2

Generating random numbers

Problem: Generate sample of a random variable X with a given
density f . (The sample is called a random variate)

What does this mean ?

Answer: Develop an algorithm such that if one used it repeatedly
(and independently) to generate a sequence of samples
X1, X2, . . . , Xn then as n becomes large, the proportion of samples
that fall in any interval [a, b] is close to P(X ∈ [a, b]), i.e.

#{Xi ∈ [a, b]}
n

≈ P(X ∈ [a, b])

Solution: 2-step process

• Generate a random variate uniformly distributed in [0, 1] .. also
called a random number

• Use an appropriate transformation to convert the random number
to a random variate of the correct distribution

why is this approach good ?

Answer: Focus on generating samples from ONE distribution only.

Problem: Generate sample of a random variable  
(or variate)  x  with a given distribution   p . 
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intuitive rationale: also a regular uniform sampling in y
gives a sampling in x with density proportional to p(x)

cumulative distribution 
function P(x)

3.2.2 Transformation Method http://homepage.univie.ac.at/Franz.Vesely/cp0102/dx/node40.html

1 of 1 18-10-2005 0:14

   
Next: 3.2.3 Generalized Transformation Method: Up: 3.2 Other Distributions Previous: 3.2.1 Transformation of probability 

3.2.2 Transformation Method

Given a probability density : 

Find a bijective mapping  such that the distribution of  is : 

$\displaystyle 
p(x)$

 

It is easy to see that 

 

fulfills this condition, with . 

EXAMPLE: Let 

$\displaystyle 
p(x)$

 

Then , with the inverse . Therefore: 

Sample  equidistributed in .

Compute .

Geometrical interpretation: 

 is sampled from an equidistribution  and . 

 The regions where  is steeper (i.e.  is large) are hit more frequently. 

Franz J. Vesely Oct 2005
See also: "Computational Physics - An Introduction," Kluwer-Plenum 2001

P(x): 
cumulative 
distribution 

function of p(x)
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1) inverse transformation method - the idea
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distribution 

function
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1) inverse transformation method - algorithm
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∫ +∞

−∞

p(x)dx = 1

y = P (x) =⇒ dy = dP (x) =⇒ pu(y)dy = dP (x) (since pu(y) = 1 for 0 ≤ y ≤ 1)

cumulative distribution function P(x)

But : dP (x) = p(x)dx, therefore p(x)dx = pu(y)dy

@⇢

@t
= r

pu(x) =
n
1 0  x < 1
0 otherwise

Let p(x) be a desired distribution, and y = P (x) =

Z x

�1
p(x0)dx0 the corresponding cumulative distribution.

Assume that P�1(y) is known.

• Sample y from an equidistribution in the interval (0,1). (i.e., use pu(y))

• Compute x = P�1(y).

The variable x then has the desired probability density p(x).

1
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1) inverse transformation method - examples

1)

2)

p(x) =

{

1

b−a
a ≤ x ≤ b

0 otherwise

P (x) =

{

0 x ≤ a
∫ x

a

1

b−a
dx′ = x−a

b−a
a ≤ x ≤ b

1 x > b

P (x) =
{ 0 x ≤ 0

1 − e−ax x ≥ 0

p(x) =
{ 0 x ≤ 0

ae
−ax

x ≥ 0

y =

y =

x = −

1

a
ln(1 − y) or (same distribution!) x = −

1

a
ln y

x = y(b − a) + a
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subroutine expdev(x)
    REAL, intent (out) :: x
    REAL :: r
    do
       call random_number(r)
       if(r > 0) exit
    end do
    x = -log(r)
  END subroutine expdev

r is generated in [0,1[ ;
but r=0 has to be discarded;
if r=0, generate another random number;
if not, exit from the unbounded loop 
and calculate its log

13

expdev.f90

Codes available on moodle 



2) rejection method (general)

Due to Von Newmann (1947).  
Applicable to almost all distributions.
Can be inefficient if the area of the 
rectangle                  is large compared
to the area below the curve p(x)

3.2.4 Rejection Method http://homepage.univie.ac.at/Franz.Vesely/cp0102/dx/node42.html

1 of 2 18-10-2005 0:38

   
Next: 3.2.5 Multivariate Gaussian Distribution Up: 3.2 Other Distributions Previous: 3.2.3 Generalized Transformation Method: 

3.2.4 Rejection Method

A classic: created by John von Neumann, applicable to almost any . 

Here is the original formulation: 

               

And this is how we read it today: 

The method is simple and fast, but it becomes inefficient whenever the area of the rectangle  is large compared to the area below the graph of 

. Otherwise, the ``Improved Rejection Method'' may be applicable:  

@⇢

@t
= r

pu(x) =
n
1 0  x < 1
0 otherwise

Let [a, b] be the allowed range of values of the variate x, and pm the maximum of the distribution p(x).

1. Sample a pair of equidistributed random numbers, x 2 [a, b] and y 2 [0, pm].

2. If y  p(x), accept x as the next random number, otherwise return to step 1.

The variable x then has the desired probability density p(x).

