
POTENZIARE L'ABILITÀ DI SOLUZIONE DI PROBLEMI: INTERVENTI E TRAINING

Eleonora Doz

eleonora.doz@phd.units.it

MATHEMATICAL LEARNING DISABILITY (MLD) E SOLUZIONE DEI PROBLEMI

- Alunni con MLD possono presentare difficoltà in una o più componenti della soluzione dei problemi verbali (comprensione del testo, rappresentazione e categorizzazione, pianificazione, esecuzione del calcolo e autovalutazione).
- Bambini MLD hanno difficoltà soprattutto nel processo di rappresentazione e categorizzazione del problema (Montague & Applegate, 1993; Passolunghi, 1999; Passolunghi et al., 1996; Yip et al., 2020).
- Studenti con MLD mostrano compromissioni nelle abilità dominio-generali, come la memoria di lavoro (Consensus Conference, 2021; Fuchs et al., 2014; Geary et al., 2007; Swanson, 2012; Swanson et al., 2009).

COME MIGLIORARE L'ABILITÀ DI RISOLUZIONE DEI PROBLEMI?

Esistono diversi training e interventi volti a potenziare l'abilità di soluzione dei problemi matematici.

Le due strategie che hanno più evidenze empiriche a supporto sono:

Strategia d'attacco

Strategia a supporto della rappresentazione del problema

STRATEGIA D'ATTACCO

- Fornisce un piano strutturato per affrontare i problemi
- Favorisce la <u>comprensione</u> <u>approfondita del testo</u> del problema
- Riduce il carico cognitivo sulla memoria di lavoro, supportando i bambini nel mantenere a mente tutti i passaggi

Read the problem

Underline the question and cross out irrelevant information

Name the problem type

(Powell & Berry, 2019)

INVENTIAMO LA DOMANDA

RICO	NOS	CE	RE	LA	FU	NZI	ONE
	DEL	LA	D0	MA	AND	Α	

PER LA FESTA DI COMPLEANNO, IL PAF	PÀ DI GIADA HA PREPARATO
58 BISCOTTI ALLA MARMELLATA, 72 I	BISCOTTI INTEGRALI E UNA
TORTA AL CIOCCOLATO CHE HA DIVISO	O IN 32 FETTE. GLI INVITATI
HANNO MANGIATO 29 BISCOTTI ALLA	MARMELLATA, 34 BISCOTTI
INTEGRALI E 23 FETTE DI TORTA AL CIO	OCCOLATO.
	?
a) Ora rileggi il problema e sottolinea i	dati che ritieni utili. Cancella i dati inutili.
b) Poi completa la tabella.	
INDICA I DATI UTILI	

IL SEMAFORO

Tra i problemi qua sotto, alcuni hanno tutti i dati, altri hanno dati mancanti.

Colora la luce verde del semaforo se ci sono tutti i dati. Colora la luce rossa del semaforo se mancano dei dati, perché in questo caso devi fermarti.

INDIVIDUARE I DATI MANCANTI

PROBLEMA 1.

IL PAPÀ REGALA A JESSICA 11 SCATOLE DI CARAMELLE DI GUSTI ASSORTITI.

SE OGNI SCATOLA NE CONTIENE 34, QUANTE CARAMELLE RICEVERÀ IN TUTTO JESSICA?

PROBLEMA 2.

DURANTE LA FESTA LIAM MOSTRA AGLI AMICI IL SUO ALBUM DI FIGURINE. LIAM HA RACCOLTO IN TUTTO 537 FIGURINE.

QUANTE GLIENE MANCANO PER FINIRE L'ALBUM?

LA GOMMA DA CANCELLARE

Qua sotto ci sono alcuni problemi con dati inutili. Leggi attentamente i problemi e cancella tutti i dati inutili.

INDIVIDUARE I DATI SUPERFLUI

PROBLEMA 1.

