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1 Calcolo differenziale: funzioni da RN a R
In questa sezione, E sarà un sottoinsieme aperto di RN , x0 un punto di E
e f : E → R una funzione. Vogliamo estendere il concetto di derivata già
introdotto nel caso N = 1. Iniziamo con il fissare una “direzione”, ossia un
vettore v ∈ RN tale che ‖v‖ = 1 (detto anche “versore”). Chiamiamo, se
esiste, “derivata direzionale” di f in x0 nella direzione v il seguente limite

lim
t→0

f(x0 + tv)− f(x0)

t
,

che verrà indicato con il simbolo

∂f

∂v
(x0) .

Se v coincide con un elemento ek della base canonica [e1, e2, . . . , eN ] di RN ,
la derivata direzionale si chiamerà “derivata parziale” k-esima di f in x0 e si
indicherà con

∂f

∂xk
(x0) .

Se x0 = (x0
1, x

0
2, . . . , x

0
N), si ha quindi:

∂f

∂xk
(x0) = lim

t→0

f(x0 + tek)− f(x0)

t

= lim
t→0

f(x0
1, x

0
2, . . . , x

0
k + t, . . . , x0

N)− f(x0
1, x

0
2, . . . , x

0
k, . . . , x

0
N)

t
,

per cui si usa parlare di “derivata rispetto alla k-esima variabile”.
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Esistono delle funzioni che, pur avendo derivate direzionali in tutte le possi-
bili direzioni, non sono continue. Ad esempio, la funzione f : R2 → R definita
da

f(x, y) =


x4y2

(x4 + y2)2
se (x, y) 6= (0, 0) ,

0 se (x, y) = (0, 0) ,

ha tutte le derivate direzionali nulle in x0 = (0, 0), ma non è continua in tale
punto, come si vede considerando la restrizione alla parabola {(x, y) ∈ R2 :
y = x2}. Questo fatto ci porta a cercare una generalizzazione più appropriata
del concetto di derivata.

Definizione 1 Diremo che la funzione f è “differenziabile” in x0 se esiste
una applicazione lineare ` : RN → R per cui si possa scrivere

f(x) = f(x0) + `(x− x0) + r(x) ,

dove r è una funzione tale che

lim
x→x0

r(x)

‖x− x0‖
= 0 .

Se f è differenziabile in x0, l’applicazione lineare ` si chiama “differenziale”
di f in x0 e si indica con il simbolo

df(x0) .

Teorema 1 Se f è differenziabile in x0, allora f è continua in x0.

Dimostrazione. Sappiamo che l’applicazione ` = df(x0), essendo lineare, è
continua e `(0) = 0. Ne segue che

lim
x→x0

f(x) = lim
x→x0

[f(x0) + `(x− x0) + r(x)]

= f(x0) + `(0) + lim
x→x0

r(x)

= f(x0) + lim
x→x0

r(x)

‖x− x0‖
lim
x→x0

‖x− x0‖

= f(x0) ,

il che dimostra che f è continua in x0.

Seguendo un’abitudine consolidata per le applicazioni lineari, si usa spesso
scrivere df(x0)h invece di df(x0)(h).

Teorema 2 Se f è differenziabile in x0, allora esistono tutte le derivate dire-
zionali di f in x0: per ogni direzione v ∈ RN si ha

∂f

∂v
(x0) = df(x0)v .
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Dimostrazione. Usando la definizione di differenziale, abbiamo

lim
t→0

f(x0 + tv)− f(x0)

t
= lim

t→0

df(x0)(tv) + r(x0 + tv)

t

= lim
t→0

t df(x0)v + r(x0 + tv)

t

= df(x0)v + lim
t→0

r(x0 + tv)

t
;

d’altra parte, essendo ‖v‖ = 1, si ha

lim
t→0

∣∣∣∣r(x0 + tv)

t

∣∣∣∣ = lim
t→0

|r(x0 + tv)|
‖(x0 + tv)− x0‖

= lim
x→x0

|r(x)|
‖x− x0‖

= 0 ,

da cui la tesi.

In particolare, se v coincide con un elemento ek della base canonica [e1, e2,
. . . , eN ] , si ha:

∂f

∂xk
(x0) = df(x0)ek .

Scrivendo il vettore h ∈ RN come h = h1e1 + h2e2 + · · ·+ hNeN , abbiamo

df(x0)h = h1df(x0)e1 + h2df(x0)e2 + · · ·+ hNdf(x0)eN

= h1
∂f

∂x1

(x0) + h2
∂f

∂x2

(x0) + · · ·+ hN
∂f

∂xN
(x0) ,

ossia

df(x0)h =
N∑
k=1

∂f

∂xk
(x0)hk .

Introducendo il vettore “gradiente” di f in x0

∇f(x0) =

(
∂f

∂x1

(x0),
∂f

∂x2

(x0), . . . ,
∂f

∂xN
(x0)

)
,

si può scrivere
df(x0)h = ∇f(x0) · h .

Possiamo quindi scrivere

f(x) = f(x0) +∇f(x0) · (x− x0) + r(x) ,

con

lim
x→x0

r(x)

‖x− x0‖
= 0 .

Analizziamo con maggiore attenzione il caso N = 2. Come di consueto, invece
di usare la notazione (x1, x2), gli elementi di R2 verranno denotati con (x, y).
Fissato quindi il punto x0 = (x0, y0), possiamo scrivere

f(x, y) = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0) + r(x, y) ,
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con

lim
(x,y)→(x0,y0)

r(x, y)√
(x− x0)2 + (y − y0)2

= 0 .

Ricordando che il grafico di f è l’insieme

Gf = {(x, y, z) ∈ R3 : z = f(x, y)} ,
chiameremo “piano tangente” al grafico di f nel punto (x0, y0, f(x0, y0)) l’in-
sieme{

(x, y, z) ∈ R3 : z = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0)

}
.

2 Funzioni di classe C1

Il seguente risultato è noto come “teorema del differenziale totale”.

Teorema 3 Se f possiede le derivate parziali in un intorno di x0 ed esse sono
continue in x0, allora f è differenziabile in x0.

Dimostrazione. Supporremo per semplicità di notazioni N = 2. Definiamo
l’applicazione lineare ` : R2 → R che ad ogni vettore h = (h1, h2) associa

`(h) =
∂f

∂x1

(x0)h1 +
∂f

∂x2

(x0)h2 .

Vedremo che ` è proprio il differenziale di f in x0. Intanto, è lineare, come si
vede immediatamente. Inoltre, scrivendo x0 = (x0

1, x
0
2) e x = (x1, x2), per il

Teorema di Lagrange si ha

f(x)− f(x0) = (f(x1, x2)− f(x0
1, x2)) + (f(x0

1, x2)− f(x0
1, x

0
2))

=
∂f

∂x1

(ξ1, x2)(x1 − x0
1) +

∂f

∂x2

(x0
1, ξ2)(x2 − x0

2) ,

per un certo ξ1 ∈ [x0
1, x1] e un certo ξ2 ∈ [x0

2, x2]. Quindi,

r(x) = f(x)− f(x0)− `(x− x0)

=

[
∂f

∂x1

(ξ1, x2)− ∂f

∂x1

(x0
1, x

0
2)

]
(x1 − x0

1) +

+

[
∂f

∂x2

(x0
1, ξ2)− ∂f

∂x2

(x0
1, x

0
2)

]
(x2 − x0

2) ,

ed essendo |x1 − x0
1| ≤ ‖x− x0‖ e |x2 − x0

2| ≤ ‖x− x0‖,
|r(x)|
‖x− x0‖

≤
∣∣∣∣ ∂f∂x1

(ξ1, x2)− ∂f

∂x1

(x0
1, x

0
2)

∣∣∣∣+

∣∣∣∣ ∂f∂x2

(x0
1, ξ2)− ∂f

∂x2

(x0
1, x

0
2)

∣∣∣∣ .
Facendo tendere x a x0, si ha che (ξ1, x2) → (x0

1, x
0
2) e (x0

1, ξ2) → (x0
1, x

0
2) per

cui, essendo ∂f
∂x1

e ∂f
∂x2

continue in x0 = (x0
1, x

0
2), si ha

lim
x→x0

|r(x)|
‖x− x0‖

= 0 ,

da cui la tesi.
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Diremo che la funzione f è di classe C1 su E se f possiede le derivate
parziali ed esse sono continue su tutto E. Dal teorema precedente segue che
una funzione di classe C1 è “differenziabile su E”, ossia in ogni punto di E.