1

p(x)
accept

reject

pm

a bx

(x,y)

(x,y)
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3) gaussian distribution 

@⇢

@t
= r

pu(x) =
n
1 0  x < 1
0 otherwise

p(x)

1

@⇢

@t
= r

pu(x) =
n
1 0  x < 1
0 otherwise

1

How to produce numbers with gaussian distribution?

- Inverse transformation method: impossible
The cumulative distribution function P(x) cannot be analytically calculated!
- Rejection method: inefficient

p(x) =
1

σ

1
√

2π
e
−x2/(2σ2)
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3) gaussian distribution - Box-Muller technique 

p(x) =
1

σ

1
√

2π
e
−x2/(2σ2)

Hint: consider the distribution in 2D instead of 1D  (here  σ =1 ):

p(x)p(y)dxdy = (2π)−1 e−(x2+y2)/2 dxdy
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Hint: consider the distribution in 2D instead of 1D  (here  σ =1 ):

3) gaussian distribution - Box-Muller technique 

r =

√

x2 + y2 θ = arctan (y/x) ρ ≡ r2/2Use polar coordinates:                          ,                             ;  def.:

(x,y)

θ
r

p(x) =
1

σ

1
√

2π
e
−x2/(2σ2)

p(x)p(y)dxdy = (2π)−1 e−(x2+y2)/2 dxdy
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Hint: consider the distribution in 2D instead of 1D  (here  σ =1 ):

3) gaussian distribution - Box-Muller technique 

r =

√

x2 + y2 θ = arctan (y/x) ρ ≡ r2/2

p(x)p(y) dx dy = p(ρ, θ) dρ dθ = (2π)−1 e−ρ dρ dθ

Use polar coordinates:                          ,                             ;  def.:
dxdy = r dr dθ = dρ dθ

and therefore:

p(x) =
1

σ

1
√

2π
e
−x2/(2σ2)

p(x)p(y)dxdy = (2π)−1 e−(x2+y2)/2 dxdy
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3) gaussian distribution - Box-Muller technique 

Hint: consider the distribution in 2D instead of 1D  (here  σ =1 ):

r =

√

x2 + y2 θ = arctan (y/x) ρ ≡ r2/2

p(x)p(y) dx dy = p(ρ, θ) dρ dθ = (2π)−1 e−ρ dρ dθ

Use polar coordinates:                          ,                             ;  def.:

If                                                     
{

ρ exponentially distributed
θ uniformly distributed in[0, 2π]











x = r cos θ =
√

2ρ cos θ
y = r sin θ =

√
2ρ sin θ

x, y have gaussian distribution
with 〈x〉 = 〈y〉 = 0 and σ = 1

dxdy = r dr dθ = dρ dθ
and therefore:

p(x)p(y)dxdy = (2π)−1 e−(x2+y2)/2 dxdy

p(x) =
1

σ

1
√

2π
e
−x2/(2σ2)
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3) gaussian distribution - Box-Muller recipe #1

X, Y ∈ [0, 1[⇒

{

ρ = − ln(X) distributed with p(ρ) = e−ρ

θ = 2πY distributed with (2π)−1pu

{

x = r cos θ =
√

−2 lnX cos(2πY )
y = r sin θ =

√

−2 lnX sin(2πY )

Recipe #1 (BASIC FORM):                                                   

If                                                     
{

ρ exponentially distributed
θ uniformly distributed in[0, 2π]











x = r cos θ =
√

2ρ cos θ
y = r sin θ =

√
2ρ sin θ

x, y have gaussian distribution
with 〈x〉 = 〈y〉 = 0 and σ = 1

X, Y unif. distrib. in [0, 1[

{

NOTE:
x, y are normally distributed and statistically independent. Gaussian variates with given variances σx,  
σy  are obtained by multiplying x and y by σx and  σy respectively 
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3) gaussian distribution - Box-Muller recipe #2

Recipe #2 (POLAR FORM) (implemented in  boxmuller.f90) :                                 

If                                                     
{

ρ exponentially distributed
θ uniformly distributed in[0, 2π]











x = r cos θ =
√

2ρ cos θ
y = r sin θ =

√
2ρ sin θ

x, y have gaussian distribution
with 〈x〉 = 〈y〉 = 0 and σ = 1

X
Y R .

Advantages: avoids the calculations 
of sin and cos functions

@⇢

@t
= r

8
><

>:

X, Y uniformly distributed in [�1,1];
take (X,Y ) only within the unitary circle;
) R2 = X2 + Y 2 is
uniformly distributed in [0,1]

1

@⇢

@t
= r

8
><

>:

X, Y uniformly distributed in [�1,1];
take (X,Y ) only within the unitary circle;
) R2 = X2 + Y 2 is
uniformly distributed in [0,1]