UN CUOCO HA A DISPOSIZIONE 140 PATATE E 95 CAROTE. UTILIZZA 75 PATATE PER LA PREPARAZIONE DEGLI GNOCCHI.

QUANTE PATATE RESTANO?

PROBLEMA 2.

NEL TERRENO DI ANDREA SONO FIORITI 225 TULIPANI. SUO PADRE NE RACCOGLIE 84 E LI VENDE AI 4 FIORIAI DELLA CITTÀ. OGNI FIORAIO COMPRA LO STESSO NUMERO DI TULIPANI.

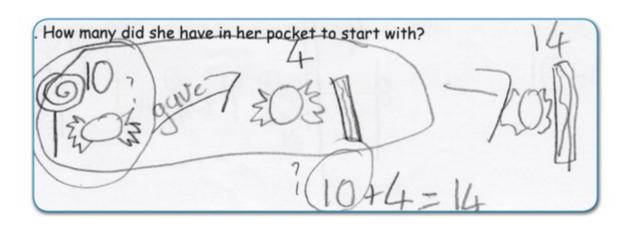
QUANTI TULIPANI COMPRA CIASCUN FIORAIO?

COMPRENDERE IL SIGNIFICATO DI ESPRESSIONI **QUANTITATIVE O VERBI IMPLICITI**

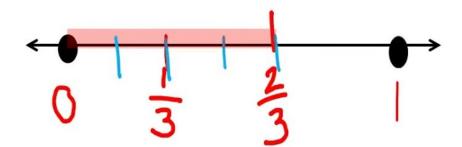
LA SIGNORA MARIA VA IN VACANZA IN MONTAGNA. PERCORRE 23 CHILOMETRI AL GIORNO.

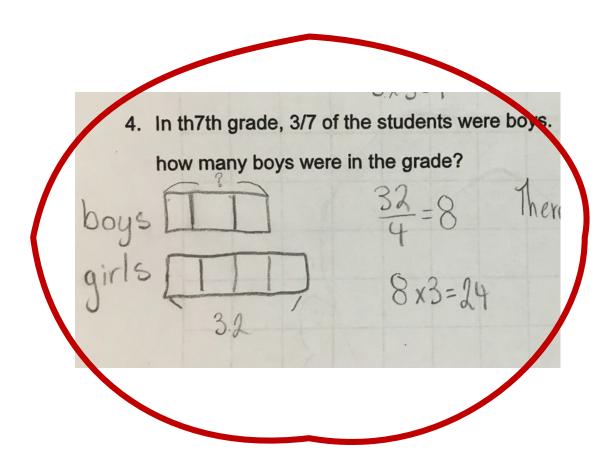
QUANTI CHILOMETRI PERCORRERÀ IN UNA SETTIMANA?

CERCHIA LA PAROLA BIRICHINA CHE NASCONDE UN DATO. POI RISOLVI IL PROBLEMA.

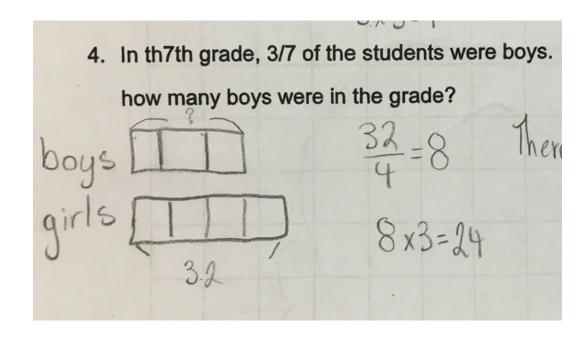

RAPPRESENTAZIONE

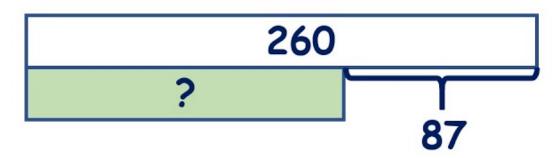
Rappresentare il problema graficamente (es. disegni, schemi, diagrammi) aiuta gli studenti a:


- Riconoscere le informazioni rilevanti e irrilevanti;
- Organizzare e integrare le informazioni in un modello del problema;
- Visualizzare il rapporto tra le variabili numeriche;
- Identificare l'operazione aritmetica necessaria per risolvere il problema;
- Alleggerire il carico nella memoria di lavoro.

