Analisi Matematica 11

Appunti delle lezioni tenute dalla Prof.ssa R. Toader

Universita di Trieste, CdL Ingegneria Industriale e CdL
Ingegneria Navale

a.a. 2024/2025

1 Calcolo differenziale: funzioni da RY a R

In questa sezione, F sard un sottoinsieme aperto di RY, x, un punto di £
e f : . — R una funzione. Vogliamo estendere il concetto di derivata gia
introdotto nel caso N = 1. Iniziamo con il fissare una “direzione”, ossia un
vettore v € RY tale che ||v]| = 1 (detto anche “versore”). Chiamiamo, se
esiste, “derivata direzionale” di f in @q nella direzione v il seguente limite

o F(@o + tv) — fo)
t—0 t

Y

che verra indicato con il simbolo

0
L (w0,

Se v coincide con un elemento e, della base canonica [ey, e, ..., ey] di RY,
la derivata direzionale si chiamera “derivata parziale” k-esima di f in xq e si
indichera con

of

a—xk(mo)-

Se &g = (29, 29,...,2%), si ha quindi:

of f(®o +tey,) — f(xo)

——(xo) = lim

3xk( 0) t—0 t
o Sl et ) = S8 ad e aR)
t—0 t y

per cui si usa parlare di “derivata rispetto alla k-esima variabile”.
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Esistono delle funzioni che, pur avendo derivate direzionali in tutte le possi-
bili direzioni, non sono continue. Ad esempio, la funzione f : R> — R definita
da

$4y2

fany) =4 @) se (x,y) # (0,0),
0 se (x,9) = (0,0),

ha tutte le derivate direzionali nulle in @y = (0,0), ma non ¢ continua in tale
punto, come si vede considerando la restrizione alla parabola {(z,y) € R? :
y = x?}. Questo fatto ci porta a cercare una generalizzazione pilt appropriata
del concetto di derivata.

Definizione 1 Diremo che la funzione f e “differenziabile” in xq se esiste
una applicazione lineare £ : RN — R per cui si possa scrivere

f(@) = f(zo) + l(x — o) + (),

dove r € una funzione tale che

lim (=) —0.
z—ao ||z — |

Se f e differenziabile in xo, 'applicazione lineare ¢ si chiama “differenziale”
di f in xy e si indica con il simbolo

df (o) -
Teorema 1 Se f ¢ differenziabile in xq, allora [ e continua in x.

Dimostrazione. Sappiamo che I'applicazione ¢ = df (x), essendo lineare, ¢
continua e £(0) = 0. Ne segue che

lim f(x) = lim [f(xo) + l(x — x0) + ()]

T—ra0 T—a:0
= fl@o) + €(0) + lim r(x)
Tr—rx(

. r(x) .

= f(xo) + lim —————— lim || — ||
T—raQ Haj — wo” T—r0
= f(=o),
il che dimostra che f e continua in x. [ ]

Seguendo un’abitudine consolidata per le applicazioni lineari, si usa spesso

scrivere df (xg)h invece di df (zy)(h).

Teorema 2 Se f ¢ differenziabile in xq, allora esistono tutte le derivate dire-
zionali di f in xo: per ogni direzione v € RN si ha

aof

av(wo) = df (xo)v.



Dimostrazione. Usando la definizione di differenziale, abbiamo

f(xo +tv) — f(x0) ~ lim df (o) (tv) + (o + tv)

lim
t—0 t t—0 t
— lim tdf (xo)v + r(xo + tv)
1—0 t
t
t—0 t
d’altra parte, essendo ||v|| =1, si ha
t t
lim —r(:co + tv) = lim Ir(@o + tv) = lim —|r(m)| =0,
=0 120 ||(@o + tv) — @o||  @ao [l@ — @o|
da cui la tesi. [ ]

In particolare, se v coincide con un elemento ey della base canonica [e;, e,
...,en], si ha:
of

8_:Uk<w0> = df(xo)ey .
Scrivendo il vettore h € RN come h = hie; + hoey + - - - + hyey, abbiamo

df (zo)h = hidf (xo)ey + hodf (zo)es + - - - 4 hydf (zo)en

_, 9f oaf ap9f
= hl 8$1 (mo) + hQa.IQ ($0) + + hNa:L‘N (wo) s
ossia N
of
df (xo)h = ; 8—xk(m0)h,€

Vi) = (L (@), @), .. 2 () .
0xy 0xo Oxy

si puo scrivere

Possiamo quindi scrivere

f(x) = f(zo) + V(o) - (T —20) +7(T),

con

lim &) .
e—ao [|T — x|

Analizziamo con maggiore attenzione il caso N = 2. Come di consueto, invece
di usare la notazione (z1, ), gli elementi di R? verranno denotati con (z,y).
Fissato quindi il punto xg = (¢, yo), possiamo scrivere

) = Flao, o) + 5o g0)(o = a0) + 5 (o )l = o) + r(,0),
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con
r(z,y)

lim
(z,y)—(0,Y0) \/(LL’ - .730)2 + (y — y0)2
Ricordando che il grafico di f & I'insieme

Gr={(zy.2) R’z = f(a,y)},

chiameremo “piano tangente” al grafico di f nel punto (xg, yo, f(zo,yo)) l'in-
sieme

=0.

{002 € B 2 = fao) + 5L oo ) = 0)+ 52 (o) — )}

2 Funzioni di classe C!

Il seguente risultato € noto come “teorema del differenziale totale”.

Teorema 3 Se f possiede le derivate parziali in un intorno di x ed esse sono
continue in xq, allora f e differenziabile in x,.

Dimostrazione. Supporremo per semplicita di notazioni N = 2. Definiamo
I'applicazione lineare ¢ : R? — R che ad ogni vettore h = (hy, hy) associa

of of
((h hy + =—(x0)h2 .
(h) = g (o)l + Dy 2(930)
Vedremo che ¢ e proprio il differenziale di f in xy. Intanto, ¢ lineare, come si
vede immediatamente. Inoltre, scrivendo @y = (29,29) e € = (1, x5), per il

Teorema di Lagrange si ha

f(@) = f(zo) = (f(w1,22) — f(a], 22)) + (f (2], 22) — f (2}, 23))
~ e - a8) + S8 @) (w2 — D),

per un certo & € [29, z1] e un certo & € [x9, z5]. Quindi,

r(x) = f(z) — f(zo) — l(x — x0)
{ of (&1, 2) — gmfl (%axg)] (z1 — 2) +

8 0
+ o) - gL ad)] (oo - ),

ed essendo |r; — 29| < ||z — x| € |19 — 2Y| < ||z — 0],

0
||3|3r(_33|0|| axfl(&, Tg) — afl(%al’g)

0 .0
+ ‘3 2(%752) D2 (Ihxz) .