8
>>>>>><

>>>>>>:

x =
p
�2 lnR2

X

R

y =
p
�2 lnR2

Y

R
since:

cos ✓ =
X

R
, sin ✓ =

Y

R

1
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Codes available on moodle 

boxmuller.f90  
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SUBROUTINE gasdev(rnd)
    IMPLICIT NONE
    REAL, INTENT(OUT) :: rnd
    REAL :: r2, x, y
    REAL, SAVE :: g
    LOGICAL, SAVE :: gaus_stored=.false.
    if (gaus_stored) then
       rnd=g
       gaus_stored=.false.
    else
       do
          call random_number(x)
          call random_number(y)
          x=2.*x-1.
          y=2.*y-1.
          r2=x**2+y**2
          if (r2 > 0. .and. r2 < 1.) exit
       end do
       r2=sqrt(-2.*log(r2)/r2)
       rnd=x*r2
       g=y*r2
       gaus_stored=.true.
    end if
END SUBROUTINE gasdev

Every two calls
uses the random number 
already generated in the previous call

A look at the boxmuller.f90 code

@⇢

@t
= r

8
><

>:

X, Y uniformly distributed in [�1,1];
take (X,Y ) only within the unitary circle;
) R2 = X2 + Y 2 is
uniformly distributed in [0,1]

x =
p

�2 lnR2
X

R
= X

p
�2 lnR2/R2

1

since:
(thus avoiding the calculation of 
another √  to calculate R separately)

2 examples of optimization!
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#include <math.h> 

float gasdev(long *idum) 
{ 
    float ran1(long *idum); 
    static int iset=0; 
    static double gset; 
    double fac,rsq,v1,v2; 

    if (iset == 0) { 
        do { 
            v1=2.0*ran1(idum)-1.0; 
            v2=2.0*ran1(idum)-1.0; 
            rsq=v1*v1+v2*v2; 
        } while (rsq >= 1.0 || rsq == 0.0); 
        fac=sqrt(-2.0*log(rsq)/rsq); 
        gset=v1*fac; 
        iset=1; 
        return (float)(v2*fac); 
    } else { 
        iset=0; 
        return (float)gset; 
    } 
} 

Every two calls
uses the random number 
already generated in the previous call

A look at the gasdev.c code

@⇢

@t
= r

8
><

>:

X, Y uniformly distributed in [�1,1];
take (X,Y ) only within the unitary circle;
) R2 = X2 + Y 2 is
uniformly distributed in [0,1]

x =
p

�2 lnR2
X

R
= X

p
�2 lnR2/R2

1

since:
(thus avoiding the calculation of 
another √  to calculate R separately)

2 examples of optimization!
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3) gaussian distribution:
the central limit theorem

CHAPTER 12. RANDOM WALKS 416

For simplicity, we first consider a walker in two dimensions with p(a) chosen so that each step
has unit length. At each step the walker takes a step of unit length at a random angle. Write a
Monte Carlo program to compute PN (r)∆r, the probability that the displacement of the walker
is in the range r to r + ∆r after N steps, where r is the distance from the origin. Verify that
for sufficiently large N , the probability density PN (r) can be approximated by a Gaussian. Is a
Gaussian a good approximation for small N? Is it necessary to do a Monte Carlo simulation to
confirm that 〈R2

N 〉 ∼ N , or can you give a simple argument for this dependence based on the form
of PN (r)?
Problem 12.7. Random walks with steps of variable length

a. Consider a random walk in one dimension with jumps of all lengths allowed. The probability
density that the length of a single step is a is denoted by p(a). If the form of p(a) is given
by p(a) = e−a, what is the form of PN (x)? Suggestions: Use the inverse transform method
discussed in Section 11.5 to generate step lengths according to the probability density p(a).
Consider a walk of N steps and determine the net displacement x. Generate many such walks
and determine PN (x). Plot PN (x) versus x and confirm that the form of PN (x) is consistent with
a Gaussian distribution. Is this random walk equivalent to a diffusion process for sufficiently
large N?

b. Assume that the probability density p(a) is given by p(a) = C/a2 for a ≥ 1. Determine the
normalization constant C using the condition C

∫ ∞
1 a−2 da = 1. Does the second moment of

p(a) exist? Do a Monte Carlo simulation as in part (a) and verify that the form of PN (x) is
given by

PN (x) ∼ bN

x2 + b2N2
, (12.8)

What is the magnitude of the constant b? Does the variance 〈x2〉− 〈x〉2 of PN (x) exist? Is this
random walk equivalent to a diffusion process?

Problem 12.8. The central limit theorem
Consider a continuous random variable x with probability density f(x). That is, f(x)∆x is the
probability that x has a value between x and x +∆x. The mth moment of f(x) is defined as

〈xm〉 =
∫

xmf(x) dx. (12.9)

The mean value 〈x〉 is given by (12.9) with m = 1. The variance σx
2 of f(x) is defined as

σx
2 = 〈x2〉 − 〈x〉2. (12.10)

Consider the sum yn corresponding to the average of n values of x:

yn =
1
n

(x1 + x2 + . . . + xn). (12.11)

We adopt the notation y = yn. Suppose that we make many measurements of y. We know that
the values of y are not identical, but are distributed according to a probability density P (y), where
P (y)∆y is the probability that the measured value of y is in the range y to y + ∆y. The main
quantities of interest are the mean 〈y〉, the variance σy

2 = 〈y2〉 − 〈y〉2, and P (y) itself.
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σy ≈ σx/
√

n

provided 〈x〉 and 〈x2〉 exist (finite) and n is large!