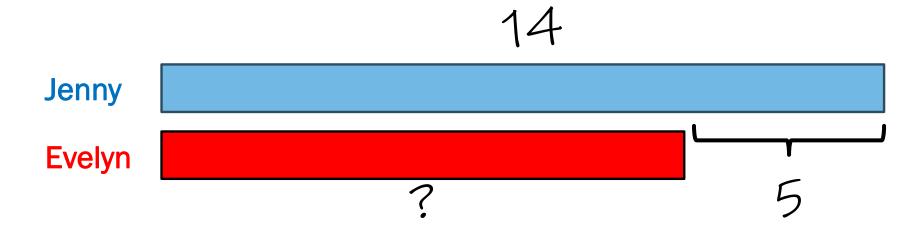

(Ainsworth & Th Loizou, 2003; Jitendra, 2002; Fuchs et al., 2021)

DIVERSI TIPI DI RAPPRESENTAZIONE GRAFICA



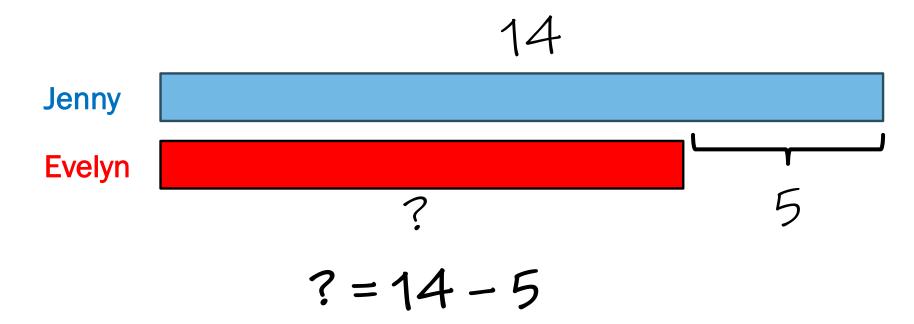

Peter's picture has $a_{\overline{3}}^2$ of an inch red border around it. There is $a_{\overline{6}}^1$ of an inch green border around the red border. How wide is the total border?

- Il Model Method è nato a Singapore negli anni '80.
- La caratteristica principale è la rappresentazione della struttura matematica del problema attraverso un grafico a barre.



Risolvere un problema attraverso il Model Method comprende 3 fasi:

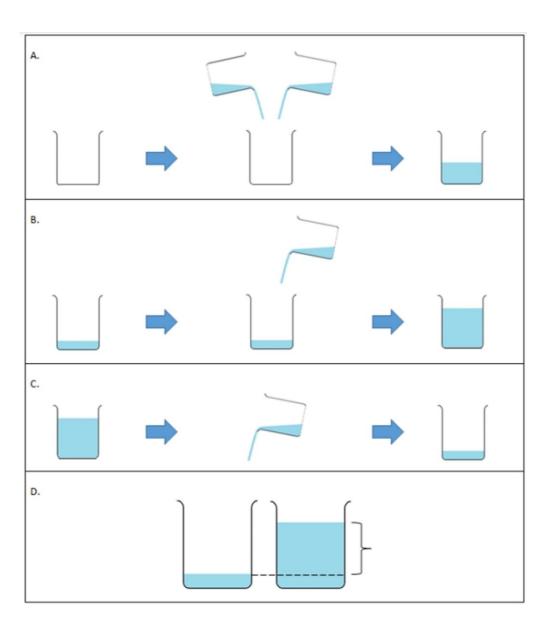
Jenny ha 14 matite colorate. Lei ha 5 matite colorate in più di Evelyn. Quante matite colorate ha Evelyn?