Facendo tendere x a g, si ha che (£, 29) — (29, 29) e (29,&) — (29, 29) per
cui, essendo g—jl e 2L continue in @y = (29, 29), si ha

Oxao
L (@)
w—ao || — |

=0,

da cul la tesi. m



Diremo che la funzione f ¢ di classe C! su E se f possiede le derivate
parziali ed esse sono continue su tutto E. Dal teorema precedente segue che
una funzione di classe C! ¢ “differenziabile su E”, ossia in ogni punto di E.

3 Derivate parziali successive

Supponiamo, per semplicita, N = 2. Consideriamo F, un insieme aperto di
R? e una funzione f : £ — R che abbia le derivate parziali g_ai’ g—x’; in tutti i
punti di £. Se esse posseggono a loro volta derivate parziali in un punto x,
queste si dicono “derivate parziali seconde” della f in @ e si denotano con i

simboli

02 f 0 of 0% f 0 of

6_95%(580) = 8_:m8_x1(w0)’ 972011 (o) = 8_@871(%)’
0*f 0 of 0*f 0 of

921075 (o) = 8_9518_1:2(w0)’ a—x%(@'o) = Og Oy o) -

02 f 92 f
0x20x1’ Ox10x2

Teorema 4 (di Schwarz) Se esistono le derivate parziali seconde
i un intorno di xy ed esse sono continue in xg, allora
0% f 0% f

(1) =

012011 0 011029

(o) -

Dimostrazione. Sia p > 0 tale che B(xg, p) C E. Scriviamo xy = (29, 29)
e prendiamo un © = (xy,15) € B(xo, p) tale che z1 # 29 e x5 # ). Possiamo
allora definire
f@1,w9) — f(1, 25) fla1,m9) = f(a], 22)

T, Xo) = ., h(zy, o) =
g( 15 2) 1’2—558 ) (1/ 2) «76’1—96(1)

Si verifica che vale I'uguaglianza

g(xth) - g(‘r(l)va) _ h(xth) - h(l'laxg)
xy — 2 Ty — 19 '

Per il Teorema di Lagrange, esiste un &; €]z9, z,[ tale che

of of
g(xy,20) — g(af,22)  Og L (&, 30) — (&1, 29)

(&1, 20) =

ry — ) - Oxy Ty — 19
ed esiste un & €29, zo[ tale che
f) p)
h(xy,22) — h(xy,25)  Oh %(331,52) - %(93(1]752)
: 0 =5 —(11,8) = j 0 :
To — Ty 0xo T1 — 25

Di nuovo per il Teorema di Lagrange, esiste un ny € ]z9, x5 tale che

%(fb@) - %(517958) O*f
x9 — 9  Oxe01y

(517 772) )




ed esiste un n; €29, 1] tale che

A (11,6) — 2L(,6) o2

xry — Y B 011074 (m &2) -
Quindi,
o*f B o*f
(%g(%l <€17 7]2) a 8x18x2 (fh-/ €2> .

Facendo tendere @ = (1, 22) a @y = (29, 29), si ha che sia (&1,12) che (9, &)
tendono a xg, e per la continuita delle derivate seconde miste si ha la tesi. =

Diremo che la funzione f ¢ di classe C? su E se f possiede tutte le derivate
parziali seconde ed esse sono continue su tutto E. Dal teorema precedente
segue che se una funzione di classe C?, le derivate parziali “miste” sono uguali.

E utile definire la “matrice hessiana” di f nel punto x:
92 5
Bjxj:(m(ﬁ 8:528];:1 (.’Eo)
H f(zo) = ;

2 92
6171[;;2 ((L‘o) a_mg (il?())

se f ¢ di classe C?, si tratta di una matrice simmetrica.

Quanto sopra si puo estendere senza difficolta alle funzioni di N variabili,
con N qualunque. Se f ¢ di classe C?, la matrice hessiana risulta allora una
matrice simmetrica del tipo N X N:

9% f 92 f 92 f
Tx%(mo) Ox20x1 <m0) tt dznOxy (mo)
02 f 02 f 02 f
Ox10x2 (wo) ng(mo) tt Oz nOTa (wo)
Hf(wo) =
0% f 02 f 02 f
Or10xN <m0> Ox20x N (mo) T ax?\, (mo)

Procedendo per induzione, si possono definire le derivate parziali n-esime
di una funzione. Si dice che la funzione f ¢ di classe C" su E se f possiede
tutte le derivate parziali n-esime ed esse sono continue su tutto E.

4 La formula di Taylor

Supponiamo ora che f : E — R sia una funzione di classe C"*!, per un certo
n>1.

Consideriamo come sopra, per semplicita, il caso N = 2. Introduciamo le
seguenti notazioni:

0 0
Dx = a Dm:_a
8332



, 0 02 , 0

=—, D, D, = = —
“ 8ZE% ’ B axlal‘g ’ vz E)x% ’

e cosl via, per le derivate parziali successive. Si noti che, per un vettore

h = (hl, hg) € R2, si ha

df (zo)h = h1 Dy, f(o) + ho Dy, f(x0),
che risultera conveniente scrivere
df(a:o)h = [thr1 + hZDzz]f(wO) .

In questo modo, possiamo pensare che f viene trasformata dall’operatore
[h1 Dy, + hoD,,] nella nuova funzione [hyD,, + hoD,,|f = hiDy, f + hoD,, f.

Dati due punti @y e  in RY, si definisce il “segmento” che li congiunge:
[®o, ] = {xo + t(x — ) : t € [0,1]};
analogamente, scriveremo
o, [ = {xo + t(x —20) : t €]0,1[ }.

Supponiamo ora che [xg, ] sia un segmento contenuto in £ e consideriamo la
funzione ¢ : [0, 1] — R definita da

¢(t) = f(@o + t(x — =0)) -

Dimostriamo che ¢ ¢ derivabile n 4 1 volte su [0, 1]. Per t € [0, 1], essendo f
differenziabile in ug = xg + t(x — xy), si ha

f(u) = f(uo) + df (uo)(w — ug) +r(u),

con
tim %) 0.
u—ug || u — |
Quindi,
lim M iy (@0t s(@ —20)) — {(wo + t(x — x))
s—t S — s—t s —
i df (o + t(z — x0))((s — t)(x — o)) + (a0 + 5(T — 20))
s—t s —1
= df (xo + t(x — x0))(x — x0) + lim 7 (20 +Ss(_wt— x)) |
ed essendo
o r@ets@ )| L r(w)

= — =0
e s —t g ||’U, _ UOH ||:B wOH )
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si ha .
¢/(t> — lim ¢(S) B ¢( )

st s —1 = df (zo + t(x — x9)) (T — T0) -

Con le nuove notazioni, ponendo * — xy = h = (hy, hy), abbiamo
@' (t) = [ Dy, + hoDy,) f(mo + t(x — x0)) = g(x0 + t(T — TY)) |

dove ¢ ¢ la nuova funzione [h1D,, + haD,,|f. Possiamo allora iterare il
procedimento, e calcolare la derivata seconda di ¢:

¢/,(t) = [h Dy, + hoDy,]g(x0 + t(x — 0))
= [thm + hQng][thxl -+ hQDIQ]f<£EQ + t(.’B — fBo)) .

