Introduzione alla logica proposizionale

(2ª parte: Analisi

Eugenio G. Omodeo

Dip. Matematica e Geoscienze — DMI

De Morgan: $\gamma > (\alpha \& \beta) \leftrightarrow (\gamma > \alpha) \lor (\gamma > \beta)$ $\gamma > (\alpha \vee \beta) \leftrightarrow (\gamma > \alpha) & (\gamma > \beta)$ $(\alpha \rightarrow \beta) \leftrightarrow (\neg \beta \rightarrow \neg \alpha)$ contrapposizione: $(\alpha \& \beta \rightarrow \gamma) \leftrightarrow (\alpha \rightarrow (\beta \rightarrow \gamma))$ imp/esp-ortazione: distribuzione: $\alpha \vee (\beta \& \gamma) \leftrightarrow (\alpha \vee \beta) \& (\alpha \vee \gamma)$ $\alpha \& (\beta \lor \gamma) \leftrightarrow (\alpha \& \beta) \lor (\alpha \& \gamma)$ associatività: $\alpha \vee (\beta \vee \gamma) \leftrightarrow (\alpha \vee \beta) \vee \gamma$ $\alpha \& (\beta \& \gamma) \leftrightarrow (\alpha \& \beta) \& \gamma$ commutatività: $\alpha \vee \beta \leftrightarrow \beta \vee \alpha$ $\alpha \& \beta \leftrightarrow \beta \& \alpha$ assorbimento: $\alpha \lor \alpha \leftrightarrow \alpha$ $\alpha \& \alpha \leftrightarrow \alpha$

Trieste, 08/03/2016

SCOPO DELLA LEZIONE

I lucidi su Dnf e Cnf suggerivano metodi di 'sintesi' per ottenere da una funzione booleana enunciati in grado di esprimerla

SCOPO DELLA LEZIONE

I lucidi su Dnf e Cnf suggerivano metodi di 'sintesi' per ottenere da una funzione booleana enunciati in grado di esprimerla

Qui affrontiamo la questione inversa: come effettuare l'*'analisi'* di un enunciato dato

SCOPO DELLA LEZIONE

I lucidi su Dnf e Cnf suggerivano metodi di 'sintesi' per ottenere da una funzione booleana enunciati in grado di esprimerla

Qui affrontiamo la questione inversa: come effettuare l'*analisi* di un enunciato dato

N.B.: Non stiamo parlando più di analisi sintattica! 🙂

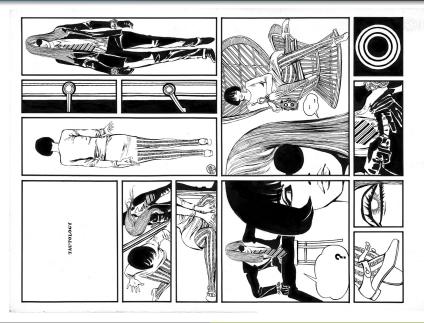
CITAZIONE DEL GIORNO

"La dimostrazione nella logica è solo un mezzo meccanico per riconoscere piú facilmente la tautologia ove questa è complicata."

[Wittgenstein(1922), 6.1262]

Ludwig WittgensteinVienna 1889–Cambridge 1951

ILLUSTRAZIONE DEL GIORNO



ESTE

• mutua riducibilità dei problemi di tautologicità e soddisfacimento

- mutua riducibilità dei problemi di tautologicità e soddisfacimento
- tre esercizi sul soddisfacimento di disgiunzioni

- mutua riducibilità dei problemi di tautologicità e soddisfacimento
- tre esercizi sul soddisfacimento di disgiunzioni
- test (manuale) di tautologicità di un'implicazione

- mutua riducibilità dei problemi di tautologicità e soddisfacimento
- tre esercizi sul soddisfacimento di disgiunzioni
- test (manuale) di tautologicità di un'implicazione

- mutua riducibilità dei problemi di tautologicità e soddisfacimento
- tre esercizi sul soddisfacimento di disgiunzioni
- test (manuale) di tautologicità di un'implicazione
- sistema deduttivo alla Hilbert

Un enunciato (proposizionale) α può essere

Un enunciato (proposizionale) α può essere

VERO: una volta assegnati i valori di verità alle sue lettere

Un enunciato (proposizionale) α può essere

VERO: una volta assegnati i valori di verità alle sue lettere

ASSURDO: se non è mai vero

Un enunciato (proposizionale) α può essere

VERO: una volta assegnati i valori di verità alle sue lettere

ASSURDO: se non è mai vero

SODDISFACIBILE: se è vero in almeno un caso

Un enunciato (proposizionale) α può essere

VERO: una volta assegnati i valori di verità alle sue lettere

ASSURDO: se non è mai vero

SODDISFACIBILE: se è vero in almeno un caso

TAUTOLOGICO: se è vero sempre

Un enunciato (proposizionale) α può essere

VERO: una volta assegnati i valori di verità alle sue lettere

ASSURDO: se non è mai vero

SODDISFACIBILE: se è vero in almeno un caso

TAUTOLOGICO: se è vero sempre

Per stabilire se α è tautologico, possiamo:

Un enunciato (proposizionale) α può essere

VERO: una volta assegnati i valori di verità alle sue lettere

ASSURDO: se non è mai vero

SODDISFACIBILE: se è vero in almeno un caso

TAUTOLOGICO: se è vero sempre

Per stabilire se α è tautologico, possiamo:

passare a ¬α

Un enunciato (proposizionale) α può essere

VERO: una volta assegnati i valori di verità alle sue lettere

ASSURDO: se non è mai vero

SODDISFACIBILE: se è vero in almeno un caso

TAUTOLOGICO: se è vero sempre

Per stabilire se α è tautologico, possiamo:

- passare a ¬α
- stabilire se $\neg \alpha$ è assurdo

Un enunciato (proposizionale) α può essere

VERO: una volta assegnati i valori di verità alle sue lettere

ASSURDO: se non è mai vero

SODDISFACIBILE: se è vero in almeno un caso

TAUTOLOGICO: se è vero sempre

Per stabilire se α è tautologico, possiamo:

- passare a ¬α
- stabilire se $\neg \alpha$ è assurdo
- ma se invece troviamo che $\neg \alpha$ è soddisfacibile, allora abbiamo un controesempio ad α

ESERCIZI SUL SODDISFACIM. DI ENUNCIATI IN DNF

 Indicare una condizione necessaria e sufficiente perché una disgiunzione di letterali sia tautologica

ESERCIZI SUL SODDISFACIM. DI ENUNCIATI IN DNF

- Indicare una condizione necessaria e sufficiente perché una disgiunzione di letterali sia tautologica
- Mostrare che una DNF è assurda se e solo se ogni suo 'disgiunto' ha, fra i propri 'congiunti', due letterali complementari, cioè una lettera ℓ assieme alla sua negaz. ¬ℓ

ESERCIZI SUL SODDISFACIM. DI ENUNCIATI IN DNF

- Indicare una condizione necessaria e sufficiente perché una disgiunzione di letterali sia tautologica
- Mostrare che una DNF è assurda se e solo se ogni suo 'disgiunto' ha, fra i propri 'congiunti', due letterali complementari, cioè una lettera ℓ assieme alla sua negaz. ¬ℓ
- **3** Dire allora se è pratico il seguente metodo per stabilire se un enunciato α è tautologico o no:
 - sintetizzare una DNF β equivalente a $\neg \alpha$
 - servirsi del criterio di cui al punto 2. per stabilire se β è assurdo

Esercizio. Stabilire che il seguente enunciato è una tautologia:

$$(p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow p \rightarrow r$$

Esercizio. Stabilire che il seguente enunciato è una tautologia:

$$(p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow p \rightarrow r$$

* TAVOLE DI VERITÀ: 8 righe da sviluppare (provateci!)

Esercizio. Stabilire che il seguente enunciato è una tautologia:

$$(p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow p \rightarrow r$$

Esercizio. Stabilire che il seguente enunciato è una tautologia:

$$(p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow p \rightarrow r$$

Esercizio. Stabilire che il seguente enunciato è una tautologia:

$$(p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow p \rightarrow r$$

Esercizio. Stabilire che il seguente enunciato è una tautologia:

$$(p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow p \rightarrow r$$

Esercizio. Stabilire che il seguente enunciato è una tautologia:

$$(p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow p \rightarrow r$$

Esercizio. Stabilire che il seguente enunciato è una tautologia:

$$(p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow p \rightarrow r$$

Esercizio. Stabilire che il seguente enunciato è una tautologia:

$$(p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow p \rightarrow r$$

Esercizio. Stabilire che il seguente enunciato è una tautologia:

$$(p \rightarrow q \rightarrow r) \rightarrow (p \rightarrow q) \rightarrow p \rightarrow r$$

Esercizio. Stabilire che i seguenti due enunciati sono tautologie:

$$\begin{array}{c} p \rightarrow q \rightarrow p \\ (p \rightarrow q \rightarrow r) \rightarrow ((p \rightarrow s) \rightarrow q') \rightarrow (p \rightarrow q \rightarrow r) \end{array}$$

Esercizio. Stabilire che i seguenti due enunciati sono tautologie:

$$\begin{array}{c} p \rightarrow q \rightarrow p \\ (p \rightarrow q \rightarrow r) \rightarrow ((p \rightarrow s) \rightarrow q') \rightarrow (p \rightarrow q \rightarrow r) \end{array}$$

* OSSERVAZIONE: il 2º enunciato è 'istanza' del primo che possiamo dimostrare tautologico per reductio ad absurdum:

Esercizio. Stabilire che i seguenti due enunciati sono tautologie:

$$\begin{array}{c} p {\rightarrow} q {\rightarrow} p \\ (p {\rightarrow} q {\rightarrow} r) {\rightarrow} ((p {\rightarrow} s) {\rightarrow} q') {\rightarrow} (p {\rightarrow} q {\rightarrow} r) \end{array}$$

* OSSERVAZIONE: il 2º enunciato è 'istanza' del primo che possiamo dimostrare tautologico per reductio ad absurdum:

* PERTANTO: anche il 2º è una tautologia

APPLICABILE IL METODO ASSIOMATICO ?