3 Derivate parziali successive

Supponiamo, per semplicità, N = 2. Consideriamo E, un insieme aperto di
R2 e una funzione f : E → R che abbia le derivate parziali ∂f

∂x1
, ∂f
∂x2

in tutti i
punti di E. Se esse posseggono a loro volta derivate parziali in un punto x0,
queste si dicono “derivate parziali seconde” della f in x0 e si denotano con i
simboli

∂2f

∂x2
1

(x0) =
∂

∂x1

∂f

∂x1

(x0) ,
∂2f

∂x2∂x1

(x0) =
∂

∂x2

∂f

∂x1

(x0) ,

∂2f

∂x1∂x2

(x0) =
∂

∂x1

∂f

∂x2

(x0) ,
∂2f

∂x2
2

(x0) =
∂

∂x2

∂f

∂x2

(x0) .

Teorema 4 (di Schwarz) Se esistono le derivate parziali seconde ∂2f
∂x2∂x1

, ∂2f
∂x1∂x2

in un intorno di x0 ed esse sono continue in x0, allora

∂2f

∂x2∂x1

(x0) =
∂2f

∂x1∂x2

(x0) .

Dimostrazione. Sia ρ > 0 tale che B(x0, ρ) ⊆ E. Scriviamo x0 = (x0
1, x

0
2)

e prendiamo un x = (x1, x2) ∈ B(x0, ρ) tale che x1 6= x0
1 e x2 6= x0

2. Possiamo
allora definire

g(x1, x2) =
f(x1, x2)− f(x1, x

0
2)

x2 − x0
2

, h(x1, x2) =
f(x1, x2)− f(x0

1, x2)

x1 − x0
1

.

Si verifica che vale l’uguaglianza

g(x1, x2)− g(x0
1, x2)

x1 − x0
1

=
h(x1, x2)− h(x1, x

0
2)

x2 − x0
2

.

Per il Teorema di Lagrange, esiste un ξ1 ∈ ]x0
1, x1[ tale che

g(x1, x2)− g(x0
1, x2)

x1 − x0
1

=
∂g

∂x1

(ξ1, x2) =

∂f
∂x1

(ξ1, x2)− ∂f
∂x1

(ξ1, x
0
2)

x2 − x0
2

,

ed esiste un ξ2 ∈ ]x0
2, x2[ tale che

h(x1, x2)− h(x1, x
0
2)

x2 − x0
2

=
∂h

∂x2

(x1, ξ2) =

∂f
∂x2

(x1, ξ2)− ∂f
∂x2

(x0
1, ξ2)

x1 − x0
1

.

Di nuovo per il Teorema di Lagrange, esiste un η2 ∈ ]x0
2, x2[ tale che

∂f
∂x1

(ξ1, x2)− ∂f
∂x1

(ξ1, x
0
2)

x2 − x0
2

=
∂2f

∂x2∂x1

(ξ1, η2) ,
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ed esiste un η1 ∈ ]x0
1, x1[ tale che

∂f
∂x2

(x1, ξ2)− ∂f
∂x2

(x0
1, ξ2)

x1 − x0
1

=
∂2f

∂x1∂x2

(η1, ξ2) .

Quindi,
∂2f

∂x2∂x1

(ξ1, η2) =
∂2f

∂x1∂x2

(η1, ξ2) .

Facendo tendere x = (x1, x2) a x0 = (x0
1, x

0
2), si ha che sia (ξ1, η2) che (η1, ξ2)

tendono a x0, e per la continuità delle derivate seconde miste si ha la tesi.

Diremo che la funzione f è di classe C2 su E se f possiede tutte le derivate
parziali seconde ed esse sono continue su tutto E. Dal teorema precedente
segue che se una funzione di classe C2, le derivate parziali “miste” sono uguali.

È utile definire la “matrice hessiana” di f nel punto x0:

Hf(x0) =


∂2f
∂x21

(x0) ∂2f
∂x2∂x1

(x0)

∂2f
∂x1∂x2

(x0) ∂2f
∂x22

(x0)

 ;

se f è di classe C2, si tratta di una matrice simmetrica.

Quanto sopra si può estendere senza difficoltà alle funzioni di N variabili,
con N qualunque. Se f è di classe C2, la matrice hessiana risulta allora una
matrice simmetrica del tipo N ×N :

Hf(x0) =



∂2f
∂x21

(x0) ∂2f
∂x2∂x1

(x0) . . . ∂2f
∂xN∂x1

(x0)

∂2f
∂x1∂x2

(x0) ∂2f
∂x22

(x0) . . . ∂2f
∂xN∂x2

(x0)

...
... . . .

...

∂2f
∂x1∂xN

(x0) ∂2f
∂x2∂xN

(x0) . . . ∂2f
∂x2N

(x0)


.

Procedendo per induzione, si possono definire le derivate parziali n-esime
di una funzione. Si dice che la funzione f è di classe Cn su E se f possiede
tutte le derivate parziali n-esime ed esse sono continue su tutto E.

4 La formula di Taylor

Supponiamo ora che f : E → R sia una funzione di classe Cn+1, per un certo
n ≥ 1.

Consideriamo come sopra, per semplicità, il caso N = 2. Introduciamo le
seguenti notazioni:

Dx1 =
∂

∂x1

, Dx2 =
∂

∂x2

,
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D2
x1

=
∂2

∂x2
1

, Dx1Dx2 =
∂2

∂x1∂x2

, D2
x2

=
∂2

∂x2
2

,

e cos̀ı via, per le derivate parziali successive. Si noti che, per un vettore
h = (h1, h2) ∈ R2, si ha

df(x0)h = h1Dx1f(x0) + h2Dx2f(x0) ,

che risulterà conveniente scrivere

df(x0)h = [h1Dx1 + h2Dx2 ]f(x0) .

In questo modo, possiamo pensare che f viene trasformata dall’operatore
[h1Dx1 + h2Dx2 ] nella nuova funzione [h1Dx1 + h2Dx2 ]f = h1Dx1f + h2Dx2f .

Dati due punti x0 e x in RN , si definisce il “segmento” che li congiunge:

[x0,x] = {x0 + t(x− x0) : t ∈ [0, 1]} ;

analogamente, scriveremo

]x0,x[ = {x0 + t(x− x0) : t ∈ ]0, 1[ } .

Supponiamo ora che [x0,x] sia un segmento contenuto in E e consideriamo la
funzione φ : [0, 1]→ R definita da

φ(t) = f(x0 + t(x− x0)) .

Dimostriamo che φ è derivabile n + 1 volte su [0, 1]. Per t ∈ [0, 1], essendo f
differenziabile in u0 = x0 + t(x− x0), si ha

f(u) = f(u0) + df(u0)(u− u0) + r(u) ,

con

lim
u→u0

r(u)

‖u− u0‖
= 0 .

Quindi,

lim
s→t

φ(s)− φ(t)

s− t
= lim

s→t

f(x0 + s(x− x0))− f(x0 + t(x− x0))

s− t

= lim
s→t

df(x0 + t(x− x0))((s− t)(x− x0)) + r(x0 + s(x− x0))

s− t

= df(x0 + t(x− x0))(x− x0) + lim
s→t

r(x0 + s(x− x0))

s− t
,

ed essendo

lim
s→t

∣∣∣∣r(x0 + s(x− x0))

s− t

∣∣∣∣ = lim
u→u0

|r(u)|
‖u− u0‖

‖x− x0‖ = 0 ,
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si ha

φ′(t) = lim
s→t

φ(s)− φ(t)

s− t
= df(x0 + t(x− x0))(x− x0) .

Con le nuove notazioni, ponendo x− x0 = h = (h1, h2), abbiamo

φ′(t) = [h1Dx1 + h2Dx2 ]f(x0 + t(x− x0)) = g(x0 + t(x− x0)) ,

dove g è la nuova funzione [h1Dx1 + h2Dx2 ]f . Possiamo allora iterare il
procedimento, e calcolare la derivata seconda di φ:

φ′′(t) = [h1Dx1 + h2Dx2 ]g(x0 + t(x− x0))

= [h1Dx1 + h2Dx2 ][h1Dx1 + h2Dx2 ]f(x0 + t(x− x0)) .