Risolvere un problema attraverso il Model Method comprende 3 fasi:

Jenny ha 14 matite colorate. Lei ha 5 matite colorate in più di Evelyn. Quante matite colorate ha Evelyn?

Risolvere un problema attraverso il Model Method comprende 3 fasi:

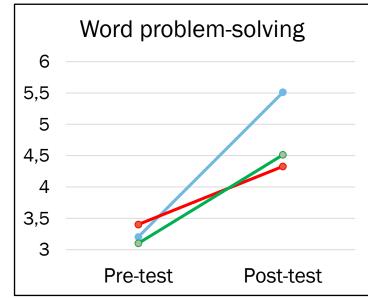
Jenny ha 14 matite colorate. Lei ha 5 matite colorate in più di Evelyn. Quante matite colorate ha Evelyn?

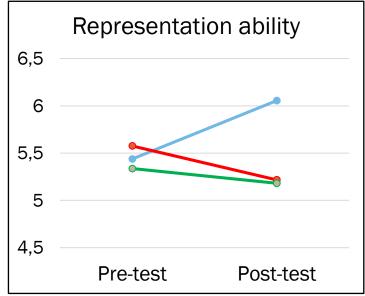


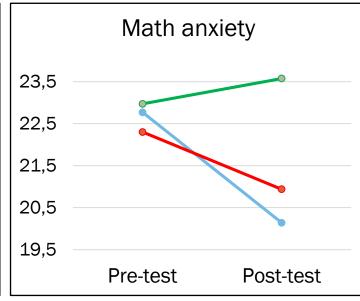
ESEMPIO RAPPRESENTAZIONE

RAPPRESENTAZIONE GRAFICA GUIDATA

Dato il problema, identificare la situazione matematica del problema scegliendo l'immagine corretta


	PROBLEMA	IMMAGINE
	1) Mario ha 5 caramelle e Luca ha 4 caramelle. Quante caramelle hanno	
	in tutto?	
	2) Mario ha 5 caramelle e Luca ha 4 caramelle. Quante caramelle in più	
	ha Mario rispetto a Luca?	
	3) Carlo aveva 6 caramelle. Poi ne ha mangiate 4. Quante caramelle gli	
	sono rimaste?	
- 1		I




RISULTATI

Two-level multilevel models

Model/Parameter	Estimate	SE	p-value	Hedge's g ES
Word problem-solving				
Fixed effects				
Intercept	3.122	0.268	<.001	
CC vs. Control	0.998	0.293	.007	.39
EM vs. Control	-0.184	0.313	.998	.07
CC vs. EM	1.182	0.313	.003	.46
Pretest word problem-solving	0.735	0.053	<.001	
Variance components				
Student-level residual	2.759	0.307		
Classroom-level intercept	0.120	0.112		
Model/Parameter	Estimate	SE	p-value	Hedge's g E
Representation ability	Litimate	512	p value	IRuge 3g E
Fixed effects				
Intercept	4.709	0.298	<.001	
CC vs. Control	0.876	0.297	.021	.50
EM vs. Control	0.037	0.316	1.000	.02
CC vs. EM	0.839	0.310	.035	.52
Pretest representation ability	0.265	0.039	<.001	
Variance components				
Student-level residual	1.922	1.420		
Classroom-level intercept	0.514	0.114		
Model/Parameter	Estimate	SE	p-value	Hadga's a FS
	Estimate	SE	p-varue	Hedge's g ES
Math anxiety Fixed effects				
	7.330	1.116	<.001	
Intercept CC vs. Control	- 3.436	0.897	.001	.50
EM vs. Control	-2.638	0.954	.032	.37
CC vs. EM	-2 .036 .798	0.934	1.000	.12
Pretest math anxiety	0.563	0.947	<.001	.12
Variance components	0.303	0.042	~.001	
Student-level residual	30.481	2.230		
Classroom-level intercept	0.124	1.037		