Forse qualunque tautologia è derivabile (i.e., ottenibile) a partire da

- pochi schemi tautologici, tramite
- istanziazione di tali schemi e
- impieghi della regola MP (modus ponens):

$$egin{array}{cccc} lpha & & lpha
ightarrow \gamma & & lpha
ightarrow \gamma & & lpha
ightarrow \gamma & & \gamma & \gamma & \gamma & \gamma & \gamma & & \gamma &$$

DALLA MIRIADE DI PROPOSTE

Questi gli *assiomi logici* proposti da Willard Van Orman Quine nel 1938:

$$egin{align} \left(eta
ightarrowlpha
ightarrowlpha
ightarrowlpha
ightarrowlpha &ullet lpha
ightarrowlpha \ &\left(\left(lpha
ightarroweta
ightarrowlpha
ight)
ightarrowlpha \ & egin{align} \left(lpha
ightarrowlpha
ightarrowlpha
ightarrowlpha \ & egin{align} \left(lpha
ightarrowlpha
ightarrowlpha
ightarrowlpha \ & egin{align} \left(lpha
ightarrowlpha
ightarrowlpha
ightarrowlpha \ & eta
ightarrowlpha
ightarrowlpha \ & eta
ightarrowlpha
ightarrowlpha \ & eta
ightarrowlpha
ightarrowlpha$$

Stabilire che il calcolo che ha questi assiomi è *corretto* ('sound') richiede la verifica che sono davvero tautologie

i.

$$(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$$

 ii.
 $\alpha \rightarrow (\beta \rightarrow \alpha)$

 iii.
 $((\alpha \rightarrow f) \rightarrow (\beta \rightarrow f)) \rightarrow (\beta \rightarrow \alpha)$

Un modo di definire le dimostraz. proposizionali

Diremo che la sequenza

$$\delta = \langle \delta_0, \delta_1, \dots, \delta_h \rangle$$

è una $\boxed{\textit{dimostrazione}}$ di ϑ da \boxed{A} quando:

- 1) $\delta_h = \vartheta$;
- 2) per ogni i = 0, ..., h, accade che δ_i sia un enunciato di \mathbb{P} che o:
 - \star appartiene ad A,

oppure

- * ricade in uno dei tre schemi del lucido precedente,
 - oppure
- \star è *preceduto* da due enunciati δ_{j_0} e $\delta_{j_1} = (\delta_{j_0} \to \delta_i)$, nel senso che $j_0 < i$ e $j_1 < i$.

Esempio di dimostrazione

Dimostriamo in 9 passi l'enunciato $f \rightarrow p$ da \emptyset , come segue:

		Ax.			Prem.
1.	$f \rightarrow (f \rightarrow f)$	[ii]			
2.	$(f \rightarrow (f \rightarrow f)) \rightarrow ((f \rightarrow f) \rightarrow (f \rightarrow f))$	[i]	3.	$(f \rightarrow f) \rightarrow (f \rightarrow f)$	[1, 2]
4.	$((f \rightarrow f) \rightarrow (f \rightarrow f)) \rightarrow (f \rightarrow f)$	[iii]	5.	$f \rightarrow f$	[3, 4]
6.	$(f \rightarrow f) \rightarrow ((p \rightarrow f) \rightarrow (f \rightarrow f))$	[ii]	7.	$(p \rightarrow f) \rightarrow (f \rightarrow f)$	[5, 6]
8.	$((p \rightarrow f) \rightarrow (f \rightarrow f)) \rightarrow (f \rightarrow p)$	[iii]	9.	$f \rightarrow p$	[7, 8]

Uno schema 'Totipotente'

Questo lo schema d'assioma proposto da Jan Łukasiewicz nel 1936 (e 'sdoganato' da Larry Wos nel 1999)

$$\begin{split} \left(\left(\boldsymbol{\beta} \,\rightarrow\, \bullet \,\right) \,\rightarrow\, \left(\left(\left(\,\boldsymbol{\alpha} \,\rightarrow\, \boldsymbol{f} \,\right) \,\rightarrow\, \boldsymbol{\gamma} \,\rightarrow\, \boldsymbol{f} \right) \,\rightarrow\, \boldsymbol{\alpha} \,\right) \,\rightarrow\, \boldsymbol{\alpha} \\ \bullet \,\rightarrow\, \left(\,\boldsymbol{\alpha} \,\rightarrow\, \boldsymbol{\beta} \,\right) \,\rightarrow\, \boldsymbol{\gamma} \,\rightarrow\, \boldsymbol{\beta} \end{split}$$

Basta da solo!! (Un altro 'solitario' leggermente piú semplice fu scoperto da Carey Arthur Meredith nel 1952)

Il primo risultato di *completezza* (i.e., "ogni tautologia è derivabile dagli assiomi logici") dovuto ad Emil Leon Post, è del 1920

RIFERIMENTI BIBLIOGRAFICI

Ludwig J. J. Wittgenstein.

Tractatus Logico-Philosophicus. 1922.

http://www.gutenberg.org/files/5740/5740-pdf.pdf.