Per brevità, scriveremo

φ′′(t) = [h1Dx1 + h2Dx2 ]
2f(x0 + t(x− x0)) .

Notiamo che, usando la linearità delle derivate parziali e l’uguaglianza delle
derivate miste (Teorema di Schwarz), si ha

[h1Dx1 + h2Dx2 ]
2f = h2

1D
2
x1
f + 2h1h2Dx1Dx2f + h2

2D
2
x2
f

= [h2
1D

2
x1

+ 2h1h2Dx1Dx2 + h2
2D

2
x2

]f .

Osserviamo che l’espressione

[h1Dx1 + h2Dx2 ]
2 = [h2

1D
2
x1

+ 2h1h2Dx1Dx2 + h2
2D

2
x2

]

si ottiene formalmente come il quadrato di un binomio. Procedendo in questo
modo, si può dimostrare per induzione che, per k = 1, 2, . . . , n+ 1, la formula
della derivata k-esima di φ è

φ(k)(t) = [h1Dx1 + h2Dx2 ]
kf(x0 + t(x− x0)) ,

e che, usando formalmente la formula del binomio di Newton

(a1 + a2)k =
k∑
j=0

(
k

j

)
ak−j1 aj2,

si ha

[h1Dx1 + h2Dx2 ]
k =

[
k∑
j=0

(
k

j

)
hk−j1 hj2D

k−j
x1

Dj
x2

]
(in questa formula, i simboli D0

x1
e D0

x2
vanno interpretati come l’operatore

identità).
Per poter scrivere agevolmente la formula di Taylor, introduciamo la nota-

zione
dkf(x0)hk = [h1Dx1 + h2Dx2 ]

kf(x0) .
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Teorema 5 Sia f : E → R di classe Cn+1 e [x0,x] un segmento contenuto in
E. Allora esiste un ξξξ ∈ ]x0,x[ tale che

f(x) = pn(x) + rn(x) ,

dove

pn(x) = f(x0)+df(x0)(x−x0)+
1

2!
d2f(x0)(x−x0)2+· · ·+ 1

n!
dnf(x0)(x−x0)n

è il “polinomio di Taylor di grado n associato alla funzione f nel punto x0” e

rn(x) =
1

(n+ 1)!
dn+1f(ξξξ)(x− x0)n+1

è il “resto di Lagrange”.

Dimostrazione. Per la formula di Taylor applicata alla funzione φ, si ha

φ(t) = φ(0) + φ′(0)t+
1

2!
φ′′(0)t2 + · · ·+ 1

n!
φ(n)(0)tn +

1

(n+ 1)!
φ(n+1)(ξ)tn+1 ,

per un certo ξ ∈ ]0, t[. La formula cercata si ottiene prendendo t = 1 e
sostituendo i valori delle derivate di φ trovati sopra.

Il polinomio di Taylor si può anche scrivere nella forma compatta

pn(x) =
n∑
k=0

1

k!
dkf(x0)(x− x0)k ,

con la convenzione che d0f(x0)(x − x0)0, il primo addendo della somma, sia
f(x0). Si ha quindi

pn(x) =
n∑
k=0

1

k!
[(x1 − x0

1)Dx1 + (x2 − x0
2)Dx2 ]

kf(x0)

=
n∑
k=0

1

k!

(
k∑
j=0

(
k

j

)
∂kf

∂xk−j1 ∂xj2
(x0) (x1 − x0

1)k−j(x2 − x0
2)j

)
.

Può essere utile la seguente espressione per il polinomio di secondo grado:

p2(x) = f(x0) +∇f(x0) · (x− x0) + 1
2

(
Hf(x0)(x− x0)

)
· (x− x0) .

Il teorema sopra dimostrato resta valido per qualsiasi dimensione N , pur
di interpretare correttamente le notazioni: ad esempio, per un vettore h =
(h1, h2, . . . , hN), si dovrà leggere

dkf(x0)hk = [h1Dx1 + h2Dx2 + · · ·+ hNDxN ]kf(x0) .

In questo caso, volendo esplicitare il polinomio di Taylor, sarà utile utilizzare
la formula di Leibniz

(a1 + a2 + · · ·+ aN)k =
∑

m1+m2+···+mN=k

k!

m1!m2! · · ·mN !
am1

1 am2
2 · · · a

mN
N .
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5 La ricerca di massimi e minimi

Come sopra, consideriamo un insieme aperto E ⊆ RN e una funzione f : E →
R. Diremo che x0 ∈ E è un “punto di massimo locale” per la funzione f se
esiste un intorno U di x0 contenuto in E per cui x0 è punto di massimo della
restrizione di f a U . Equivalentemente, se

∃δ > 0 : ∀x ∈ E d(x,x0) < δ ⇒ f(x) ≤ f(x0) .

Analogamente per “punto di minimo locale”.

Teorema 6 (di Fermat) Se x0 è un punto di massimo o di minimo locale e
f è differenziabile in x0, allora ∇f(x0) = 0.

Dimostrazione. Se x0 è punto di massimo locale, per ogni direzione v ∈ RN

avremo che
f(x0 + tv)− f(x0)

t

{
≥ 0 se t < 0 ,

≤ 0 se t > 0 .

Siccome f è differenziabile in x0, ne deduciamo che

∂f

∂v
(x0) = lim

t→0

f(x0 + tv)− f(x0)

t
= 0 .

In particolare, sono nulle tutte le derivate parziali, per cui ∇f(x0) = 0. Nel
caso in cui x0 sia un punto di minimo locale, si procede in modo analogo.

Definizione 2 Un punto il cui il gradiente si annulli è detto “punto stazio-
nario”.

Naturalmente un tale punto potrebbe non essere nè di massimo nè di minimo.

Mostreremo ora come la formula di Taylor possa essere usata per stabilire un
criterio affinchè un punto stazionario sia di massimo, o di minimo. Iniziamo
con una definizione. Diremo che una matrice A simmetrica N × N è definita
positiva se

[Ah] · h > 0 , per ogni h ∈ RN \ {0} .

Diremo che A è definita negativa se vale la disuguaglianza opposta, ossia se
−A è definita positiva.

Teorema 7 Se x0 è un punto stazionario e f è di classe C2, con matrice
hessiana Hf(x0) definita positiva, allora x0 è un punto di minimo locale. Se
invece Hf(x0) è definita negativa, allora x0 è un punto di massimo locale.

Dimostrazione. Per la formula di Taylor, per x 6= x0 in un intorno di x0

esiste un ξξξ ∈ ]x0,x[ per cui

f(x) = f(x0) +∇f(x0) · (x− x0) + 1
2

(
Hf(ξξξ)(x− x0)

)
· (x− x0) .
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Se A = Hf(x0) è definita positiva, esiste un c > 0 tale che, per ogni v ∈ RN

con ‖v‖ = 1,
[Av] · v ≥ c .

(Abbiamo qui usato il Teorema di Weierstrass, e il fatto che la sfera {v ∈ RN :
‖v‖ = 1} è un insieme compatto.) Quindi(

Hf(x0)
x− x0

‖x− x0‖

)
· x− x0

‖x− x0‖
≥ c .

Per la continuità delle derivate seconde, se x è sufficientemente vicino a x0,(
Hf(ξξξ)

x− x0

‖x− x0‖

)
· x− x0

‖x− x0‖
≥ 1

2
c > 0 .

(Lo si vede per assurdo, usando di nuovo la compattezza della sfera.) Essendo
∇f(x0) = 0, per tali x abbiamo che

f(x) = f(x0) + 1
2

(
Hf(ξξξ)(x− x0)

)
· (x− x0)

≥ f(x0) + 1
2
c‖x− x0‖2 > f(x0) ,

per cui x0 è un punto di minimo locale.

La dimostrazione della seconda affermazione è analoga.

Enunciamo ora (senza dimostrazione) due criteri utili a stabilire quando
una matrice A simmetrica N × N è definita positiva o negativa. Ricordiamo
che gli autovalori di una matrice simmetrica sono tutti reali.

Primo criterio. La matrice A è definita positiva se tutti i suoi autovalori
sono positivi. Essa è definita negativa se tutti i suoi autovalori sono negativi.

Secondo criterio. La matrice A = (aij)ij è definita positiva se

a11 > 0 ,

det

(
a11 a12

a21 a22

)
> 0 ,

det

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 > 0 , . . .

det


a11 a12 · · · a1N

a21 a22 · · · a2N
...