Per brevita, scriveremo
¢"(t) = [M Dy, + ha Dy, * f (o + t(x — 20)) -

Notiamo che, usando la linearita delle derivate parziali e 'uguaglianza delle
derivate miste (Teorema di Schwarz), si ha

[thz1 + hQDfEQ]Qf = h%chlf + 2h‘1h2D$1D12f + thigf
= [h{D2, + 2hihs Dy, Dy, + h3D21f .

Osserviamo che 'espressione
[h1 Dy, + hoDy,)? = [RD?2, + 2hiho Dy, Dy, + h3 D2 |

si ottiene formalmente come il quadrato di un binomio. Procedendo in questo
modo, si puo dimostrare per induzione che, per k =1,2,...,n+ 1, la formula
della derivata k-esima di ¢ e

¢*)(t) = [h1 Dy, + ha Dy, )" f (o + t(z — @0))

e che, usando formalmente la formula del binomio di Newton

k
N\ i
(ay + as)" = Z ( ,)al ad,
=0
si ha
Lk
T
1D + oD = [z (5)omn, D]
=0
in questa formula, i simboli D? e D° vanno interpretati come 1'operatore
1 To
identita).
Per poter scrivere agevolmente la formula di Taylor, introduciamo la nota-
zione

d" f(xo)h* = [h1 Dy, + hoDy, )" f (w0) .
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Teorema 5 Sia [ : E — R di classe C"™! e [z, ] un segmento contenuto in
E. Allora esiste un & € |xg, x| tale che

f(®) = pu(®) + (),

dove

1 1
pa(T) = f($0)+df(wo)($—wo)+§d2f(wo)($—ﬂ3o)2+' : ‘+Ednf($0)($—$o)n
e il “polinomio di Taylor di grado n associato alla funzione f nel punto xy” e

(@) = " F(E) (@ — )"

(n+1)!
e il “resto di Lagrange”.

Dimostrazione. Per la formula di Taylor applicata alla funzione ¢, si ha

1 1
1) = "0Vt + — " t2 = (n) mn (n+1) tn—i—l
6(0) = 60) + 6 Ot + 50" OF + -+ 6O + gm0 V(.
per un certo £ €]0,t[. La formula cercata si ottiene prendendo ¢ = 1 e
sostituendo i valori delle derivate di ¢ trovati sopra. [ ]

Il polinomio di Taylor si puo anche scrivere nella forma compatta
"1
pul) = 3 12d* o) — o)
k=0

con la convenzione che d°f(zq)(x — x()?, il primo addendo della somma, sia
f (o). Si ha quindi

n

1

() = Z E[(m - x(l))Dm + (zg — xg)DIQ]kf(mo)
k=0
"1 k L ok . .
B2 (Z (j)ﬁﬁ (21 — )" (s — a3) ) .

Puo essere utile la seguente espressione per il polinomio di secondo grado:

pa(@) = f(@o) + Vf(@o) - (@ — o) + 5 (Hf(@o)(@ — o)) - (@ — @) .

Il teorema sopra dimostrato resta valido per qualsiasi dimensione N, pur
di interpretare correttamente le notazioni: ad esempio, per un vettore h =
(h1,ha, ..., hy), si dovra leggere

d* f(xo)h"* = [h Dy, + hoDy, + -+ + hy Doy ] f(20) .

In questo caso, volendo esplicitare il polinomio di Taylor, sara utile utilizzare
la formula di Leibniz

k!
k . mi . m m
(a1 +ag+---+ay)" = E gy e p—. 'a11a22...aNN_
mitmatetmy=k L2 N

9



5 La ricerca di massimi e minimi

Come sopra, consideriamo un insieme aperto £ C RY e una funzione f : £ —
R. Diremo che ¢y € E ¢ un “punto di massimo locale” per la funzione f se
esiste un intorno U di xg contenuto in F per cui zy ¢ punto di massimo della
restrizione di f a U. Equivalentemente, se

36>0: Ve e B dx,xy) <6 = f(x) < f(xo).
Analogamente per “punto di minimo locale”.

Teorema 6 (di Fermat) Se xy ¢ un punto di massimo o di minimo locale e
f e differenziabile in xq, allora V f(xy) = 0.

Dimostrazione. Se x, ¢ punto di massimo locale, per ogni direzione v € R¥

avremo che
f(xo + tv) — f(xo) >0 set<O0,
t <0 set>0.

Siccome f e differenziabile in xy, ne deduciamo che

() =l HETII I o

In particolare, sono nulle tutte le derivate parziali, per cui V f(axy) = 0. Nel
caso in cui xy sia un punto di minimo locale, si procede in modo analogo. =

Definizione 2 Un punto il cui il gradiente si annulli é detto “punto stazio-
nario”.

Naturalmente un tale punto potrebbe non essere ne di massimo ne di minimo.

Mostreremo ora come la formula di Taylor possa essere usata per stabilire un
criterio affincheé un punto stazionario sia di massimo, o di minimo. Iniziamo
con una definizione. Diremo che una matrice A simmetrica N x N ¢ definita
positiva se

[AR]-h >0, perogni h € RV \ {0}.

Diremo che A ¢ definita negativa se vale la disuguaglianza opposta, ossia se
—A & definita positiva.

Teorema 7 Se xy ¢ un punto stazionario e f ¢ di classe C?, con matrice
hessiana H f(xq) definita positiva, allora xy é un punto di minimo locale. Se
invece H f(xg) & definita negativa, allora &y é un punto di massimo locale.

Dimostrazione. Per la formula di Taylor, per  # x; in un intorno di x,
esiste un & € |xy, x| per cui

Fl@) = flo) + V(o) - (@ — w0) + 5 (HF (€)@ — x0)) - (& — o).

10



Se A = H f(xo) ¢ definita positiva, esiste un ¢ > 0 tale che, per ogni v € RY
con |jv]| =1,

[Av]-v > c.
(Abbiamo qui usato il Teorema di Weierstrass, e il fatto che la sfera {v € RV :
|v|| = 1} € un insieme compatto.) Quindi
xT—x T—x
(Hf(a:o) 0 ) 0 >e.
[ = 2ol [J& — 0l

Per la continuita delle derivate seconde, se @ e sufficientemente vicino a xq,

1
>§C>O.

(111(8)

33—520) r — I
| — o[/ |z — 2ol —

(Lo si vede per assurdo, usando di nuovo la compattezza della sfera.) Essendo
V f(x¢) = 0, per tali & abbiamo che

f(@) = f(@o) + 3 (HE) @ —0)) - (@ 0)
> fwo) + Sell@ — ol > f(=o).

per cui @y e un punto di minimo locale.
La dimostrazione della seconda affermazione ¢ analoga. |

Enunciamo ora (senza dimostrazione) due criteri utili a stabilire quando
una matrice A simmetrica N x N & definita positiva o negativa. Ricordiamo
che gli autovalori di una matrice simmetrica sono tutti reali.