P (y) : gaussian distribution

< y > = < x >with:
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the values of y are not identical, but are distributed according to a probability density P (y), where
P (y)∆y is the probability that the measured value of y is in the range y to y + ∆y. The main
quantities of interest are the mean 〈y〉, the variance σy

2 = 〈y2〉 − 〈y〉2, and P (y) itself.
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For simplicity, we first consider a walker in two dimensions with p(a) chosen so that each step
has unit length. At each step the walker takes a step of unit length at a random angle. Write a
Monte Carlo program to compute PN (r)∆r, the probability that the displacement of the walker
is in the range r to r + ∆r after N steps, where r is the distance from the origin. Verify that
for sufficiently large N , the probability density PN (r) can be approximated by a Gaussian. Is a
Gaussian a good approximation for small N? Is it necessary to do a Monte Carlo simulation to
confirm that 〈R2

N 〉 ∼ N , or can you give a simple argument for this dependence based on the form
of PN (r)?
Problem 12.7. Random walks with steps of variable length

a. Consider a random walk in one dimension with jumps of all lengths allowed. The probability
density that the length of a single step is a is denoted by p(a). If the form of p(a) is given
by p(a) = e−a, what is the form of PN (x)? Suggestions: Use the inverse transform method
discussed in Section 11.5 to generate step lengths according to the probability density p(a).
Consider a walk of N steps and determine the net displacement x. Generate many such walks
and determine PN (x). Plot PN (x) versus x and confirm that the form of PN (x) is consistent with
a Gaussian distribution. Is this random walk equivalent to a diffusion process for sufficiently
large N?

b. Assume that the probability density p(a) is given by p(a) = C/a2 for a ≥ 1. Determine the
normalization constant C using the condition C

∫ ∞
1 a−2 da = 1. Does the second moment of

p(a) exist? Do a Monte Carlo simulation as in part (a) and verify that the form of PN (x) is
given by

PN (x) ∼ bN

x2 + b2N2
, (12.8)

What is the magnitude of the constant b? Does the variance 〈x2〉− 〈x〉2 of PN (x) exist? Is this
random walk equivalent to a diffusion process?

Problem 12.8. The central limit theorem
Consider a continuous random variable x with probability density f(x). That is, f(x)∆x is the
probability that x has a value between x and x +∆x. The mth moment of f(x) is defined as

〈xm〉 =
∫

xmf(x) dx. (12.9)

The mean value 〈x〉 is given by (12.9) with m = 1. The variance σx
2 of f(x) is defined as

σx
2 = 〈x2〉 − 〈x〉2. (12.10)

Consider the sum yn corresponding to the average of n values of x:

yn =
1
n

(x1 + x2 + . . . + xn). (12.11)

We adopt the notation y = yn. Suppose that we make many measurements of y. We know that
the values of y are not identical, but are distributed according to a probability density P (y), where
P (y)∆y is the probability that the measured value of y is in the range y to y + ∆y. The main
quantities of interest are the mean 〈y〉, the variance σy

2 = 〈y2〉 − 〈y〉2, and P (y) itself.
is distributed according to:

The random variable:

(Therefore, the sample mean of a random sample is better than a single observation)
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Analogously, is instead of considering the new random variable 
as the average we consider just the sum:

y = x1 + x2 + ... + xn

it also has a gaussian distribution but with:

< y > = n < x >     and     σy  ≈  √n  σx

provided 〈x〉 and 〈x2〉 exist (finite) and n is large!
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Lancio di n dadi

1 2 3 4 5 6 7 8 9 10 11 12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
mu=7.034100, sigma

2
=5.904537

0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
media=35.132200, varianza=29.248723

Dalla figura appare evidente come nel caso di due dadi (sinistra) il punteggio più

probabile è 7 (probabilità 6/36 = 1/6) e quelli meno probabili 2 e 12 (probabilità 1/36).

Inoltre all’aumentare del numero dei dadi (destra) le frequenze tendono ad essere

distribuite secondo una campana gaussiana corrispondente ad una distribuzione

cosiddetta normale.

Corso eccellenza studenti 4
o

anno scuole superiori, Ferrara, 22 giugno 2006 – p. 22/31

n=2   not enough n=100   OK 

Note: large enough  n  needed to obtain the gaussian distribution. 
Suppose that f(x) is uniform: e.g., playing dice:
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a. Suppose that f(x) is uniform in the interval [−1, 1]. Calculate 〈x〉 and σx analytically. Use a
Monte Carlo method to make a sufficient number of measurements of y to determine P (y), 〈y〉,
and σy with reasonable accuracy. For example, choose n = 1000 and make 100 measurements
of y. Verify that σy is approximately equal to σx/

√
n. Plot P (y) versus y and discuss its

qualitative form. Does the form of P (y) change significantly if n is increased? Does the form
of P (y) change if the number of measurements of y is increased?

b. To test the generality of the results of part (a), consider the exponential probability density

f(x) =

{

e−x, if x ≥ 0
0, if x < 0 .