... · · · ...
aN1 aN2 · · · aNN

 > 0 .

Essa è definita negativa se i determinanti scritti sopra hanno segno alternato:
quelli delle sottomatrici con un numero dispari di righe e di colonne sono
negativi, mentre quelli delle sottomatrici con un numero pari di righe e di
colonne sono positivi.
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6 Interpretazione duale del differenziale

Sia E un sottoinsieme aperto di RN , x0 un punto di E e f : E → R una
funzione differenziabile in x0. Per definizione il differenziale di f in x0, df(x0),
è una applicazione lineare da RN in R; in quanto tale df(x0) appartiene allo
spazio duale (RN)∗ di RN .1

Lo spazio (RN)∗ è isomorfo a RN , dunque ha dimensione finita. Indichiamo con
(e1, . . . , eN) la base canonica di RN . Per i = 1, . . . , N sia dxi = πi : RN → R
la proiezione definita da dxi(x) = πi(x) = xi, dove x = (x1, . . . , xN). La base
canonica duale di (RN)∗ è data dalle proiezioni (dx1, . . . , dxN). Scriviamo ora
df(x0) nella base canonica duale:

df(x0)h = ∇f(x0) · h =
N∑
i=1

∂f

∂xi
(x0)hi =

N∑
i=1

∂f

∂xi
(x0)πi(h) ,

per cui

df(x0) =
N∑
i=1

∂f

∂xi
πi ,

quindi df(x0) è rappresentato nella base canonica duale di (RN)∗ dal vettore

( ∂f
∂x1

(x0), . . . ,
∂f

∂xN
(x0)

)
.

7 Interpretazione geometrica del gradiente

Data una funzione f : E ⊆ RN → R definiamo l’insieme di livello c ∈ R di f
come

Σc = {x ∈ E : f(x) = c} .

Consideriamo il caso N = 2. L’insieme di livello Σc si ottiene intersecando il
grafico della funzione con il piano orizzontale di equazione z = c e proiettando
questa intersezione sul piano (x, y). Spesso gli insiemi di livello sono delle curve
nel piano (x, y). Le curve di livello indicate sulle carte topografiche aiutano
per esempio a capire la pendenza di una montagna.

Spostandosi nel piano (x, y) da un insieme di livello all’altro il valore della
funzione aumenta o diminuisce. Vediamo ora che il gradiente in un punto
(x0, y0) determina la direzione di massima pendenza sul grafico della funzione
in un intorno del punto. Infatti, se consideriamo una direzione v = (v1, v2)
e la restrizione della funzione alla retta passante per (x0, y0) e parallela a v:
ϕ(t) = f(x0 + tv1, y0 + tv2), la pendenza del suo grafico in t = 0 è data da

ϕ′(0) =
∂f

∂v
(x0, y0) = ∇f(x0, y0) · v .

1Per definizione lo spazio duale di RN è lo spazio delle applicazioni lineari da RN in R.
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Figura 1: Carta topografica del Monte Cervino c©Ufficio federale di topografia swisstopo

Il gradiente di f individua la direzione w =
∇f(x0, y0)

‖∇f(x0, y0)‖
. La derivata dire-

zionale di f nella direzione w è data da

∂f

∂w
(x0, y0) = ∇f(x0, y0) ·w = ∇f(x0, y0) · ∇f(x0, y0)

‖∇f(x0, y0)‖
=
‖∇f(x0, y0)‖2

‖∇f(x0, y0)‖
= ‖∇f(x0, y0)‖ .

Per la disuguaglianza di Schwarz si ha∣∣∂f
∂v

(x0, y0)
∣∣ = |∇f(x0, y0) · v| ≤ ‖∇f(x0, y0)‖ ‖v‖ = ‖∇f(x0, y0)‖ =

∂f

∂w
(x0, y0) ,

quindi per ogni direzione v

− ∂f
∂w

(x0, y0) ≤ ∂f

∂v
(x0, y0) ≤ ∂f

∂w
(x0, y0) ,

per cui la direzione del gradiente è quella in cui si ha il massimo accrescimento
della funzione e la direzione opposta, individuata da −∇f(x0, y0) è quella in cui
si ha la massima decrescenza della funzione, in un intorno del punto (x0, y0). Da
quanto detto segue che se in un punto il gradiente è non nullo allora spostandosi
nelle direzione del gradiente i valori della funzione aumentano, spostandosi
nella direzione opposta diminuiscono, quindi il punto in questione non può
essere punto di massimo o punto di minimo della funzione. Di conseguenza i
punti di massimo e di minimo locali interni al dominio vanno cercati tra i punti
in cui il gradiente della funzione si annulla, come avevamo visto nel Teorema
di Fermat.

8 Il differenziale di una funzione a valori vet-

toriali

Sia E un sottoinsieme aperto di RN , x0 un punto di E e f : E → RM una
funzione.
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Figura 2: Grafico di f(x, y) = x2 + y2, alcune curve di livello, il gradiente in
un punto e la curva sul grafico corrispondente a un segmento nel piano (x, y)
che parte dal punto fissato e va nella direzione del gradiente.

Definizione 3 Diremo che la funzione f è “differenziabile” in x0 se esiste
una applicazione lineare ` : RN → RM per cui si possa scrivere

f(x) = f(x0) + `(x− x0) + r(x) ,

dove r è una funzione tale che

lim
x→x0

r(x)

‖x− x0‖
= 0 .

Se f è differenziabile in x0, l’applicazione lineare ` si chiama “differenziale”
di f in x0 e si indica con il simbolo

df(x0) .

Siano f1, f2, . . . , fM le componenti di f rispetto alla base canonica di RM , per
cui

f(x) = (f1(x), f2(x), . . . , fM(x)) .

Teorema 8 La funzione f è differenziabile in x0 se e solo se lo sono tutte le
sue componenti. In tal caso, per ogni vettore h ∈ RN si ha

df(x0)h = (df1(x0)h, df2(x0)h, . . . , dfM(x0)h) .
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Dimostrazione. Considerando le componenti nell’equazione

f(x) = f(x0) + `(x− x0) + r(x) ,

possiamo scrivere

fkx) = fk(x0) + `k(x− x0) + rk(x) ,

con k = 1, 2, . . . ,M , e sappiamo che

lim
x→x0

r(x)

‖x− x0‖
= 0 ⇔ lim

x→x0

rk(x)

‖x− x0‖
= 0 per ogni k = 1, 2, . . . ,M ,

da cui la tesi.

Il teorema precedente permette di ricondurre lo studio del differenziale di
una funzione a valori vettoriali a quello delle sue componenti, che sono funzioni
a valori scalari.

È utile considerare la matrice associata all’applicazione lineare ` = df(x0),
data da 

`1(e1) `1(e2) . . . `1(eN)
`2(e1) `2(e2) . . . `2(eN)

...
...

...
`M(e1) `M(e2) . . . `M(eN)

 ,

dove e1, e2, . . . eN sono i vettori della base canonica di RN . Tale matrice si
chiama “matrice jacobiana” associata alla funzione f nel punto x0 e si denota
con Jf(x0). Ricordando che

∂fk
∂xj

(x0) = dfk(x0)ej ,

con k = 1, 2, . . . ,M e j = 1, 2, . . . , N , si ottiene la matrice

Jf(x0) =


∂f1
∂x1

(x0) ∂f1
∂x2

(x0) · · · ∂f1
∂xN

(x0)

∂f2
∂x1

(x0) ∂f2
∂x2

(x0) · · · ∂f2
∂xN

(x0)
...

...
...

∂fM
∂x1

(x0) ∂fM
∂x2

(x0) · · · ∂fM
∂xN

(x0)

 .

Studiamo ora la differenziabilità di una funzione composta.

Teorema 9 Se f : E → RM è differenziabile in x0, E ′ è un aperto di RM

contenente f(E) e g : E ′ → RL è differenziabile in f(x0), allora g ◦ f è
differenziabile in x0, e si ha

d(g ◦ f)(x0) = dg(f(x0)) ◦ df(x0) .
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Dimostrazione. Ponendo y0 = f(x0), si ha

f(x) = f(x0)+df(x0)(x−x0)+r1(x) , g(y) = g(y0)+dg(y0)(y−y0)+r2(y) ,

con

lim
x→x0

r1(x)

‖x− x0‖
= 0 , lim

y→y0

r2(y)

‖y− y0‖
= 0 .