Primo criterio. La matrice A é definita positiva se tutti i suoi autovalori
sono positivi. Essa é definita negativa se tutti i suoi autovalori sono negativi.

Secondo criterio. La matrice A = (a;;);; € definita positiva se

ayp >0,
a1; Q12

det >0,
Q21 A22

a1; Q12 A3

det 91 Q92 (93 > O, R
asy a3z 0ass

a1 a2 s AIN
Q21  A22 s A2N

det . . . > 0.
a1 anz2 -+ 4NN

Essa e definita negativa se i determinanti scritti sopra hanno segno alternato:
quelli delle sottomatrici con un numero dispari di righe e di colonne sono
negativi, mentre quelli delle sottomatrici con un numero pari di righe e di
colonne sono positivi.
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6 Interpretazione duale del differenziale

Sia E un sottoinsieme aperto di RY, @y un punto di £ e f : £ — R una
funzione differenziabile in xq. Per definizione il differenziale di f in xq, df (x),
¢ una applicazione lineare da RY in R; in quanto tale df (xy) appartiene allo
spazio duale (RV)* di RV

Lo spazio (R™)* & isomorfo a RY, dunque ha dimensione finita. Indichiamo con

(e1,...,ey) la base canonica di RY. Peri =1,...,N siadz; = m : RY - R
la proiezione definita da dz;(x) = m;(x) = x;, dove € = (z1,...,2y). La base
canonica duale di (RY)* & data dalle proiezioni (dz, ..., dzy). Scriviamo ora

df (o) nella base canonica duale:

df (o)h = V f (o) - b = Z

9

N
o= 2
per cui

df (o) =

=1

quindi df (zg) & rappresentato nella base canonica duale di (R™)* dal vettore

(8f of

6951( ) 8N

(930))

7 Interpretazione geometrica del gradiente

Data una funzione f : E C RV — R definiamo l'insieme di livello ¢ € R di f
come

Ye={xe€FE: f(x)=c}.

Consideriamo il caso N = 2. L’insieme di livello Y. si ottiene intersecando il
grafico della funzione con il piano orizzontale di equazione z = ¢ e proiettando
questa intersezione sul piano (z,y). Spesso gli insiemi di livello sono delle curve
nel piano (x,y). Le curve di livello indicate sulle carte topografiche aiutano
per esempio a capire la pendenza di una montagna.

Spostandosi nel piano (z,y) da un insieme di livello all’altro il valore della
funzione aumenta o diminuisce. Vediamo ora che il gradiente in un punto
(%0, yo) determina la direzione di massima pendenza sul grafico della funzione
in un intorno del punto. Infatti, se consideriamo una direzione v = (vq,vy)
e la restrizione della funzione alla retta passante per (xg, ) e parallela a v:
o(t) = f(xog+ tvr, yo + tve), la pendenza del suo grafico in t = 0 & data da

#(0) = 9L (w0, u0) = Vo) v

IPer definizione lo spazio duale di RN ¢ lo spazio delle applicazioni lineari da RY in R.
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Figura 1: Carta topografica del Monte Cervino @ugicio sederale di topografia swisstopo

Il gradiente di f individua la direzione w = %. La derivata dire-
o, Yo
zionale di f nella direzione w ¢ data da
of V f (o, Yo) |V f (o, yo) II”
—_— — v . = V . —
gup "0 0) = VI (ost) w0 = VI ey I Faor
= [V f(zo, )]l -

Per la disuguaglianza di Schwarz si ha

0 0
‘a—i(ﬂfo,yo)‘ = |V f(xo,40) - v| <[V f(zo,v0)ll |v|| = [V (20, y0)|| = 8—1{](550,90)7

quindi per ogni direzione v

_%(xo’yo) < %(95071/0) < %(95073/0),

per cui la direzione del gradiente ¢ quella in cui si ha il massimo accrescimento
della funzione e la direzione opposta, individuata da —V f(zg, yo) & quella in cui
si ha la massima decrescenza della funzione, in un intorno del punto (xg, yo). Da
quanto detto segue che se in un punto il gradiente ¢ non nullo allora spostandosi
nelle direzione del gradiente i valori della funzione aumentano, spostandosi
nella direzione opposta diminuiscono, quindi il punto in questione non puo
essere punto di massimo o punto di minimo della funzione. Di conseguenza i
punti di massimo e di minimo locali interni al dominio vanno cercati tra i punti
in cui il gradiente della funzione si annulla, come avevamo visto nel Teorema
di Fermat.

8 1l differenziale di una funzione a valori vet-
toriali

Sia F un sottoinsieme aperto di RY, &y un punto di £ e f : £ — R una
funzione.
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Figura 2: Grafico di f(z,y) = x? + y2, alcune curve di livello, il gradiente in
un punto e la curva sul grafico corrispondente a un segmento nel piano (x,y)
che parte dal punto fissato e va nella direzione del gradiente.

Definizione 3 Diremo che la funzione f & “differenziabile” in xqy se esiste
una applicazione lineare £ : RN — RM per cui si possa scrivere

f(®) = f(xo) + Uz — 20) + 7(T),
dove r € una funzione tale che

lim r(@) =0.
| e |

Se [ e differenziabile in xq, l'applicazione lineare ¢ si chiama “differenziale”
di f in xy e si indica con il simbolo

Siano f1, fa, ..., far le componenti di f rispetto alla base canonica di RM, per
cui

f(®) = (h(=), o), ..., fu(@)).

Teorema 8 La funzione f é differenziabile in xy se e solo se lo sono tutte le
sue componenti. In tal caso, per ogni vettore h € RN si ha

df(il,'o)h = (df1 (mo)h, de(iBo)h, . ,dfM(ZBQ)h) .

14



Dimostrazione. Considerando le componenti nell’equazione
f(x) = f(®o) + Lz — xo) + (),
possiamo scrivere
frx) = fr(xo) + le(z — o) + 13(T)

con k=1,2,..., M, e sappiamo che

lim r(x) =0 < lim (@) =0 perognik=1,2,...,.M,
a—wo || — ol a0 || — o]
da cui la tesi. m

Il teorema precedente permette di ricondurre lo studio del differenziale di
una funzione a valori vettoriali a quello delle sue componenti, che sono funzioni
a valori scalari.

E utile considerare la matrice associata all’applicazione lineare ¢ = df (x),
data da

EM('el) EM(‘GQ) . EM('eN)

dove e, es,...ey sono i vettori della base canonica di RY. Tale matrice si
chiama “matrice jacobiana” associata alla funzione f nel punto xq e si denota
con Jf(xg). Ricordando che

g—;:’;(wo) = df(zo)e; ,

conk=1,2,....Mej=1,2,..., N, si ottiene la matrice

S—Q(ww Q—Q(wo) %(wo)
le] 2] 0
Jf(x) = a—ﬁ(fﬂo) a—ﬁ(fﬂo) %(wo)

M(a:o) M(azo) .. m'(wo)

o1 0z Ox N

Studiamo ora la differenziabilita di una funzione composta.