(12.12)

Calculate 〈x〉 and σx analytically. Modify your Monte Carlo program and estimate 〈y〉, σy, and
P (y). Is σy related to σx as in part (a)? Plot P (y) and discuss its qualitative form and its
dependence on n and on the number of measurements of y.

c. Let y be the Monte Carlo estimate of the integral (see Problem 11.3a)

4
∫ 1

0
dx

√

1 − x2. (12.13)

In this case y is found by sampling the integrand f(x) = 4
√

1 − x2 n times. Choose n ≥ 1000
and make at least 100 measurements of y. Show that the values of y are distributed according
to a Gaussian distribution. How is the variance of P (y) related to the variance of f(x)?

d. Consider the Lorentzian probability density

f(x) =
1
π

1
x2 + 1

. (12.14)

Calculate the mean value 〈x〉. Does the second moment and hence the variance of f(x) exist?
Do a Monte Carlo calculation of 〈y〉, σy, and P (y). Plot P (y) as a function of y and discuss its
qualitative form. What is the dependence of P (y) on the number of trials?

Problem 12.8 illustrates the central limit theorem which states that the probability distribution
of a variable y is a Gaussian centered at 〈y〉 with a standard deviation 1/

√
n times the standard

deviation of f(x). The requirements are that f(x) has finite first and second moments, that the
measurements of y are statistically independent, and that n is large. Use the central limit theorem
to explain your results in Problem 12.8 and in Problem 12.7a. What is the relation of the central
limit theorem to the calculations of the probability distribution in the random walk models that
we already have considered?
Problem 12.9. Generation of the Gaussian distribution
Consider the sum

y =
12
∑

i=1

ri, (12.15)

The previous example was for UNIFORM distribution (dice) 
but the central limit theorem work also with random deviates x  

with NON UNIFORM distribution;  e.g. with exponential distribution:
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continuous probability distribution with 

probability density function

where x0 is the location parameter, specifying 

the location of the peak of the distribution, and 

! is the scale parameter which specifies the 

half-width at half-maximum (HWHM).

As a probability distribution, it is known as the 

Cauchy distribution while among physicists it 

is known as the Lorentz distribution or the 

Breit-Wigner distribution. Its importance in 

physics is largely due to the fact that it is the 

solution to the differential equation describing 

forced resonance. In spectroscopy it is the 

description of the line shape of spectral lines 

which are broadened by many mechanisms 

including resonance broadening. The statistical 

term Cauchy distribution will be used in the 

following discussion.

The special case when x0 = 0 and ! = 1 is called 

the standard Cauchy distribution with the 

probability density function
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The Cauchy-Lorentz distribution is an example 
of  “fat-tailed” distribution.
Fat-tailed distributions decay to infinity slower 
than exponentially.
For instance, they can decay with  a power law:   
f(x) ~  x - (1+ α)      as x ⟶	+∞
In some cases the expression "fat-tailed" 
indicates distributions where 0 < α < 2.
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which can be rewritten as:
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If a probability distribution has a density function f(x) then the mean or expected value is

The question is now whether this is the same thing as

If at most one of the two terms in (2) is infinite, then (1) is the same as (2). But in the case of the Cauchy 

distribution, both the positive and negative terms of (2) are infinite. This means (2) is undefined. 

Moreover, if (1) is construed as a Lebesgue integral, then (1) is also undefined, since (1) is then defined 

simply as the difference (2) between positive and negative parts.

However, if (1) is construed as an improper integral rather than a Lebesgue integral, then (2) is 

undefined, and (1) is not necessarily well-defined. We may take (1) to mean

and this is its Cauchy principal value, which is zero, but we could also take (1) to mean, for example,

which is not zero, as can be seen easily by computing the integral.

Various results in probability theory about expected values, such as the strong law of large numbers, will 

not work in such cases.

Also, the sample mean of a random sample taken from a Cauchy distribution is no better than a single 

observation, because the chances of including extreme values is high. However, the sample median, 

which is not affected by extreme values, can be used as a measure of central tendency.

Why the second moment of the Cauchy distribution is infinite

Without a defined mean, it is impossible to consider the variance or standard deviation of a standard 

Cauchy distribution. But the second moment about zero can be considered. It turns out to be infinite:

Relationship to other distributions

The ratio of two independent standard normal random variables is a standard Cauchy variable, a 
Cauchy(0,1). See Hodgson's paradox.
The standard Cauchy(0,1) distribution arises as a special case of Student's t distribution with one 
degree of freedom.

Relation to Lévy skew alpha-stable distribution: if  then 

.
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is not defined since both terms are infinite; only the Cauchy principal value is defined:
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The standard Cauchy(0,1) distribution arises as a special case of Student's t distribution with one 
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.

Without a defined mean, it is impossible to define the variance  (but the second moment is defined and 
it is infinite).  Some results in probability theory about expected values, such as the law of large numbers, 
do not work in such cases.
Also, the mean of a set of random variates drawn from a Cauchy distribution is no better than a single 
observation, because the chance of including extreme values is high.