Introduciamo la funzione R2 : E ′ → RL cos̀ı definita:

R2(y) =


r2(y)

‖y− y0‖
se y 6= y0 ,

0 se y = y0 .

Si noti che R2 è continua in y0. Allora

g(f(x)) = g(f(x0)) + dg(f(x0))[f(x)− f(x0)] + r2(f(x))

= g(f(x0)) + dg(f(x0))[df(x0)(x− x0) + r1(x)] + r2(f(x))

= g(f(x0)) + [dg(f(x0)) ◦ df(x0)](x− x0) + r3(x) ,

dove

r3(x) = dg(f(x0))(r1(x)) + r2(f(x))

= dg(f(x0))(r1(x)) + ‖f(x)− f(x0)‖R2(f(x))

= dg(f(x0))(r1(x)) + ‖df(x0)(x− x0) + r1(x)‖R2(f(x)) .

Quindi,

‖r3(x)‖
‖x− x0‖

≤
∥∥∥∥dg(f(x0))

(
r1(x)

‖x− x0‖

)∥∥∥∥+

+

(∥∥∥∥df(x0)

(
x− x0

‖x− x0‖

)∥∥∥∥+
‖r1(x)‖
‖x− x0‖

)
‖R2(f(x))‖ .

Se x→ x0, il primo addendo tende a 0, poiché dg(f(x0)) è continua; f è con-
tinua in x0 e R2 è continua in y0 = f(x0) con R2(y0)) = 0, per cui ‖R2(f(x))‖
tende a 0; df(x0), essendo continua, è limitata sull’insieme compatto B̄(0, 1).
Quindi, si ha che

lim
x→x0

‖r3(x)‖
‖x− x0‖

= 0 .

Ne segue che g ◦ f è differenziabile in x0 con differenziale dg(f(x0))◦df(x0).

Come noto, la matrice associata alla composizione di due applicazioni li-
neari è il prodotto delle due matrici corrispondenti. Dal teorema precedente
abbiamo quindi la seguente formula per le matrici jacobiane:

J(g ◦ f)(x0) = Jg(f(x0)) · Jf(x0) ,
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ossia 
∂(g◦f)1
∂x1

(x0) · · · ∂(g◦f)1
∂xN

(x0)
... · · · ...

∂(g◦f)L
∂x1

(x0) · · · ∂(g◦f)L
∂xN

(x0)

 =

=


∂g1
∂y1

(f(x0)) · · · ∂g1
∂yM

(f(x0))
... · · · ...

∂gL
∂y1

(f(x0)) · · · ∂gL
∂yM

(f(x0))




∂f1
∂x1

(x0) · · · ∂f1
∂xN

(x0)
... · · · ...

∂fM
∂x1

(x0) · · · ∂fM
∂xN

(x0)

 .

Ne segue la formula per le derivate parziali:

∂(g ◦ f)i
∂xj

(x0) =

=
∂gi
∂y1

(f(x0))
∂f1

∂xj
(x0) +

∂gi
∂y2

(f(x0))
∂f2

∂xj
(x0) + · · ·+ ∂gi

∂yM
(f(x0))

∂fM
∂xj

(x0)

=
M∑
k=1

∂gi
∂yk

(f(x0))
∂fk
∂xj

(x0) ,

dove i = 1, 2, . . . , L e j = 1, 2, . . . , N .

9 Il teorema della funzione implicita - primo

enunciato

Il seguente risultato porta il nome di Ulisse Dini.

Teorema 10 Siano Ω ⊆ R × R un aperto, g : Ω → R una funzione di classe
C1 e (x0, y0) un punto di Ω per cui si abbia:

g(x0, y0) = 0
∂g

∂y
(x0, y0) 6= 0 .

Allora esistono un intorno aperto U di x0, un intorno aperto V di y0 e una
funzione η : U → V di classe C1 tali che U × V ⊆ Ω e, presi x ∈ U e y ∈ V,
si ha:

g(x, y) = 0 ⇔ y = η(x) .

Inoltre, la funzione η è di classe C1 e vale la formula

η′(x) = −
∂g
∂x

(x, η(x))
∂g
∂y

(x, η(x))
.

La funzione η risulta definita “implicitamente” dall’equazione g(x, y) = 0; il
suo grafico è l’insieme

Gr(η) = {(x, y) ∈ U × V : g(x, y) = 0} .
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Dimostrazione. Supponiamo ad esempio ∂g
∂y

(x0, y0) > 0. Per la proprietà di

permanenza del segno, esiste un δ > 0 tale che, se |x− x0| ≤ δ e |y − y0| ≤ δ,
allora ∂g

∂y
(x, y) > 0. Quindi, per ogni x ∈ [x0 − δ, x0 + δ], la funzione g(x, ·) è

strettamente crescente su [y0 − δ, y0 + δ]. Essendo g(x0, y0) = 0, avremo che

g(x0, y0 − δ) < 0 < g(x0, y0 + δ) .

Per la permanenza del segno, esiste un δ′ > 0 tale che, se x ∈ [x0− δ′, x0 + δ′],
allora

g(x, y0 − δ) < 0 < g(x, y0 + δ) .

Definiamo U = ]x0 − δ′, x0 + δ′[ e V = ]y0 − δ, y0 + δ[ . Quindi, per ogni x ∈ U,
siccome g(x, ·) è strettamente crescente, esiste uno ed un solo y ∈ ]y0−δ, y0 +δ[
per cui g(x, y) = 0; chiamo η(x) tale y. Resta cos̀ı definita una funzione η :
U → V tale che, presi x ∈ U e y ∈ V, si ha:

g(x, y) = 0 ⇔ y = η(x) .

Per vedere che η è continua, fissiamo ora un x̄ ∈ U e dimostriamo la continuità
in x̄. Preso un x ∈ U e considerata la funzione γ : [0, 1]→ R× R definita da

γ(t) = (x̄+ t(x− x̄), η(x̄) + t(η(x)− η(x̄))),

applicando il Teorema di Lagrange alla funzione g◦γ si ha che esiste un ξ ∈ ]0, 1[
per cui

g(x, η(x))− g(x̄, η(x̄)) =
∂g

∂x
(γ(ξ))(x− x̄) +

∂g

∂y
(γ(ξ))(η(x)− η(x̄)) .

Essendo g(x, η(x)) = g(x̄, η(x̄)) = 0, si ha che

|η(x)− η(x̄)| =

∣∣∣∣∣ ∂g∂x(γ(ξ))
∂g
∂y

(γ(ξ))

∣∣∣∣∣ |x− x̄| .
Siccome le derivate parziali di g sono continue e ∂g

∂y
è non nulla sul compatto

U × V , si ha che | ∂g
∂x

(γ(ξ))(∂g
∂y

(γ(ξ)))−1| è limitato superiormente e ne segue la
continuità di η in x̄. Resta da vedere la derivabilità: procedendo come sopra
si ha che

η(x)− η(x̄)

x− x̄
= −

∂g
∂x

(γ(ξ))
∂g
∂y

(γ(ξ))
,

con γ(ξ) appartenente al segmento che congiunge (x̄, η(x̄)) con (x, η(x)). Se x
tende a x̄, si ha che γ(ξ) tende a (x̄, η(x̄)) e quindi

η′(x̄) = lim
x→x̄

η(x)− η(x̄)

x− x̄
= −

∂g
∂x

(x̄, η(x̄))
∂g
∂y

(x̄, η(x̄))
.

Ne segue che η è di classe C1.
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Vale naturalmente anche il seguente enunciato simmetrico rispetto al pre-
cedente.

Teorema 11 Siano Ω ⊆ R × R un aperto, g : Ω → R una funzione di classe
C1 e (x0, y0) un punto di Ω per cui si abbia:

g(x0, y0) = 0
∂g

∂x
(x0, y0) 6= 0 .

Allora esistono un intorno aperto U di x0, un intorno aperto V di y0 e una
funzione η : V → U di classe C1 tali che U × V ⊆ Ω e, presi x ∈ U e y ∈ V,
si ha:

g(x, y) = 0 ⇔ x = η(y) .

Inoltre, la funzione η è di classe C1 e vale la formula

η′(y) = −
∂g
∂y

(η(y), y)
∂g
∂x

(η(y), y)
.