Teorema 9 Se f : E — RM ¢ differenziabile in xy, E' ¢ un aperto di RM
contenente f(E) e g : E' — R ¢ differenziabile in f(xo), allora go f ¢
differenziabile in xq, e si ha

d(g o f)(xo) = dg(f(x0)) o df (x0) .
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Dimostrazione. Ponendo y, = f(xy), si ha

f(x) = f(zo) +df (zo)(—20) +71(x), 9(y) = 9(Yo) +dg(yo)(Y—yo) +72(y),

con
lim r(@) =0, Ilim r2(y)

—=— =0.
T—ra0 ||$ — iL'(]H Y=Y Hy yOH

Introduciamo la funzione Ry : B/ — R cosi definita:

72(y)
-l YTV

Ry(y) = 0
0 se Yy =1yYg-

Si noti che Ry ¢ continua in y,. Allora

9(f(®)) = g(f(@0)) + dg(f (x0))[f () — f(20)] + r2(f(2))
= g(f (o)) + dg(f (x0))|df (x0)(x — @0) + r1(2)] + r2(f(T))
9(f(@0)) + [dg(f(20)) o df (z0)](x — 20) + 73(2),

dove
r3(x) = dg(f(@o))(r1(x)) + r2(f())
= dg(f(zo))(r1(z)) + || f(x) — f(zo)[| Ra(f(2))
= dg(f(xo))(r1(2)) + ||df (o) (x — @0) + 1 (2)|| B2 (f (2)) -
Quindi,

uﬁfiﬂ-—Wg o ()

(oo (=) | + 1) ratient

Se & — xy, il primo addendo tende a 0, poiché dg(f(xy)) & continua; f & con-
tinua in @ e Ry ¢ continua in Y, = f(xo) con Ry(y,)) = 0, per cui [[Ra(f(x))||
tende a 0; df (xg), essendo continua, € limitata sull’insieme compatto B(0,1).
Quindi, si ha che

@l

z=a0 @ — ao |
Ne segue che go f ¢ differenziabile in x con differenziale dg(f(xo)) o df (xy). m

Come noto, la matrice associata alla composizione di due applicazioni li-
neari ¢ il prodotto delle due matrici corrispondenti. Dal teorema precedente
abbiamo quindi la seguente formula per le matrici jacobiane:

J(go f)(xo) = Jg(f(x0)) - Jf(20),
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ossia

8(;;{)1 (wo) .. O(gofn (wo)

0o (g ... 20D ()

81’1 a{L'N
G (f(x0)) - 32 (f(m0)) [ 52(m0) -+ # (o)
FE(f(@o) - G2 (f(@0)) ) \ Gt (o) -~ G2 (o)
Ne segue la formula per le derivate parziali:
d(go [ (o)

8xj

dgi dfr 9gi Ofa Jgi Ofum

M

dgi

9 Il teorema della funzione implicita - primo
enunciato

Il seguente risultato porta il nome di Ulisse Dini.

Teorema 10 Siano 2 C R x R un aperto, g : 2 = R una funzione di classe
C! e (wo,y0) un punto di Q per cui si abbia:

0
9(wo,90) =0 a—z(Io,yo) £0.

Allora esistono un intorno aperto U di xg, un intorno aperto V. di yo e una
funzione n : U — V di classe C' tali che U xV CQ e, presiz € U ey €V,
st ha:
g(x,y) =0 & y=n(z).
Inoltre, la funzione n ¢ di classe C' e wvale la formula
52 (x,n(x))

T =y

La funzione 7 risulta definita “implicitamente” dall’equazione g(x,y) = 0; il
suo grafico e 'insieme

Gr(n) ={(z,y) €U xV : g(z,y) = 0}.
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Dimostrazione. Supponiamo ad esempio g—z(xo,yo) > 0. Per la proprieta di
permanenza del segno, esiste un 6 > 0 tale che, se |z — x¢| < e |y — yo| < 0,
allora g—i(x,y) > 0. Quindi, per ogni x € [xg — 0,29 + d], la funzione g(x,-) &
strettamente crescente su [y — 0, yo + d]. Essendo g(z,yo) = 0, avremo che

9(z0, %0 — 0) <0 < g(wo, 40 + ).

Per la permanenza del segno, esiste un ¢’ > 0 tale che, se x € [xg — ¢, 29 + '],
allora

9(x,y0 = 6) <0 < g(x, 50+ ).
Definiamo U =|z¢g — ¢, 20+ 0'[ e V =]yo — 0, yo + [ . Quindi, per ogni x € U,
siccome g(z, -) ¢ strettamente crescente, esiste uno ed un solo y € Jyo — 9, yo+4|
per cui g(z,y) = 0; chiamo n(x) tale y. Resta cosi definita una funzione 7 :
U — V tale che, presix € U e y € V, si ha:

g(r,y) =0 <& y=n().

Per vedere che 7 ¢ continua, fissiamo ora un z € U e dimostriamo la continuita
in Z. Preso un o € U e considerata la funzione ~ : [0, 1] — R x R definita da

(1) = (Z +t(z = 2),9(2) + t(n(z) —n(2))),

applicando il Teorema di Lagrange alla funzione go+y si ha che esiste un £ €0, 1|
per cui

o g . Og _
9(z,0()) = 9(,n(2)) = 2~ (v(§)) (@ — 7) + a—y(’y(f))(ﬂ(ﬂﬂ) — (7))
Essendo g(z,n(x)) = g(z,n(x)) = 0, si ha che
2
_ V(€ _
n(z) —n(z)] = |2 |z — 7
2(y(¢
Siccome le derivate parziali di ¢ sono continue e g—z e non nulla sul compatto
U x V, si ha che |%(7(§))(g—§(7(§)))’1| ¢ limitato superiormente e ne segue la

continuita di 7 in . Resta da vedere la derivabilita: procedendo come sopra

si ha che 5
na) —n@) _ 20(0)
Tz 2(y(¢))
con (&) appartenente al segmento che congiunge (z,n(z)) con (z,n(x)). Se x
tende a z, si ha che v(£) tende a (Z,n(z)) e quindi

() = lim n(x) = n(7) — _%(jm(@)
G Sz, (@)

Ne segue che 7 ¢ di classe C*. |

18



Vale naturalmente anche il seguente enunciato simmetrico rispetto al pre-
cedente.

Teorema 11 Siano 2 C R x R un aperto, g : Q2 — R una funzione di classe
C! e (xo,y0) un punto di Q per cui si abbia:

89(

9(0,%0) =0 e Zo, %) # 0.

