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4.5 Quantum Phase estimation

The framework of quantum phase estimation (QPE) is the following. Consider a unitary operation U where the
state |1) is one of its eigenstates. In particular, one has

Uly) = 2™ [¢) . (4.39)

Then, the task is to determine the phase ¢ with a certain given precision.

4.5.1 Single-qubit quantum phase estimation

The Hadamard test described in Sec. can be used to implement a single qubit phase estimation. Indeed,

from Eq. (4.39) one gets that R 4
WIOT) = e, (4.40)

Then, by merging with Eq. (4.21)) one has
P(10)) = 3(1 + cos(2m)), (1.41)

which implies
arccos (1 — 2P(|0)))

p== + 27k, (4.42)
2
where k& € N. Notice that such a circuit cannot distinguish the sign of ¢. Conversely, using both Eq. (4.21]) and
Eq. (4.24)), one has
1—-2P(|0
= arctan (M) , (4.43)
1—2P(|0))

where P(|0)) is the probability of measuring |0) in the imaginary Hadamard test.

Now, for the sake of simplicity, let us restrict to the case of ¢ € [0,1[. Suppose we would like to estimate
the value of ¢ with a single run of the circuit in Eq. . Then, if the outcome is +1 (i.e., the state collapses
on |0)), we have P(]0)) = 1. Conversely, with the outcome being —1 we have P(]|0)) = 0. Then, by employing

Eq. (4.42) we obtain

0utcome|P )] ¢ | ¢
T |0 [0,1/2] (4.44)
1 0 [1/2 1/2 1[

where @ gives the best estimation for the real value of the phase ¢,. Since there are no other possible outcomes
with a single run, the phase is estimated with an error e = 1/2, namely ¢, € [@, @ + €[. This is a really low
accuracy for a deterministic algorithm. To improve this accuracy, one should run the algorithm several times
(namely, a number of times that scales as O(1/€?), where € is the target error bound), or consider alternative
methods, as the N-qubit quantum phase estimation described below.

4.5.2 Kitaev’s method for single-qubit quantum phase estimation

In the fixed point representation, a natural number k can be represented with a real number ¢ € [0,1] by
employing d bits, i.e.
¢ = (-Pa-1---%o), (4.45)

where ¢, € {0,1}, as far as k < 2¢ — 1.
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Example 4.3

To make an explicit example of the fixed point representation, the value of k = 41 corresponds to the d = 6
bit’s string [101001] and can be represented with ¢ = 0.640625 being equivalent to (.101001). Indeed, by
employing the following expression with the string ¢ = (.p4—1 ...po) = (.101001) one has

d—1
Z 027 = 527 4 04272 4 03273 4 27 01270 4 278 =271 + 273 1+ 276 = 0.640625. (4.46)
1=0

Such a value, when multiplied by 2% gives exactly 41.

In the simplest scenario of d = 1, one has ¢ = (.ppg) with g € {0,1}. Thus, when performing once the real
Hadamard test, one has P(]0)) =1 if o9 =0 (i.e., =0), and P(|0)) =0if oo =1 (i.e., p =1/2).

Next, we consider the case of d bits, where ¢ = (.0...0¢q). Here, the first d bits are 0 and the last one is ¢g.
To determined the value of ¢y one needs to reach a precision of € < 27¢. This would require O(1/€2) = O(224)
repeated applications of the single-qubit quantum phase estimation, or number of queries to U. The observation
from Kitaev’s method is that if we can have access to U7 for a suitable power 7, then the number of queries to
U can be reduced. If one substitutes U7 to U, with the corresponding circuit being

0—H

(4.47)
o)y—+— 07}
then the probability changes in
P(|0)) = 3(1 + cos(2mjp)). (4.48)

Importantly, every time one multiplies a number by a factor 2, the bits in the fixed point representation are
shifted to the left. To make an example,

Then, one has that 297 1¢ = 2971(.0...0¢g) = (.¢0). Thus, applying the circuit in Eq. (4.47) with j =d —1 to
estimate (.0...0¢g) is equivalent to apply the circuit in Eq. (4.17) to estimate (.¢p).
This idea can be extended to general phases with d bits, i.e. ¢ = (.pg—_1 ... o). Indeed, one has
[ e2™i¢ ) = [T e2mi(-pa—1---%0) ) = 2™ (Pa—1-Pa—2-¢0) o) = e2TiPa—12mi(.pa—2---¢0) ), (4.50)
but e?7#¥d-1 = 1 independently from the value of p4_;. Thus

Ue2mie ) = e2mil-pa=2--90) ) (4.51)

i.e. the application of U shifts the bits and allows the evaluation of the first bit after the decimal point.