The mean:
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Mean and variance are not defined



Student's t-distribution

lim
n→∞ (1 +

t2

n )
− n + 1

2

∼
1

t−(n+1)
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Curtosi (dal greco kurtós, gobba) in statistica, termine che indica quanto una distribuzione di dati si allontani da una curva normale 
standardizzata (cioè se è, rispetto a questa, per la quale l’indice è 0, più “schiacciata” o meno “schiacciata”). L’indice di curtosi per una 
distribuzione discreta X di n elementi è dato da:
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… a short digression …



  Cont, Empirical properties of asset returns, stylized facts and statistical issues, 2001

Statistical Properties of Price Returns
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large-scale events

 Price returns are not normal

1st issue

Statistical Properties of Price Returns
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Empirical Distribution of Returns (superposition of all stocks)

different time-scales – from 1 minute to 2 hours

Empirical Distribution of Price Returns

price returns / stock volatility

p
ro

b
ab

il
it

y
 d

en
si

ty
 f

u
n
ct

io
n

normal distribution

Student's t-distribution
(4 degrees)

Filiasi, PhD Thesis
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Empirical Distribution of Price Returns
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empirical distribution of price returns

Large Deviations
(risky events)

Large Deviations
(risky events)

Typical
Fluctuations

The probability density function
defines the size / frequency
of large returns.

But what about their generation?
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Part II -  
Using random numbers 

to simulate  
random processes
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Random processes: 
radioactive decay

Atoms present at time  
Probability for each atom to decay in
Atoms which decay between      and 

t

∆N(t)

∆N(t) = −λN(t)∆t

N(t) = N(t = 0)e−λt

t + ∆t

N(t)

t

we use the probability        of decay of each atom
to simulate the behavior of the number of atoms left;
we should be able to obtain (on average):

λ

λ

∆t
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      DO                                      ! loop on time
         DO  i = 1, nleft                  ! loop on all the nuclei left
            call random_number(r)
            IF (r <= lambda) THEN     ! BASIC   ALGORITHM
               nleft = nleft -1               !  update the nuclei left (*)
            ENDIF
         END DO
      WRITE (unit=7,fmt=*) t , nleft          
         if (nleft == 0) exit
         t = t + 1
      END DO

Radioactive decay: 
numerical simulation

A scheme for the
simulation

1. Assign a value to the decay constant �  1 (the
probability for each nucleus to decay in a given
interval of time �t)
� establishes the time scale; one iteration in the “do loop”

corresponds to one time step �t

2. Start with Nleft = Nstart= total number of
nuclei at time t = 0

3. Basic algorithm: for each nucleus left (not yet
decayed):

• Generates a random number 0  x  1

• if x  �, the nucleus decays and Nleft =

Nleft - 1, otherwise it remains and Nleft is
unchanged.

4. Repeat for each nucleus

5. Repeat the cycle for the next time step

A scheme for the
simulation

1. Assign a value to the decay constant �  1 (the
probability for each nucleus to decay in a given
interval of time �t)
� establishes the time scale; one iteration in the “do loop”

corresponds to one time step �t

2. Start with Nleft = Nstart= total number of
nuclei at time t = 0

3. Basic algorithm: for each nucleus left (not yet
decayed):

• Generates a random number 0  x  1

• if x  �, the nucleus decays and Nleft =

Nleft - 1, otherwise it remains and Nleft is
unchanged.

4. Repeat for each nucleus

5. Repeat the cycle for the next time step

Note: “exit” ≠ “cycle”

Note:  unbounded loop

(*) Notice that the upper bound of the inner loop (nleft) is changed within the execution of the 
loop; but with most compilers, in the execution the loop goes on up to the initial value of the 
upper bound (nleft); this ensures that the implementation of the algorithm is correct. The 
program checkloop.f90 is a test for the behavior of the loop. Look also at decay_checkloop.f90. 
If nleft would be changed (decreased) during the execution, the effect would be an overestimate 
of the decay rate. CHECK with your compiler!
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decay.f90    
decay_checkloop.f90  

checkloop.f90

Programs: 
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         [name:] DO
                     exit [name]

     or [name:] DO
       END DO [name]

(name is useful in case of nested loops for explicitly indicating which loop we exit from) 

Alternative form: ”do while” loop
Always set a condition to exit from a loop! E.g.: 
      DO
       if (condition)exit
      END DO
or:
      DO WHILE (.not. condition)
       ...
      END DO
   
NOTE: first is better (“if () ..exit” can be placed everywhere in the loop,
           whereas DO WHILE must execute the loop up to the end)

- Additional note:
Difference between EXIT and CYCLE

Details on Fortran:  unbounded loops
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results of decay simulation  
(N vs t) with N=1000

N(t) ~ N0 exp(- a t)

semilog plot (log(N) vs t)
=> log(N(t)) = log N0 - a t
=> slope is -a

Radioactive decay: 
results of numerical simulation
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Semilog plots of the results of 
simulations for the same decay 
rate and different initial 
number of atoms:
almost a straight line, but with
important deviations 
(stochastic) for small N

Radioactive decay: 
results of numerical simulation

Page P002.html http://www.physics.orst.edu/~rubin/CPbook/chap7/P002.html

1 of 1 17-10-2005 15:54

: Slide 2 of 16. 