10 Il teorema della funzione implicita - caso

generale

Vediamo come si generalizza il teorema della funzione implicita. Conside-
reremo un insieme aperto Ω di RM ×RN e una funzione g : Ω→ RN , di classe
C1. Quindi, g ha N componenti

g(x,y) = (g1(x,y), . . . , gN(x,y)) .

Qui x = (x1, . . . , xM) ∈ RM e y = (y1, . . . , yN) ∈ RN . Useremo la seguente
notazione per le matrici jacobiane:

∂g

∂x
(x,y)=


∂g1
∂x1

(x,y) · · · ∂g1
∂xM

(x,y)
... · · · ...

∂gN
∂x1

(x,y) · · · ∂gN
∂xM

(x,y)

, ∂g
∂y

(x,y)=


∂g1
∂y1

(x,y) · · · ∂g1
∂yN

(x,y)
... · · · ...

∂gN
∂y1

(x,y) · · · ∂gN
∂yN

(x,y)

.
Possiamo ora enunciare il Teorema di Dini in questo caso più generale.

Teorema 12 Siano Ω ⊆ RM × RN un aperto, g : Ω → RN una funzione di
classe C1 e (x0,y0) un punto di Ω per cui si abbia:

g(x0,y0) = 0 , det
∂g

∂y
(x0,y0) 6= 0 .

Allora esistono un intorno aperto U di x0, un intorno aperto V di y0 e una
funzione η : U → V di classe C1 tali che U × V ⊆ Ω e, presi x ∈ U e y ∈ V,
si ha:

g(x,y) = 0 ⇔ y = η(x) .

Inoltre, la funzione η è di classe C1 e vale la formula

Jη(x) = −
(
∂g

∂y
(x, η(x))

)−1
∂g

∂x
(x, η(x)) .
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Dimostrazione. 2 Faremo la dimostrazione per induzione su N.

Nel caso N = 1 e M ≥ 2, si procede in modo del tutto analogo a quanto già
fatto nel casoM = 1. Basterà prendere, al posto dell’intervallo [x0−δ, x0+δ], la
palla chiusa B(x0, δ), e similmente per gli intorni aperti di x0, per dimostrare
l’esistenza e la continuità della funzione η. Resta da vedere la derivabilità:
considerato x̄ = (x̄1, . . . , x̄M), prendiamo ora x = (x̄1+h, . . . , x̄M); procedendo
come in precedenza, si ha che

η(x̄1 + h, . . . , x̄M)− η(x̄1, . . . , x̄M)

h
= −

∂g
∂x1

(γ(ξ))
∂g
∂y

(γ(ξ))
,

con γ(ξ) appartenente al segmento che congiunge (x̄, η(x̄)) con (x, η(x)). Se
h tende a 0, si ha che γ(ξ) tende a (x̄, η(x̄)) e quindi

∂η

∂x1

(x̄) = lim
h→0

η(x̄1 + h, . . . , x̄M)− η(x̄1, . . . , x̄M)

h
= −

∂g
∂x1

(x̄, η(x̄))
∂g
∂y

(x̄, η(x̄))
.

Analogamente si calcolano le derivate parziali rispetto a x2, . . . , xM , per cui si
vede che η è di classe C1 e

Jη(x) = − 1
∂g
∂y

(x, η(x))

∂g

∂x
(x, η(x)) .

Supponiamo ora l’enunciato valido fino a N − 1, per un certo N ≥ 2 (e M ≥ 1
qualsiasi) e dimostriamo che vale anche per N. Useremo la notazione

ỹ1 = (y1, . . . , yN−1) ,

per cui scriveremo y = (ỹ1, yN). Siccome

det


∂g1
∂y1

(x0,y0) · · · ∂g1
∂yN

(x0,y0)
... · · · ...

∂gN
∂y1

(x0,y0) · · · ∂gN
∂yN

(x0,y0)

 6= 0 ,

almeno uno degli elementi dell’ultima colonna è non nullo. Possiamo sup-
porre senza perdita di generalità, eventualmente permutando le righe, che sia
∂gN
∂yN

(x0,y0) 6= 0. Scrivendo y0 = (ỹ0
1, y

0
N), con ỹ0

1 = (y0
1, . . . , y

0
N−1), sarà

gN(x0, ỹ
0
1, y

0
N) = 0 ,

∂gN
∂yN

(x0, ỹ
0
1, y

0
N) 6= 0 .

Allora (caso unidimensionale) esistono un intorno aperto U1 di (x0, ỹ
0
1), un

intorno aperto VN di y0
N e una funzione η1 : U1 → VN di classe C1 tali che

U1 × VN ⊆ Ω, per cui si abbia: se (x, ỹ1) ∈ U1 e yN ∈ VN ,

gN(x, ỹ1, yN) = 0 ⇔ yN = η1(x, ỹ1) ,

2non fatta a lezione
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e

Jη1(x, ỹ1) = − 1
∂gN
∂yN

(x, ỹ1, η1(x, ỹ1)))

∂gN
∂(x, ỹ1)

(x, ỹ1, η1(x, ỹ1)) .

Possiamo supporre U1 della forma Ũ × Ṽ1, con Ũ intorno aperto di x0 e Ṽ1

intorno aperto di ỹ0
1. Definiamo la funzione φ : Ũ × Ṽ1 → RN−1, ponendo

φ(x, ỹ1) = (g1(x, ỹ1, η1(x, ỹ1)), . . . , gN−1(x, ỹ1, η1(x, ỹ1))) .

Per brevità, scriveremo

g(1,...,N−1)(x,y) = (g1(x,y), . . . , gN−1(x,y)) .

Notiamo che φ(x0, ỹ
0
1) = 0 e che, essendo η1(x0, ỹ

0
1) = y0

N ,

∂φ

∂ỹ1

(x0, ỹ
0
1) =

∂g(1,...,N−1)

∂ỹ1

(x0,y0) +
∂g(1,...,N−1)

∂yN
(x0,y0)

∂η1

∂ỹ1

(x0, ỹ
0
1) . (∗)

Inoltre, siccome gN(x, ỹ1, η1(x, ỹ1)) = 0, per ogni (x, ỹ1) ∈ U1, differenziando
si ha:

0 =
∂gN
∂ỹ1

(x0,y0) +
∂gN
∂yN

(x0,y0)
∂η1

∂ỹ1

(x0, ỹ
0
1) . (∗∗)

Scriviamo

det
∂φ

∂ỹ1

(x0, ỹ
0
1) =

1
∂gN
∂yN

(x0,y0)
det


∂φ

∂ỹ1

(x0, ỹ
0
1)

∂g(1,...,N−1)

∂yN
(x0,y0)

0
∂gN
∂yN

(x0,y0)

 ,

avendo usato la notazione di matrice suddivisa a blocchi. Sostituendo le due
uguaglianze (∗), (∗∗) e usando le proprietà dei determinanti, si ha:

det


∂φ

∂ỹ1
(x0, ỹ

0
1)

∂g(1,...,N−1)

∂yN
(x0, y0)

0
∂gN
∂yN

(x0, y0)

 =

= det


∂g(1,...,N−1)

∂ỹ1
(x0, y0) +

∂g(1,...,N−1)

∂yN
(x0, y0)

∂η1
∂ỹ1

(x0, ỹ
0
1)

∂g(1,...,N−1)

∂yN
(x0, y0)

∂gN
∂ỹ1

(x0, y0) +
∂gN
∂yN

(x0, y0)
∂η1
∂ỹ1

(x0, ỹ
0
1)

∂gN
∂yN

(x0, y0)


= det

(
∂g

∂ỹ1
(x0, y0) +

∂g

∂yN
(x0, y0)

∂η1
∂ỹ1

(x0, ỹ
0
1)

∂g

∂yN
(x0, y0)

)

= det

(
∂g

∂ỹ1
(x0, y0)

∂g

∂yN
(x0, y0)

)
= det

∂g

∂y
(x0, y0) 6= 0 .

Abbiamo quindi

φ(x0, ỹ
0
1) = 0 , det

∂φ

∂ỹ1

(x0, ỹ
0
1) 6= 0 .

21



Per l’ipotesi induttiva, esistono un intorno aperto U di x0, un intorno aperto
V1 di ỹ0

1 e una funzione η2 : U → V1 di classe C1 tali che U × V1 ⊆ Ũ × Ṽ1, per
cui si abbia: per ogni x ∈ U e ỹ1 ∈ V1,

φ(x, ỹ1) = 0 ⇔ ỹ1 = η2(x) .