4.5.3 n-qubit quantum phase estimation

Notably, both the previous algorithms necessitate an important classical post-processing. Employing n ancillary
qubits allow the reduction of such post-processing. This is based on the application of the Inverse Quantum
Fourier Transform F'.
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Recall 4.1 (Quantum Fourier transform)
The discrete Fourier transform of a N-component vector with complex components { f(0),..., f(N —1)}

is a new complex vector { f(0),..., f(N —1)}, defined as

=2

—1

F(f(3),k) = f(k) = o5 > TN f(j). (4.52)

J

I
o

The Quantum Fourier transform (QFT) acts similarly: it acts as the unitary operator Fona quantum
register of n qubits, where N = 2", in the computational basis as

2" —1

Fli)= o= 37 oM gy, (453)
k=0

where |j) = |jn-1...jo) and |k) = |kn—1...ko). Namely, the application of the quantum Fourier transform
F to the state |j) = |jn—1---Jo) gives

Flj) =

A= (10) + 270 1)) (J0) + €2 O3 1)) .. (j0) + €2 OFmrd0) 1)) (4.54)
In the case of a superposition |y) = >, f(j)|j), one has

[y = F|y) = Z (4.55)

k=0

where the coefficients f(k) are the discrete Fourier transform of the coeficients f(3).
The inverse quantum Fourier transform FT acts as

2" —1

FT |]> — \/12771 Z e—27rijk/2n |k‘>, (456)
§=0

in a completely similar way as Eq. (4.53)) but with negative phases.

Example 4.4 A
The application of the quantum Fourier transform F to the state |7) = |10) = |j1 = 1, jo = 0) gives
Ja |]> _ % (|0> + e2m‘(0.jo) ‘1>> (|0> + e2m‘(0.j1jo) |1>) ,

(4.57)
20} + 1) Z5(10) — [1)).

The algorithm implementing the (standard) quantum phase estimation uses a first register of n ancillary
qubits and a second register of which we want to compute the phase. The first register is initially prepared in
the |0) state for all the qubits. The circuit implementing the algorithm is the following
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end first step

-y

3

(4.58)
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In particular, the state of the first register after the end of the first part of the algorithm (see red dashed line)
reads

J= (100 + D)) (j0) + Ty ) (1.59)
Now, by considering the binary representation of ¢ = (p,—1...@0), the latter expression becomes
A= (10) + 2020 1)) (J0) + 202100 1)) L (J0)  2iO2nmre0) 1)) (4.60)

which is exactly equal to F'|j) in Eq. ([#.54) for |j) = |¢). Thus, applying the inverse Fourier transform F'f one
gets |p), which is then measured.

4.6 Harrow-Hassidim-Lloyd algorithm

The Harrow-Hassidim-Lloyd (HHL) algorithm allows for the resolution of linear system problems on a quantum
computer. To be precise, the problem to be solved is described as finding the N, complex entries of x that solve
the following problem

Ax = b, (4.61)

where A is an hermitian and non-singular N, x N, matrix and b is a IV, vector, both defined on C. Classically,
the solution is given by
x = A"'b. (4.62)