Click slide for next, or go to previous, first, or last slide, or back to thumbnail layout. 

Click slide for next, or goto previous, or back to thumbnail layout.

Stochastic simulations give reliable results when obtained:
- on average and for large numbers
- fine discretisation of time evolution 

(in the exercise: change λ; compare the value obtained from the simulation with the one inserted;  
does the “quality” of the results change with λ?)
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Other random processes:  
order and disorder

A box is divided into two parts communicating through a 
small hole. One particle randomly can pass through the hole 
per unit time, from the left to the right or viceversa.

Nleft(t): number of particles present at time t in  the left side
Given Nleft(0), what is Nleft(t) ? 

(more on that in a future Lecture)
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Random Walk Simulation http://www.krellinst.org/UCES/archive/modules/monte/node4.html

1 of 1 24-10-2005 10:45

Next: Project
Up: MONTE-CARLO TECHNIQUES
Previous: Project

Random Walk Simulation

Random walk of 1000 steps going nowhere

Many physical processes such as Brownian motion, electron transport through metals, and round off
errors on computers are modeled as a random walk. In this model, many steps are taken with the
direction of each step independent of the direction of the previous one. For our model, we start at the
origin and take steps of lengths (not coordinates) in the x and y directions of

where there are a total of N steps. The distance from the starting point R is related to these steps by

 

Now while (2) is quite general for any walk you may take, if it is a random walk then you are equally
likely to move forwards as backwards in each step - as well as to the right or left. So on the average, 
for a large number of steps, all the cross terms in (2) will vanish and we are left with

 

where  is the square root of the average squared step size or root mean squared step size. Note, the
same result obtains for a three dimensional walk. According to (3), even though the total distance 

walked is , on the average, the distance from the starting point is only .

  Here are different methods to generate 2-D unit steps.

Project

Next: Project
Up: MONTE-CARLO TECHNIQUES
Previous: Project

(see next lecture)

Other random processes:  
random walks
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miscellanea

list of EXERCISES; 
more on fortran90,

fit, gnuplot…
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LIST OF EXERCISES V week
Random numbers with non uniform distributions

1) exponential distribution generated with Inverse Transformation Method

2) another distribution generated with ad-hoc algorithms (compare!), including Inverse 
Transformation Method

3) gaussian distribution generated with Box-Muller algorithm

4) gaussian distribution generated with the central limit theorem

5) other random distributions (different algorithms, subroutines from the web…).  [optional]

To do: implementation of the algorithms (or understanding…), histogram, fit…
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Making histograms: use int() or similar intrinsic functions?

e.g. Ex. 2:2. An example of non uniform distribution:
comparison between di↵erent algorithms

Suppose you want to generate a random variate x in (-1,1) with distri-

bution

p(x) =
1

⇡
(1� x2

)
�1/2.

Consider both methods suggested below, do the histograms and check that

both methods give correct results.

(a) From the Inverse Transformation Method:

generate a random number y with uniform distribution in [0,1] and

consider x = cos(⇡y) (or x = sin(2⇡y), or x = sin⇡(2y�1). . .Why?).

(b) Generate two random numbers U and V with uniform distribution

in [0,1]. Disregard them if U2
+ V 2 > 1. Otherwise consider

x =
U2 � V 2

U2 + V 2

Note 1: the last method has the advantage of using only elementary ope-
rations.
Note 2: since x is also negative, pay attention to the algorithm used to
make the histogram; you should notice the di↵erence between the intrinsic
functions int and nint; see also floor. From Chapman’s book:

AINT(A,KIND): Real elemental function

- Returns A truncated to a whole number.

AINT(A) is the largest integer which is smaller than |A|, with the sign of A.

For example, AINT(3.7) is 3.0, and AINT(-3.7) is -3.0.

- Argument A is Real; optional argument KIND is Integer

ANINT(A,KIND): Real elemental function

- Returns the nearest whole number to A.

For example, ANINT(3.7) is 4.0, and AINT(-3.7) is -4.0.

- Argument A is Real; optional argument KIND is Integer

FLOOR(A,KIND): Integer elemental function

- Returns the largest integer < or = A.

For example, FLOOR(3.7) is 3, and FLOOR(-3.7) is -4.

- Argument A is Real of any kind; optional argument KIND is Integer

- Argument KIND is only available in Fortran 95

NINT(A[,KIND])

- Integer elemental function

- Returns the nearest integer to the real value A.