In conclusione, per x ∈ U e y = (ỹ1, yN) ∈ V1 × V2, si ha:

g(x,y) = 0 ⇔
{
g(1,...,N−1)(x, ỹ1, yN) = 0
gN(x, ỹ1, yN) = 0

⇔
{
g(1,...,N−1)(x, ỹ1, yN) = 0
yN = η1(x, ỹ1)

⇔
{
φ(x, ỹ1) = 0
yN = η1(x, ỹ1)

⇔
{

ỹ1 = η2(x)
yN = η1(x, ỹ1)

⇔ y = (η2(x), η1(x, η2(x))) .

Ponendo V = V1 × V2, resta pertanto definita la funzione η : U → V :

η(x) = (η2(x), η1(x, η2(x))) .

Tale funzione è di classe C1, siccome lo sono sia η1 che η2. Siccome g(x, η(x)) =
0 per ogni x ∈ U, se ne deduce che che

∂g

∂x
(x, η(x)) +

∂g

∂y
(x, η(x))Jη(x) = 0 ,

da cui la formula per Jη(x).

Ed ecco l’enunciato simmetrico.

Teorema 13 Siano Ω ⊆ RM × RN un aperto, g : Ω → RM una funzione di
classe C1 e (x0,y0) un punto di Ω per cui si abbia:

g(x0,y0) = 0 , det
∂g

∂x
(x0,y0) 6= 0 .

Allora esistono un intorno aperto U di x0, un intorno aperto V di y0 e una
funzione η : V → U di classe C1 tali che U × V ⊆ Ω e, presi x ∈ U e y ∈ V,
si ha:

g(x,y) = 0 ⇔ x = η(y) .

Inoltre, la funzione η è di classe C1 e vale la formula

Jη(y) = −
(
∂g

∂x
(η(y)),y

)−1
∂g

∂y
(η(y)),y) .

Vediamo ora un’importante conseguenza del teorema della funzione impli-
cita.
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Definizione 4 Dati A e B, due aperti di RN , una funzione ϕ : A→ B sè un
“diffeomorfismo” se è di classe C1, biiettiva e la sua inversa ϕ−1 : B → A è
anch’essa di classe C1.

Enunciamo il teorema di inversione locale.

Teorema 14 Siano A e B due aperti di RN e ϕ : A → B una funzione di
classe C1. Se per un certo x0 ∈ A si ha che det Jϕ(x0) 6= 0, allora esistono
un intorno aperto U di x0 contenuto in A, e un intorno aperto V di ϕ(x0)
contenuto in B, tali che la restrizione ϕ|U : U → V sia un diffeomorfismo.

Dimostrazione. Consideriamo la funzione g : A×B → RN definita da

g(x,y) = ϕ(x)− y .

Posto y0 = ϕ(x0), si ha che

g(x0,y0) = 0 , e det
∂g

∂x
(x0,y0) = det Jϕ(x0) 6= 0 .

Per il teorema della funzione implicita, esistono un intorno aperto V di y0, un
intorno aperto U di x0 e una funzione η : V → U di classe C1 tali che, presi
y ∈ V e x ∈ U, si ha:

ϕ(x) = y ⇔ g(x,y) = 0 ⇔ x = η(y) .

Quindi, η = ϕ−1
|U e la dimostrazione è cos̀ı completa.

11 Le M-superfici

Indichiamo con I un rettangolo di RM , dove 1 ≤M ≤ N.

Definizione 5 Chiameremo M-superficie in RN una funzione σ : I → RN

di classe C1. Se M = 1, σ si dirà anche curva; se M = 2, si dirà semplicemente
superficie. L’insieme σ(I) è detto supporto della M-superficie σ. Diremo
che la M-superficie σ è regolare se, per ogni u ∈ I̊ , la matrice jacobiana
σ′(u) ha rango M.

Consideriamo da vicino il caso N = 3. Una curva in R3 è una funzione
σ : [a, b] → R3, σ = (σ1, σ2, σ3). La curva è regolare se, per ogni t ∈ ]a, b[ ,
il vettore σ′(t) = (σ′1(t), σ′2(t), σ′3(t)) è non nullo. In tal caso, si definisce il
seguente versore tangente nel punto σ(t) :

τσ(t) =
σ′(t)

||σ′(t)||
.

Esempio. La curva σ : [0, 2π]→ R3 definita da

σ(t) = (R cos(2t), R sin(2t), 0)

23



ha come supporto la circonferenza

{(x, y, z) : x2 + y2 = R2, z = 0}

(che viene percorsa due volte). Essendo σ′(t) = (−2R sin(2t), 2R cos(2t), 0), si
tratta di una curva regolare, e si ha:

τσ(t) = (− sin(2t), cos(2t), 0) .

Una superficie in R3 è una funzione σ : [a1, b1]× [a2, b2]→ R3. La superficie
è regolare se, per ogni (u, v) ∈ ]a1, b1[× ]a2, b2[ , i vettori ∂σ

∂u
(u, v), ∂σ

∂v
(u, v) sono

linearmente indipendenti. In tal caso, essi individuano un piano, detto piano
tangente alla superficie nel punto σ(u, v), e si definisce il seguente versore
normale:

νσ(u, v) =
∂σ
∂u

(u, v)× ∂σ
∂v

(u, v)

||∂σ
∂u

(u, v)× ∂σ
∂v

(u, v)||
.

Esempi. 1. La superficie σ : [0, π]× [0, π]→ R3 definita da

σ(φ, θ) = (R sinφ cos θ, R sinφ sin θ, R cosφ)

ha come supporto la semisfera

{(x, y, z) : x2 + y2 + z2 = R2, y ≥ 0} .

Essendo

∂σ

∂φ
(φ, θ) = (R cosφ cos θ, R cosφ sin θ,−R sinφ) ,

∂σ

∂θ
(φ, θ) = (−R sinφ sin θ, R sinφ cos θ, 0) ,

si tratta di una superficie regolare, e si ha:

νσ(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ) .

2. La superficie σ : [r, R]× [0, 2π]→ R3, con 0 ≤ r < R, data da

σ(u, v) = (u cos v, u sin v, 0) ,

ha come supporto un cerchio se r = 0, una corona circolare se r > 0. È una
superficie regolare.

3. La superficie σ : [r, R]× [0, 2π]→ R3, con 0 < r < R, definita da

σ(u, v) =

((
r +R

2
+

(
u− r +R

2

)
cos
(v

2

))
cos v,(

r +R

2
+

(
u− r +R

2

)
cos
(v

2

))
sin v,(

u− r +R

2

)
sin
(v

2

))
,

ha comes supporto un nastro di Möbius. È anch’essa una superficie regolare.
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4. La superficie σ : [0, 2π]× [0, 2π]→ R3 definita da

σ(u, v) = ((R + r cosu) cos v, (R + r cosu) sin v, r sinu)

dove 0 < r < R, ha come supporto l’anello toroidale o “toro”

{(x, y, z) : (
√
x2 + y2 −R)2 + z2 = r2} .

Si può verificare che anche in questo caso si tratta di una superficie regolare.

Una 3-superficie in R3 si dice anche volume.

Esempio. La funzione σ : [0, R]× [0, π]× [0, 2π]→ R3 definita da

σ(ρ, φ, θ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)

ha come supporto la palla chiusa

{(x, y, z) : x2 + y2 + z2 ≤ R2} .

In questo caso, detσ′(ρ, φ, θ) = ρ2 sinφ e pertanto si tratta di un volume
regolare.

12 Analisi locale delle M-superfici

Sia 1 ≤ M < N. Identificando RN con RM × RN−M , ogni vettore x =
(x1, . . . , xN) di RN si scriverà nella forma x = (x̂, x̃), con x̂ = (x1, . . . , xM) e
x̃ = (xM+1, . . . , xN).

Useremo inoltre la seguente notazione: dato x̂ = (x1, . . . , xM) ∈ RM e
r > 0,

B[x̂, r] = [x1 − r, x1 + r]× · · · × [xM − r, xM + r] ⊆ RM .

Per semplicità, scriveremo B[r] invece di B[0, r].

Teorema 15 Siano Ω un sottoinsieme aperto di RN , x0 un punto di Ω e
g : Ω→ RN−M una funzione di classe C1, tale che

g(x0) = 0 , e Jg(x0) ha rango N −M.