The question is then how one can implement this on a quantum computer.
First, let us assume that the entries of b are such that ||b|| = 1. Then, b can be stored in a n,-qubit state
|b), through the following mapping;:

bo
b=1| 1 | ©bl0)+ - +bn-1 [Ny —1) =), (4.63)
bn,—1
where N, = 2™. For example, this can be done via a unitary operation Up. Now, we define |x) = A1 |b),

where A in the computational representation gives the classical matrix A. Notably, the state |z) needs to be
normalised to be stored in a quantum register. Thus, one has
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A= b
|2) = —— b (4.64)
1A= {b) |]
where the normalisation problem can be tackled in a second moment.
Consider the spectral decomposition of A:
Alvy) =\ |v), (4.65)

where \; and |v;) are respectively the eigeinvalues and eigeinstates of A. We also assume that the ordering of
the eigeinvalues is such that
0<)\0§"'§)\Nb_1 < 1. (466)

In general this will not be the case, but one can remap the problem in order to fall within this case. We also
assume that all the N, eigeinvalues have an exact d-bit representation.

By applying what in Sec. we can query A via an unitary operation U=e
suppose |b) = |v;), then we have

2miA using QPE. For example,

Uares [0Y2 [0;) = | A;) v;) - (4.67)

In particular, the (not-normalised) solution of the linear system problem would be
ATHD) = A7 o) = 3= Joy) - (4.68)

More generally, one can decompose the state |b) on the basis of A, ie.

onp 1

by = > Bilv;), (4.69)
j=0
where §; are a linear combination of ;. Then the QPE procedure gives

Uars [0)° ) = Zﬁj A5 [v5) 5 (4.70)

and the solution of the problem is given by

. 270 —1 3,
A7 by = ) AJ{|vj>. (4.71)

j=0 "

The aim of the HHL algorithm is to generate the normalised version of the state in Eq. (4.71) from the general
state |b) as shown in Eq. (4.69).

The algorithm works with three registers. The first one is an ancillary register made of a single qubit, the
second is also an ancillary register but made of d qubits, the third register is made of n;, qubits and will encode
the solution of the problem. The HHL circuit is the following

@) [Va)  [¥5) W) |¥y)
| | | | |
0 | | Al l
l > | | R | - | |
| | | | |
®d__ /2 ! ! ! ! RN
|0)™"— | | | | —0) (4.72)
AEE I N | Vare ||
Ao L wn B ey 1)
| | | | |
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The algorithm works as the following. Initially, all the qubits are prepared in |0):
%) = [0)[0) ¥ [0)*" (4.73)
then the information about b is encoded in the last register:
) =10 1% ® Uy %) = [0)0)*7[b). (4.74)

We apply the QPE procedure, which is here broke down in the corresponding three steps. The first is the
application of the Hadamard gate:

02) =10 H® @ 1101) = (0) 5= (10) + (1)) (4.75)

This is followed by the controlled unitary Ui

291
W) =10 C(U7) [Wa) = (0) 53z Y ™ [k)[b), (4.76)
k=0

where U |b) = ™% |b) with ¢ € [0, 1[. Finally, we apply the inverse Fourier transform to the second register

0, =10 Ffoi®m |ws),

291
=0) 5dz Y ™R [k) D),
S (4.77)
241 291

_ |0> 2% Z e27rikga Z e—27riylc/2d |y> |b>
k=0 y=0

However, one has that
291

0, if o #y/2%,

meaning that the k sum selects the value of y = 2. Thus,

o2mik(p—y/2%) _ { k=0 Lel = 24, if o = y/24, (4.78)
k=0

|#4) = 10) |027) [b) . (4.79)

In general, |b) is in a superposition of |v;), then

0 v} = 274 [u;) = €2 Ju;). (4.80)
Then, the entire QPE gate maps
2mp 1 U 2"b —1
d PE
1) = 10)[0)°" D By lo) = W) = Z B IA27) [v) - (4.81)
j=0

We apply a controlled rotation on the first register, such that

2"b —1

5 = CR @1 o) = 3 5 (1= G100+ £ 1)) W2 ), (4.52)

J=0

where C' € R is an arbitrary constant. At this point we perform the measurement of the first register. If the
outcome is +1 and the state collapses in |0) then we discard the run; if the outcome is —1 with the state
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collapsed in |1) then we retain the run. To increase the probabilities of having the outcome —1, we make C' as
large as possible. After the collapse of the first register in |1), the state of the second and third register is

1 iy )
W) = —— e > %\w% v;) (4.83)
(3 i /gl) o=

where we exploited that C' € R. Now, we apply the inverse QPE, which has also three steps. The first is the
application of the QFT:

W7) = F @ 1%™ |w),
276 —1

1 A
— 7z 2 2 F 2 ).,
(3t 18i/n12) =0 (4.84)
2mb — 1 241

1
= & o Z D24y [vy) .