- A is Real

2
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and invert…

Here: 
different histograms, from 
distributions generated 
with different algorithms

=> how to do these histograms?

y = P(x) = ∫
x

−1

1
π

(1 − x2)−1/2 d x

=
1
π

arcsin(x) |x
−1 =

1
π

arcsin(x) +
1
2



AINT(A[,KIND])  
• Real elemental function  
• Returns A truncated to a whole number.  AINT(A) is the largest integer which is smaller 
than |A|, with the sign of A.  For example, AINT(3.7) is 3.0, and AINT(-3.7) is -3.0.  
• Argument A is Real; optional argument KIND is Integer  

ANINT(A[,KIND])  
• Real elemental function  
• Returns the nearest whole number to A.  For example, ANINT(3.7) is 4.0, and AINT(-3.7) is 
-4.0.  
• Argument A is Real; optional argument KIND is Integer 

FLOOR(A,KIND)  
•  Integer elemental function  
•  Returns the largest integer  ≤  A.  For example,  FLOOR(3.7) is 3, and FLOOR(-3.7) is -4.  
•  Argument A is Real of any kind; optional argument KIND is Integer  
•  Argument KIND is only available in Fortran 95  

INT(A[,KIND])  
• Integer elemental function  
• This function truncates A and converts it into an integer.  If A is complex, only the real 
part is converted.  If A is integer, this function changes the kind only.  
• A is numeric; optional argument KIND is Integer.  

NINT(A[,KIND])  
• Integer elemental function 
• Returns the nearest integer to the real value A.  
• A is Real 

Making histograms: use int() or similar intrinsic functions?
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Suppose you want to fit your data (say, ‘data.dat’) with an exponential function.
You have to give: 1) the functional form ; 2) the name of the parameters

gnuplot> f(x) = a * exp (-x*b)

Then we have to recall these informations together with the data we want to fit:
it can be convenient to inizialize the parameters:
gnuplot> a=0. ; b=1.     (for example)

gnuplot> fit f(x) 'data.dat' via a,b

On the screen you will have something like:

    Final set of parameters Asymptotic Standard Error
    ======================= ==========================

    a = 1 +/- 8.276e-08 (8.276e-06%)
    b = 10 +/- 1.23e-06 (1.23e-05%)

    correlation matrix of the fit parameters:

    a b
    a 1.000
    b 0.671 1.000 

It’s convenient to plot together the original data and the fit:

gnuplot> plot f(x), 'data.dat'

Example: fit using gnuplot - I
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If you prefer to use linear regression, use logarithmic data in the data file, or directly
fit the log of the original data using gnuplot:

gnuplot> f(x) = a + b*x

Then we have to recall these informations together with the data we want to fit
(in the following example: x=log of the first column; y=log of the second column):
 
gnuplot> fit f(x) 'data.dat' u (log($1)):(log($2)) via a,b

...
   Final set of parameters Asymptotic Standard Error
    ======================= ==========================  (...gnuplot will work for you....)
...

Also in this case it will be convenient to plot together the original data and the fit:

gnuplot> plot f(x), 'data.dat' u (log($1)):(log($2))

In case of needs, we can limit the set of data to fit in a certain range [x_min:x_max]:

gnuplot> fit [x_min:x_max] f(x) 'data.dat' u ... via ...

Example: fit using gnuplot - II
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Intrinsic functions:  
LOGARITHM
log  returns the natural logarithm
log10 returns the common (base 10) logarithm
(NOTE: also in gnuplot,  log and log10 are defined with the 
same meaning)

INTEGER PART
nint(x)     and the others, similar but different (see Lect. II) => 
ex. II requires histogram for negative and positive data values

Arrays:
possible to label the elements from a negative number or 0:
dimension array(-n:m)   (e.g., useful for making histograms)
[default in Fortran:  n=1;    in c and c++: n=0]

A few notes on Fortran 
related to the exercises
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Array dimension:  
default : dimension array([1:]n)
but also using other dimensions e.g.:       dimension array(-n:m)

Important to check dimensions of the array when compiling or during 
execution !
If not done, it is difficult to interpret error messages (typically:  
“segmentation fault”),   or even possible to obtain unpredictable results!

Default in gfortran:
boundaries not checked; use compiler option:

gfortran -fcheck=bounds myprogram.f90
(obsolete but still active alternative: -fbounds-check)

Typing (Unix line command): 

man gfortran
you can scroll the manual pages and see the possible compilation options
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Some Fortran compiler options

-fcheck=bounds     enables checking for array subscript expressions

-fbacktrace     generate extra information to provide source file traceback at run time
           Specify that, when a runtime error is encountered or a deadly signal is
           emitted (segmentation fault, illegal instruction, bus error or
           floating-point exception), the Fortran runtime library should output a
           backtrace of the error.  This option only has influence for compilation
           of the Fortran main program.

-Wall             Enables commonly used warning options

…
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Structure of a main program with one function or subr.
program name_program   (see: expdev.f90 or boxmuller.f90)
  implicit none  (*)
 <declaration of variables>
 <executable statements>

contains
subroutine ...  (or function)

   ...
end subroutine

end program

(*) General suggestion for variable declaration:
Use “implicit none” + explicit declaration of variables

See also the use of module
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(optional, but useful!)

random.f90  (is a module - generation of rnd 
with different distributions) 
t_random.f90 (main test program)

to compile: 

$gfortran random.f90 t_random.f90
(the module first!)

or in more than one step:
Compile the module with the option -c: this produces .mod and .o (the objects): 
gfortran -c random.f90 

Compile the main program:

gfortran -c t_random.f90

 
Finally you link all the files *.o and produce the executable:

gfortran -o a.out random.o t_random.o 

Other programs: 

60