Allora esistono un intorno aperto U di xg, un intorno aperto V di yo e una
funzione n : V — U di classe C* tali che U xV C Qe, presiz €U ey €V,
si ha:
g(z,y) =0 < x=n(y).
Inoltre, la funzione n ¢ di classe C' e vale la formula
Fn(y),y)

) = CB(p(y),y)

10 Il teorema della funzione implicita - caso
generale

Vediamo come si generalizza il teorema della funzione implicita. Conside-
reremo un insieme aperto 2 di RM x RY e una funzione g :  — R", di classe
C!. Quindi, ¢ ha N componenti

g(:v,y) = (,91(513,'!/), cee ,gN(:B,y)) :

Quix = (21,...,2) €E RM ey = (y1,...,yn) € RY. Useremo la seguente
notazione per le matrici jacobiane:

3 9 3 9
ag azi ( ) y) azg;{ ( ’ y) ag azi ( ) y) 5;, (m7 y)
_(-’E,y>: . 2 ’ _(way):
O 891\1 99N ay 05]1\1 391\7

Possiamo ora enunciare il Teorema di Dini in questo caso piu generale.

Teorema 12 Siano Q C RM x RN un aperto, g : Q@ — RN wuna funzione di
classe C' e (xg,y,) un punto di Q0 per cui si abbia:

0
g(xo,yy) =0, det %(mo,yo) #£0.

Allora esistono un intorno aperto U di xqy, un intorno aperto V di y, e una
funzione n : U — V di classe C' tali che U xV CQ e, presiz cU ey €V,
si ha:

gz y)=0 & y=n(=).
Inoltre, la funzione n & di classe C* e vale la formula

i) = (§hie.nfa)) 5w nta).
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Dimostrazione. ? Faremo la dimostrazione per induzione su N.

Nel caso N =1 e M > 2, si procede in modo del tutto analogo a quanto gia
fatto nel caso M = 1. Bastera prendere, al posto dellintervallo [xy—0d, xo+0], la
palla chiusa B(xg, d), e similmente per gli intorni aperti di &y, per dimostrare
I'esistenza e la continuita della funzione 7. Resta da vedere la derivabilita:
considerato & = (Z1,...,Zy), prendiamo ora & = (T1+Ah, ..., Ty ); procedendo
come in precedenza, si ha che

@4 hy . Ey) — (T, Ta) 29(~(¢))
h S2(v(6)

con (&) appartenente al segmento che congiunge (&, n(
h tende a 0, si ha che y(§) tende a (Z,n(x)) e quindi

8
=
o
o
=
ﬁ
=
8
[@p)
@

_ _ _ _ 39 (a4 o (
on (%) = lim n(:cl—i—h,...,xM)—n(xl,...,q:M) B 3—;]1(513,77(93))
— =S
Oz I h ae(@,n(z))
Analogamente si calcolano le derivate parziali rispetto a x», ...,z )/, per cui si

vede che n & di classe C! e

(@, 1())

I S
) = ) ow

Supponiamo ora I’enunciato valido fino a N — 1, per un certo N > 2 (e M > 1
qualsiasi) e dimostriamo che vale anche per N. Useremo la notazione

Yy, = (ylv"'anyl)v

per cui scriveremo y = (¥, yn). Siccome

1o} 0.
3_;;1(5807 yO) e &y%(wo’ y())
det : : #0,

0 dgn
agyzj( 07y0> ayN( an[))

almeno uno degli elementi dell’ultima colonna ¢ non nullo. Possiamo sup-
porre senza perdita di generalita, eventualmente permutando le righe, che sia

995 (2, yy) # 0. Serivendo gy = (53, y%), con G = (4., y%_,), sard
~ dgn
gN(w(%y(l)ay?V):Oa ayN(wmylayN)#O'

Allora (caso unidimensionale) esistono un intorno aperto U; di (g, #)), un
intorno aperto Vy di y?\, e una funzione 7, : U; — Vy di classe C! tali che
Uy x Vy C Q, per cui si abbia: se (x,9,) € Uy e yn € Vy,

gN(Z, Y, yn) =0 & yv =m(x,y;),

2non fatta a lezione
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U 1 89N 5 B
Jn <w7y ) — (w,y ’77 (m7y )) .
MY T g () Oy O

Possiamo supporre U1 della forma U x Vi, con U intorno aperto di xo ¢ V4
intorno aperto di ¢?. Definiamo la funzione ¢ : U x Vi — RN, ponendo

¢($,@1) = (91(337 @17771(337 @1))7 s :ngl(wa gla 771('737@1))) :
Per brevita, scriveremo
9(1,...,N—1)(337 y) - (.91(937 y): s agN—l(wa y)) :

Notiamo che ¢(xo, %)) = 0 e che, essendo 0 (xo, 7°) = ¥,

0o - dg 1,..,N—1 dg 1,..,N—1 on
a~ (w()a yo) - #(m07y0> + W( 05 y0)8~1 (330, yo) . (*)
Inoltre, siccome gy (x, Yy, m(x,y;)) = 0, per ogni (x,y,) € U, differenziando
si ha:
dg dg om
0= 8~N< 07y0> a Z( 07y0)a~ (w07y1) (**)
Seriviamo
¢ - dg 1,...,.N—1
~ ('r'c(]u ?) ( )< OJyO)
9o 1 9y, dyn
det - (w0, ) = g ——— det ,
Y1 33,,—N(e’130a Yo) dgn
0 —— (0, Yo)
Oyn

avendo usato la notazione di matrice suddivisa a blocchi. Sostituendo le due
uguaglianze (%), (x%) e usando le proprieta dei determinanti, si ha:

99 oy | 99a1,....N—1)
9, (20, 7) Do (205 Yo)
det 3 =
0 \ az—N(xo,yo)
99(1,...N-1) 991,...N—1) om 99¢1,...N-1)
— s + —— ) Zo, . Zo;
e diin ( 0 yo) YN ( 0 yO)@yl( 0 1) Dy ( 0 yo)
dg 0 . dg
373?]:( 0 0)+8 ( 0,y0)8~ (20, 7Y) \ W( 0,%0)
an N dg
= det (8~ (w0,90) + 3 ( o,yo)agi (0, 1Y) m@oﬂo))
0 0
= det <8~ (0, v0) 3;; (Sco,yo)> = det afz(xmyo) #0




Per 1’1p0t651 induttiva, esistono un intorno aperto U di @, un intorno aperto
Vi di y1 e una funzione 7, : U — V; di classe C! tali che U x V; C U x Vl, per
cui si abbia: per ogni x € U e y, € V1,

o(x,9,) =0 & gy =m(x).

In conclusione, per x € U e y = (yy,yn) € Vi X Vs, si ha:

o 9a,...,.N-1) (.’L’, @17 yN) =0
z,y =0 <& -
9(@.y) { gn (T, Yy, yn) =0
N { g(l,A..,Nfl)(wlrglvyN) =0
yn = m(x, yy)
o { ¢($ @1) 9
YN = 711(3: ’y1)
N { 1= 772@) 3
yn = m(x, yy)

&y = (n(@),m(zn()).
Ponendo V' = V] x Vj, resta pertanto definita la funzione n: U — V:

(@) = (n2(2),m(z,n2(x))) .

Tale funzione ¢ di classe C*, siccome lo sono sia 1, che 1,. Siccome g(x,n(x)) =
0 per ogni € U, se ne deduce che che

dg g _
da cui la formula per Jn(x). n

Ed ecco 'enunciato simmetrico.