ARV =

Then, we apply the controlled unitary C(U~7), which gives

|Ws) = C(U™7) | W),

1 27 — 1 241 (4 85)
- onp 1 A 2d/2 Z e ly) e —2miAy v5) ’
(2 gal) =

where the two phases cancel and thus

2¢_1 271
1

W) =gtz D ly) D & 75 [05) - (4.86)
y=0

J

= (ST 8/

Finally, the application of Hadamard’s gates on the second register gives

276 —1
N N v 1
[Wy) = H®? @ 197 |@g) = \o>®d Z % po— |uj>, (4.87)
= (s )

where the third register is exactly in the form in Eq. (4.71) after the proper normalisation. Thus,

15) = 10)°%[2), (4.89)

embeds the solution of the linear system Ax = b.



	The Statistical Operator
	Statistical Operator and Density Matrix
	The physical meaning of the density matrix elements
	Propriesties of the Statistical Operator
	Pure states and statistical mixtures
	The Bloch Sphere
	Quantum Mechanics in the Statistical operator formalism

	The Reduced Density Matrix
	Open Quantum Systems, Partial Trace and the Reduced Density Matrix
	Quantum operations and the Kraus-Stinespring theorem
	Quantum operations on qubits

	Quantum Dynamical Semigroups
	On the linearity of the dynamics
	Strongly Continuous Semigroup
	Quantum Dynamical Semigroup
	Microscopic derivation of the Born-Markov master equation
	Born approximation
	Markov approximation

	Lindblad evolution in Quantum Information theory
	Unravelling formalism for noises

	Circuit model for quantum computation
	Qubit gates
	Hadamard test

	No-cloning theorem
	Dense coding
	Quantum teleportation
	Quantum Phase estimation
	Single-qubit quantum phase estimation
	Kitaev's method for single-qubit quantum phase estimation
	n-qubit quantum phase estimation

	Harrow-Hassidim-Lloyd algorithm

	Variational Quantum Algorithms
	The Ising model
	Mapping combinatorial optimisation problems into the Ising model
	Adiabatic Theorem
	Quantum Annealing
	Quantum Approximate Optimisation Algorithm (QAOA)
	Variational Quantum Eigensolver (VQE)

	Noisy Intermediate-Scale Quantum (NISQ) computation
	Miscalibrated gates
	Projection noise and sampling error
	Measurement error
	Environmental noise
	Global noise action


	Quantum Error Correction and Mitigation
	Quantum Error Correction
	Classical error correction
	Quantum information context
	The 3-qubit bit-flip code
	The 3-qubit phase-flip code
	The 9-qubit Shor code
	On the redundancy and threshold
	More layers of encoding or only more qubits

	Stabiliser formalism
	Inverting quantum channels
	Correctable errors
	Stabilisers
	Normalisers and Centralisers
	Stabiliser code

	Surface code
	Detecting errors

	Fault-tolerant computation
	Stean code or 7-qubit code


	Dynamical Decoupling and Quantum Error Mitigation
	Dynamical Decoupling
	Quantum Error Mitigation
	Zero noise extrapolation
	Probabilistic error cancellation


	Solutions of the exercises
	Solution to Exercise 1.1
	Solution to Exercise 1.2
	Solution to Exercise 1.3
	Solution to Exercise 1.4
	Solution to Exercise 2.1
	Solution to Exercise 3.2
	Solution to Exercise 3.3
	Solution to Exercise 3.4
	Solution to Exercise 4.1
	Solution to Exercise 4.2
	Solution to Exercise 4.3
	Solution to Exercise 4.4

	Index