Allora esistono un intorno U di x0 e una M-superficie regolare e iniettiva
σ : B[r]→ RN , per un certo r > 0, tali che σ(0) = x0 e

{x ∈ U : g(x) = 0} = σ(B[r]) .

Dimostrazione. Supponiamo, per esempio, che sia invertibile

∂g

∂x̃
(x0) =


∂g1

∂pM+1
(x0) · · · ∂g1

∂pN
(x0)

... · · · ...
∂gN−M

∂pM+1
(x0) · · · ∂gN−M

∂pN
(x0)

 .
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Per il teorema della funzione implicita, esistono un intorno aperto Û di x̂0, un
intorno aperto Ũ di x̃0 e una funzione η : Û → Ũ , tali che Û × Ũ ⊆ Ω e, se
x̂ ∈ Û e x̃ ∈ Ũ , si ha:

g(x̂, x̃) = 0 ⇔ x̃ = η(x̂) .

Preso r > 0 tale cheB[x̂0, r] ⊆ Û , sia U = B[x̂0, r]×Ũ e σ : B[r]→ RN definita
da σ(u) = (u + x̂0, η(u + x̂0)). Si verifica che la matrice jacobiana Jσ(u) ha
come sottomatrice la matrice M ×M identità, per cui σ è regolare. Si vede
facilmente che σ è iniettiva, in quanto lo è la prima componente u 7→ u + x̂0.
Inoltre, se x = (x̂, x̃) ∈ U,

g(x̂, x̃) = 0 ⇔ x̃ = η(x̂) ⇔ (x̂, x̃) = σ(x̂− x̂0) ,

da cui la tesi. Nel caso in cui la sottomatrice considerata non sia invertibile,
basterà operare degli scambi nelle colonne della matrice Jg(x0) per ricondursi
alla situazione precedente.

La M -superficie σ individuata dal teorema precedente è detta “M -para-
metrizzazione locale”.

Vediamo tre casi di particolare interesse. Iniziamo con una curva in R2

(caso M = 1, N = 2).

Corollario 1 Siano Ω un sottoinsieme aperto di R2, (x0, y0) un punto di Ω e
g : Ω→ R una funzione di classe C1, tale che

g(x0, y0) = 0 e ∇g(x0, y0) 6= 0 .

Allora esistono un intorno U di (x0, y0) e una curva regolare e iniettiva σ :
[−r, r]→ R2, per un certo r > 0, tali che σ(0) = (x0, y0) e

{(x, y) ∈ U : g(x, y) = 0} = σ([−r, r]) .

Vediamo ora il caso di una superficie in R3 (caso M = 2, N = 3).

Corollario 2 Siano Ω un sottoinsieme aperto di R3, (x0, y0, z0) un punto di
Ω e g : Ω→ R una funzione di classe C1, tale che

g(x0, y0, z0) = 0 e ∇g(x0, y0, z0) 6= 0 .

Allora esistono un intorno U di (x0, y0, z0) e una superficie regolare e iniettiva
σ : [−r, r]× [−r, r]→ R3, per un certo r > 0, tali che σ(0, 0) = (x0, y0, z0) e

{(x, y, z) ∈ U : g(x, y, z) = 0} = σ([−r, r]× [−r, r]) .

Infine, vediamo il caso di una curva in R3 (caso M = 1, N = 3).

Corollario 3 Siano Ω un sottoinsieme aperto di R3, (x0, y0, z0) un punto di
Ω e g1, g2 : Ω→ R due funzioni di classe C1, tali che

g1(x0, y0, z0) = g2(x0, y0, z0) = 0 e ∇g1(x0, y0, z0)×∇g2(x0, y0, z0) 6= 0 .

Allora esistono un intorno U di (x0, y0, z0) e una curva regolare e iniettiva
σ : [−r, r]→ R3, per un certo r > 0, tali che σ(0) = (x0, y0, z0) e

{(x, y, z) ∈ U : g1(x, y, z) = g2(x, y, z) = 0} = σ([−r, r]) .
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12.1 I moltiplicatori di Lagrange

Siano Ω un aperto di RN , x0 un punto di Ω e f : Ω → R una funzione
differenziabile in x0. Vogliamo cercare eventuali punti di massimo o di minimo
per la funzione ristretta a un “vincolo”, che sarà descritto da un’altra funzione,
in generale a valori vettoriali.

Teorema 16 Sia g : Ω→ RN−M una funzione di classe C1 tale che

g(x0) = 0 , e Jg(x0) ha rango N −M.

Posto
S = {x ∈ Ω : g(x) = 0} ,

se x0 è un punto di minimo o massimo locale per f |S, allora esistono (N−M)
numeri reali λ1, . . . , λN−M tali che

∇f(x0) =
N−M∑
j=1

λj∇gj(x0) .

I numeri λ1, . . . , λN−M si chiamano moltiplicatori di Lagrange.

Dimostrazione. Per il teorema precedente, esistono un intorno U di x0, un
r > 0 e una M -superficie regolare σ : B[r]→ RN tali che σ(0) = x0 e

S ∩ U = σ(B[r]) .

Considerata la funzione F : B[r] → R, definita da F (u) = f(σ(u)), si ha che
0 è un punto di minimo o massimo locale per F. Quindi, ∇F (0) = 0, per cui

0 = JF (0) = Jf(x0)Jσ(0) .

Ne segue che

∇f(x0) è ortogonale a
∂σ

∂u1

(0), . . . ,
∂σ

∂uM
(0) .

Inoltre, essendo g(σ(u)) = 0 per ogni u ∈ B[r], si ha che

Jg(x0)Jσ(0) = 0 .

Quindi anche i vettori

∇g1(x0), . . . ,∇gN−M(x0) sono tutti ortogonali a
∂σ

∂u1

(0), . . . ,
∂σ

∂uM
(0) .

Siccome σ è regolare,

lo spazio vettoriale T generato da
∂σ

∂u1

(0), . . . ,
∂σ

∂uM
(0) ha dimensione M .

Quindi lo spazio ortogonale T ⊥ ha dimesnione N − M. E siccome, come
abbiamo visto,

∇f(x0),∇g1(x0), . . . ,∇gN−M(x0) ∈ T ⊥ ,
questi vettori devono essere linearmente dipendenti. Quindi, essendo che i vet-
tori ∇g1(x0), . . . , ∇gN−M(x0) linearmente indipendenti, ne segue che ∇f(x0)
si deve poter esprimere come una loro combinazione lineare.
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Vediamo anche qui tre casi particolari interessanti.

Corollario 4 Siano Ω un aperto di R2, (x0, y0) un punto di Ω, g : Ω→ R una
funzione di classe C1 tale che

g(x0, y0) = 0 e ∇g(x0, y0) 6= 0,

e f : Ω→ R una funzione differenziabile in (x0, y0). Posto

S = {(x, y) ∈ Ω : g(x, y) = 0} ,

se (x0, y0) è un punto di minimo o massimo locale per f |S, allora esiste un
numero reale λ tale che

∇f(x0, y0) = λ∇g(x0, y0) .

Corollario 5 Siano Ω un aperto di R3, (x0, y0, z0) un punto di Ω, g : Ω→ R
una funzione di classe C1 tale che

g(x0, y0, z0) = 0 e ∇g(x0, y0, z0) 6= 0,

e f : Ω→ R una funzione differenziabile in (x0, y0, z0). Posto

S = {(x, y, z) ∈ Ω : g(x, y, z) = 0} ,

se (x0, y0, z0) è un punto di minimo o massimo locale per f |S, allora esiste un
numero reale λ tale che

∇f(x0, y0, z0) = λ∇g(x0, y0, z0) .

Corollario 6 Siano Ω un aperto di R3, (x0, y0, z0) un punto di Ω, g1, g2 : Ω→
R due funzioni di classe C1 tali che

g1(x0, y0, z0) = g2(x0, y0, z0) = 0 e ∇g1(x0, y0, z0)×∇g2(x0, y0, z0) 6= 0 ,

e f : Ω→ R una funzione differenziabile in (x0, y0, z0). Posto

S = {(x, y, z) ∈ U : g1(x, y, z) = 0, g2(x, y, z) = 0} ,

se (x0, y0, z0) è un punto di minimo o massimo locale per f |S, allora esistono
due numeri reali λ1, λ2 tali che

∇f(x0, y0, z0) = λ1∇g1(x0, y0, z0) + λ2∇g2(x0, y0, z0) .

28