Teorema 13 Siano Q C RM x RN un aperto, g : Q — R una funzione di
classe C' e (xg,y,) un punto di Q per cui si abbia:

dg
g<$0,y0> :07 det%(m()vy()) %O

Allora esistono un intorno aperto U di xy, un intorno aperto V di y, e una
funzione n : V. — U di classe C* tali che U xV CQ e, presizc €U ey €V,
st ha:

gx,y)=0 < x=1(y).

Inoltre, la funzione n & di classe C* e vale la formula

In(y) = — (g—i(n(y)),y> g—Z(n(y)),y)'

Vediamo ora un’importante conseguenza del teorema della funzione impli-
cita.
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Definizione 4 Dati A e B, due aperti di RY, una funzione ¢ : A — B sé un
“diffeomorfismo” se & di classe C', biiettiva e la sua inversa ¢! : B — A ¢
anch’essa di classe C*.

Enunciamo il teorema di inversione locale.

Teorema 14 Siano A e B due aperti di RN e ¢ : A — B una funzione di
classe C1. Se per un certo xy € A si ha che det Jp(xy) # 0, allora esistono
un intorno aperto U di xy contenuto in A, e un intorno aperto V di p(xo)
contenuto in B, tali che la restrizione oy : U — V sia un diffeomorfismo.

Dimostrazione. Consideriamo la funzione g : A x B — R" definita da

g(x,y) =p(x) —y.
Posto y, = ¢(xy), si ha che
Jg
g(xo,yy) =0, e det %(wo,yo) = det Jo(xo) # 0.

Per il teorema della funzione implicita, esistono un intorno aperto V' di y,, un
intorno aperto U di &y e una funzione n : V — U di classe C! tali che, presi
yeVexel,siha

plx)=y & glxy)=0 < z=n(y).

Quindi, n = <,0|_U1 e la dimostrazione e cosi completa. |

11 Le M-superfici
Indichiamo con I un rettangolo di RM, dove 1 < M < N.

Definizione 5 Chiameremo M-superficie in RY una funzione o : I — RV
di classe C*. Se M = 1, o si dira anche curva; se M = 2, si dira semplicemente
superficie. L’insieme o(I) ¢ detto supporto della M-superficie o. Diremo
che la M -superficie o ¢ regolare se, per ogni u € IO, la matrice jacobiana
o'(u) ha rango M.

Consideriamo da vicino il caso N = 3. Una curva in R? ¢ una funzione
o : [a,b] = R3 o = (01,09,03). La curva & regolare se, per ogni ¢t €]a,b|,
il vettore o'(t) = (o(t),d4(t),04(t)) ¢ non nullo. In tal caso, si definisce il
seguente versore tangente nel punto o(t) :
o'(t)

e @l

Esempio. La curva o : [0, 27] — R? definita da

Ta<t>

o(t) = (Rcos(2t), Rsin(2t),0)
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ha come supporto la circonferenza
{(z,y,2): 2 +y* = R* 2 = 0}

(che viene percorsa due volte). Essendo o'(t) = (—2Rsin(2t), 2R cos(2t),0), si
tratta di una curva regolare, e si ha:

7,(t) = (—sin(2t), cos(2t),0) .

Una superficie in R? & una funzione o : [ay, by] X [az, bs] — R3. La superficie
& regolare se, per ogni (u, v) € Jar, bi[ x Jag, bo[, i vettori 22(u, v), %2 (u,v) sono
linearmente indipendenti. In tal caso, essi individuano un piano, detto piano
tangente alla superficie nel punto o(u,v), e si definisce il seguente versore

normale:

89 (u,v) x P(u,v)

152 (u, v) x G2 (u, )]

(

Vo(u,v) =

Esempi. 1. La superficie o : [0, 7] x [0, 7] — R? definita da
o(¢,0) = (Rsin¢cosf, Rsin ¢sin b, R cos ¢)
ha come supporto la semisfera
{(@y,2): 2%+ + 2" = R,y > 0}

Essendo

g—;((b, 0) = (Rcos¢cosl, Rcospsinf, —Rsin @) ,

g—g(gzﬁ, 0) = (—Rsin¢sinf, Rsin ¢ cos6,0),
si tratta di una superficie regolare, e si ha:
Vy(,0) = (sin ¢ cos B, sinpsin b, cos @) .
2. La superficie o : [r, R] x [0,27] — R3, con 0 < r < R, data da
o(u,v) = (ucosv,usinv,0),

ha come supporto un cerchio se » = 0, una corona circolare se r > 0. E una
superficie regolare.

3. La superficie o : [r, R] x [0,27] — R?, con 0 < r < R, definita da

o (1, 0) = ((T;R + <u— ”;R> cos (g)) cos v,
(C80 (=25 o (3) ) sine
(-5 ()

ha comes supporto un nastro di Mobius. E anch’essa una superficie regolare.
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4. La superficie o : [0,27] x [0,27] — R3 definita da
o(u,v) = ((R+ rcosu)cosv, (R+ rcosu)sinv, rsinu)
dove 0 < r < R, ha come supporto ’anello toroidale o “toro”
{(02.2) s (Vo T2 = RP 22 = 7).
Si puo verificare che anche in questo caso si tratta di una superficie regolare.

Una 3-superficie in R? si dice anche volume.

Esempio. La funzione o : [0, R] x [0, 7] x [0,27] — R? definita da
o(p,¢,0) = (psin@cos b, psinpsinb, pcos ¢)
ha come supporto la palla chiusa
{(z,y,2) : 2* + y* + 2> < R*}.

In questo caso, deto’(p,$,0) = p*sing e pertanto si tratta di un volume
regolare.

12 Analisi locale delle M-superfici

Sia 1 < M < N. Identificando RY con RM x RN=M  ogni vettore & =

(x1,...,zy) di RY si scrivera nella forma x = (&, ), con & = (x1,...,7y) €
xr = («TM—H; Ce ,$N).

Useremo inoltre la seguente notazione: dato & = (zy,...,7y) € RM e
r >0,

Bla,r] =[xy — 72+ 7] X - X [mpr — 1,20 +7] SRM.
Per semplicita, scriveremo Blr| invece di B[O, r].

Teorema 15 Siano Q un sottoinsieme aperto di RY, xy un punto di Q e
g:Q — RY"M una funzione di classe C', tale che

g(xo) =0, e Jg(xog) ha rango N — M.

