
Single-Source Shortest Paths

Chapter 24 of Cormen’s book


Giulia Bernardini

giulia.bernardini@units.it 

Algorithmic Design

a.y. 2024/2025

mailto:giulia.bernardini@units.it


BFS(G,s) - G is represented by the adjacency lists Adj[ ] of its vertices

for each u  V {s} 

u.color white;  
u.distance ; 

s.color gray;  
s.distance 0; 
Q ; 
enqueue(Q,s);

while Q  

u dequeue(Q);


for each v  Adj[u]

if v.color = white 

v.color gray;  
v.distance u.distance + 1; 
enqueue(Q,v);


u.color black; 

⋅
∈ ∖
←

←∞
←

←
←∅

≠ ∅
←

∈

←
←

←

Does BFS work for weighted graphs too?

BFS assigns to each v  
value v.distance, the least 

possible number of edges

on any source-to-v path.




BFS(G,s) - G is represented by the adjacency lists Adj[ ] of its vertices

for each u  V {s} 

u.color white;  
u.distance ; 

s.color gray;  
s.distance 0; 
Q ; 
enqueue(Q,s);

while Q  

u dequeue(Q);


for each v  Adj[u]

if v.color = white 

v.color gray;  
v.distance u.distance + 1; 
enqueue(Q,v);


u.color black; 

⋅
∈ ∖
←

←∞
←

←
←∅

≠ ∅
←

∈

←
←

←

Does BFS work for weighted graphs too?

BFS assigns to each v  
value v.distance, the least 

possible number of edges

on any source-to-v path.


Can’t we just modify this 

instruction to make it work

for weighted graphs?

w(u,v)



The shortest weighted path between two vertices may not be the 
one with the least number of edges!

Why does BFS not work for weighted graphs?

9

8

5 2

15

19

12

0 s1

2

3

5

6

7

8

9

12

2

3

3

1

3

1

71

42

1

4



The shortest weighted path between two vertices may not be the 
one with the least number of edges!

The shortest path from S to vertex number 3 would be through 
vertex 2: the length of 1 2 3 is 2+1=3<12, even if this path has two 
edges in place of one.

Why does BFS not work for weighted graphs?

9

8

5 2

15

19

12

0 s1

2

3

5

6

7

8

9

12

2

3

3

1

3

1

71

42

1

4



Dijkstra’s algorithm
If all the weights are nonnegative, we can 

use Dijkstra’s (pronounced “Deikstra”) algorithm.


Recall:

RELAX(u,v,w)

if v.d > u.d + w(u,v)


v.d = u.d + w(u,v); 
v.p u; ←



∞

∞

∞0

∞

∞

s

3

1

2

5

6

4

Dijkstra’s algorithm

2

5

15

1 3

1

At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={}

Q={0, , , , , }∞ ∞ ∞ ∞ ∞

1    2     3      4      5     6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q 


u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈



At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={}

Q={0, , , , , }∞ ∞ ∞ ∞ ∞

∞

∞

∞0

∞

∞

s

3

1

2

5

6

4

Dijkstra’s algorithm

2

5

15

1 3

1

DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q 


u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

1    2     3      4      5     6



At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={1}

Q={1,5, , , }∞ ∞ ∞

∞

∞

∞0

1

5

s

3

1

2

5

6

4

Dijkstra’s algorithm

2

5

15

1 3

1

2   3    4     5     6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q 


u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈



At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={1}

Q={1,5, , , }∞ ∞ ∞

∞

∞

∞0

1

5

s

3

1

2

5

6

4

Dijkstra’s algorithm

2

5

15

1 3

1

2   3    4     5     6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q 


u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈



At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={1,2}

Q={5, , ,16}∞ ∞

16

∞

∞0

1

5

s

3

1

2

5

6

4

Dijkstra’s algorithm

2

5

15

1 3

1

3    4      5     6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q 


u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈



16

∞

∞0

1

5

s

3

1

2

5

6

4

Dijkstra’s algorithm

2

5

15

1 3

1

3    4      5     6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q 


u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={1,2}

Q={5, , ,16}∞ ∞



At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={1,2,3}

Q={7, ,16}∞

16

7

∞0

1

5

s

3

1

2

5

6

4

Dijkstra’s algorithm

2

5

15

1 3

1

 4    5     6 DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q 


u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈



At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={1,2,3}

Q={7, ,16}∞

16

7

∞0

1

5

s

3

1

2

5

6

4

Dijkstra’s algorithm

2

5

15

1 3

1

DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q 


u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

 4    5     6



At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={1,2,3,4}

Q={8,16}

16

7

80

1

5

s

3

1

2

5

6

4

Dijkstra’s algorithm

2

5

15

1 3

1

DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q 


u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

  5     6



At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={1,2,3,4}

Q={8,16}

16

7

80

1

5

s

3

1

2

5

6

4

Dijkstra’s algorithm

2

5

15

1 3

1

DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q 


u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

  5     6



At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={1,2,3,4,5}

Q={11}

RELAX makes 6.d change from 16 to 11!

11

7

80

1

5

s

3

1

2

5

6

4

Dijkstra’s algorithm

2

5

15

1 3

1

DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q 


u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈

    6



At each step, one edge is relaxed. The vertices that are still to be 
finalised are maintained in a min-priority queue (many different 
implementations are possible). S is the set of finalised vertices.


S={1,2,3,4,5,6}

Q={}

RELAX makes 6.d change from 16 to 11!

11

7

80

1

5

s

3

1

2

5

6

4

Dijkstra’s algorithm

2

5

15

1 3

1

DIJKSTRA(G,w,s)

INITIALISE(G,s);

S ;

Q  V;

while Q 


u  EXTRACTMIN(Q); 
S  S {u};

for each v  Adj[u]


RELAX(u,v,w);

← ∅
←

≠ ∅
←
← ∪

∈



Dijkstra’s algorithm: complexity

Queue data 
structure TB(n) TE(n) TR(n) TD(G)

Arrays (n) (n) (1)   (|E|+|V|2)

Binary Heaps (n) O(log n) O(log n) O((|E|+|V|)log |V|)

Fibonacci 
Heaps (n) O(log n) (1) O(|E|+|V|log |V|)

Θ Θ ΘΘ

Θ

Θ Θ

Time complexity: (|V|) + TB(|V|) + |V| TE(|V|) + |E| TR(|V|) Θ ⋅ ⋅



Exercises
Cormen 24.3-6: We are given a directed graph G which each 
edge (u,v) has an associated value r(u,v), which is a real number in 
the range [0,1] that represents the reliability of a communication 
channel from vertex u to vertex v. We interpret r(u,v) as the 
probability that the channel from u to v will not fail, and we 
assume that these probabilities are independent. Give an efficient 
algorithm to find the most reliable path between two given 
vertices. (Hint: either modify Dijkstra or transform the weights…) 