Allora esistono un intorno U di xy e una M -superficie regolare e iniettiva
o : B[r] = RY, per un certo r > 0, tali che o(0) = xq e

{x €U :g(x) =0} =c(B]r]).
Dimostrazione. Supponiamo, per esempio, che sia invertibile

_091 ... 991
@ 0‘[)1\,[4,? (wo) f)pN (mo)

95 ) = ' '
OgN M (:l? ) .. 99n—m (w )
Opr+1 dpN
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Per il teorema della funzione implicita, esistono un intorno aperto j] di &g, un
intorno aperto U di @y e una funzione n : U — U, tali che U x U C 2 ¢, se
xeclUexclU,siha:
9(,2) =0 & &=n(@).
Presor > 0 tale che Blio,r] C U, siaU = Blio,r]xU e o : Blr] — RY definita
da o(u) = (u + &g, n(u + &)). Si verifica che la matrice jacobiana Jo(u) ha
come sottomatrice la matrice M x M identita, per cui o e regolare. Si vede
facilmente che ¢ ¢ iniettiva, in quanto lo ¢ la prima componente u — u + &g.
Inoltre, se ¢ = (x, &) € U,
o(2.8) =0 & z=n@) & (8.3)=0@— ),

da cui la tesi. Nel caso in cui la sottomatrice considerata non sia invertibile,

bastera operare degli scambi nelle colonne della matrice Jg(xo) per ricondursi
alla situazione precedente. [ ]

La M-superficie ¢ individuata dal teorema precedente e detta “M-para-
metrizzazione locale”.

Vediamo tre casi di particolare interesse. Iniziamo con una curva in R?
(caso M =1, N =2).

Corollario 1 Siano Q un sottoinsieme aperto di R?, (xq,0) un punto di Q e
g : Q — R una funzione di classe C1, tale che

9(zo,v0) =0 e  Vg(zo,y0) #0.

Allora esistono un intorno U di (x9,v0) e una curva regolare e iniettiva o :
[—r, 7] — R2, per un certo r > 0, tali che 0(0) = (x9,90) €

{(ZE,y) eU: g(xuy) = 0} = U([_Tv T’]) :
Vediamo ora il caso di una superficie in R? (caso M =2, N = 3).

Corollario 2 Siano Q un sottoinsieme aperto di R?, (zo,yo, z0) un punto di
Qeg:Q— R una funzione di classe C*, tale che

g(xo,yoazo) =0 e Vg(xo,yo,zo) #0.

Allora esistono un intorno U di (x¢, Yo, 20) € una superficie regolare e iniettiva
o [—rr] X [=r,r] = R3, per un certor > 0, tali che o(0,0) = (x¢, Yo, 20) €

{(l’,y,Z) ceU: g(I,y,Z) = 0} = 0-([_T7 T] X [_T’ T]) :
Infine, vediamo il caso di una curva in R? (caso M =1, N = 3).

Corollario 3 Siano Q un sottoinsieme aperto di R?, (zo,yo, z0) un punto di
Qegi,gr: Q= R due funzioni di classe C', tali che

91(950»90720) = 92(%;%,20) =0 e Vgl(wo,yo,zo) X Vg2($0,yo, 20) #0.

Allora esistono un intorno U di (xo,Yo,20) € una curva regolare e iniettiva
o [—r,r] = R3 per un certo r > 0, tali che o(0) = (9, o, 20) €

{(l‘,y, Z) eU: g1(x,y,z) = 92($7yvz) = 0} = O'([—T, T]) :
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12.1 I moltiplicatori di Lagrange

Siano Q un aperto di RY, &y un punto di Q e f : @ — R una funzione
differenziabile in xy. Vogliamo cercare eventuali punti di massimo o di minimo
per la funzione ristretta a un “vincolo”, che sara descritto da un’altra funzione,
in generale a valori vettoriali.

RN=M yna funzione di classe C* tale che

Teorema 16 Sia g : ) —
g(xo) =0, e Jg(xog) ha rango N — M.

Posto
S={xe:g(x)=0},

se g € un punto di minimo o massimo locale per f|s, allora esistono (N — M)
numeri reali A1, ..., A\n_n tali che

N-M
V(o) = Y AVg;(ao).

I numeri Ay, ..., Ay_jps si chiamano moltiplicatori di Lagrange.

Dimostrazione. Per il teorema precedente, esistono un intorno U di xy, un
r > 0 e una M-superficie regolare o : B[r] — R tali che 0(0) = x; e

SNU =o(B]r]).

Considerata la funzione F' : B[r| — R, definita da F'(u) = f(o(u)), si ha che
0 & un punto di minimo o massimo locale per F. Quindi, VF(0) = 0, per cui

0= JF(0) = Jf(z0)Jo(0).

Ne segue che

Vf(xo) é ortogonale a aa—;jl(O), ce %(0) :
Inoltre, essendo g(o(u)) = 0 per ogni w € BJr], si ha che
Jg(xp)Jo(0) =0.
Quindi anche i vettori
Vai(xo),...,Vgn_m(xo) sono tutti ortogonali a g—;(ﬂ), ey %(O) :

Siccome o ¢ regolare,
Oo Oo
lo spazio vettoriale T generato da —(0),..., ——
3u1 8UM

Quindi lo spazio ortogonale 7+ ha dimesnione N — M. E siccome, come
abbiamo visto,

(0) ha dimensione M .

Vf(iL‘o), Vgl(mo), ey VgN—M(wO) € 71L s

questi vettori devono essere linearmente dipendenti. Quindi, essendo che i vet-
tori Vgi(xo), ..., Vgn_m (@) linearmente indipendenti, ne segue che V f ()
si deve poter esprimere come una loro combinazione lineare. ]
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Vediamo anche qui tre casi particolari interessanti.

Corollario 4 Siano Q un aperto di R?, (zo,yo) un punto di Q, g : Q — R una
funzione di classe C* tale che

9(xo,40) =0 e Vg(xo,y0) # 0,
e [:Q — R una funzione differenziabile in (xq,yo). Posto
S =A{(z,y) €Q:g(x,y) =0},

se (zo,yo) € un punto di minimo o massimo locale per flg, allora esiste un
numero reale \ tale che

V f(x0,%0) = AVg(zo, %0) -

Corollario 5 Siano Q un aperto di R3, (zg,yo, 20) un punto di Q, g: Q — R
una funzione di classe C' tale che

g(xl)?yOazO) =0 € v.g(anymZO) 7& 07
e f:Q — R una funzione differenziabile in (xq,yo, 20). Posto
S={(x,y,2) € Q:g(x,y,2) =0},

se (xo, Yo, 20) € un punto di minimo o massimo locale per f|g, allora esiste un
numero reale \ tale che

Vf(foﬁyo, Zo) = )\Vg(il?o; Yo, Zo) .

Corollario 6 Siano Q un aperto di R3, (xq,vo, 20) un punto di €2, g1, go : Q —
R due funzioni di classe C' tali che

91(0, Yo, 20) = g2(T0,Y0,20) =0 e Vg1 (2o, Yo, 20) X Vga(Zo, Yo, 20) # 0,
e [:Q — R una funzione differenziabile in (xq,yo, 20). Posto
S = {(%%Z) eU: gl<x7y7z) = 07 g?(x7y7z) = 0}7

se (%, Yo, 20) € un punto di minimo o massimo locale per f|s, allora esistono
due numeri realt A1, \y tali che

V f(zo, Y0, 20) = MV ag1(xo, Yo, 20) + A2V ga(x0, Yo, 20) -
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