Single-Source Shortest Paths Chapter 24 of Cormen's book

Giulia Bernardini giulia.bernardini@units.it

> Algorithmic Design a.y. 2024/2025

Does BFS work for weighted graphs too?

BFS(G,s) - G is represented by the adjacency lists $Adj[\cdot]$ of its vertices

for each $u \in V \setminus \{s\}$ *u.color* \leftarrow white; u.distance $\leftarrow \infty$; s.color \leftarrow gray; s.distance $\leftarrow 0$; $Q \leftarrow \emptyset;$ enqueue(Q,s); while $Q \neq \emptyset$ $u \leftarrow \text{dequeue}(Q);$ for each $v \in \operatorname{Adj}[u]$ **if** *v.color* = white v.color \leftarrow gray; v.distance \leftarrow u.distance + 1; enqueue(Q, v); $u.color \leftarrow black;$

BFS assigns to each *v* value *v.distance,* the least possible number of edges on any source-to-*v* path.

Does BFS work for weighted graphs too?

BFS(G,s) - G is represented by the adjacency lists $Adj[\cdot]$ of its vertices

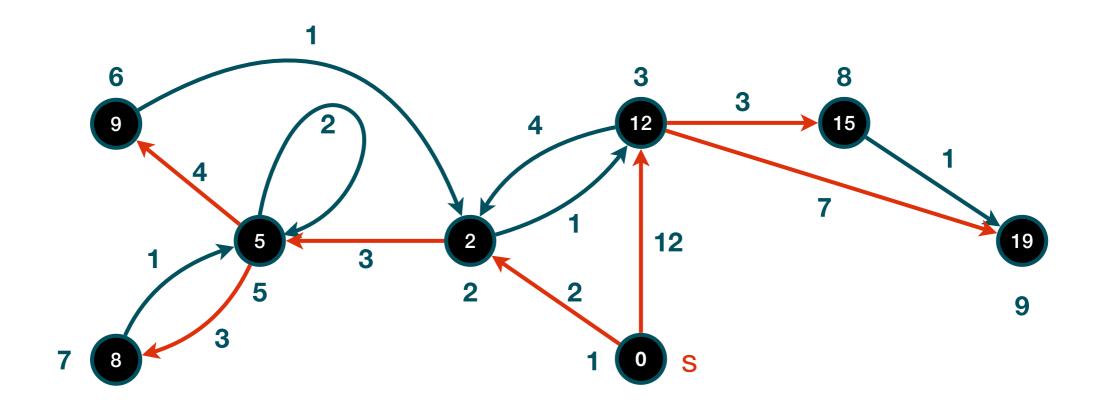
for each $u \in V \setminus \{s\}$ *u.color* \leftarrow white; u.distance $\leftarrow \infty$; s.color \leftarrow gray; s.distance $\leftarrow 0$; $Q \leftarrow \emptyset;$ enqueue(Q,s); while $Q \neq \emptyset$ $u \leftarrow \text{dequeue}(Q);$ for each $v \in \operatorname{Adj}[u]$ **if** *v.color* = white v.color \leftarrow gray; v.distance←u.distance +w(u,v enqueue(Q, v); $u.color \leftarrow black;$

BFS assigns to each *v* value *v.distance*, the least possible number of edges on any source-to-*v* path.

Can't we just modify this instruction to make it work for weighted graphs?

Why does BFS not work for weighted graphs?

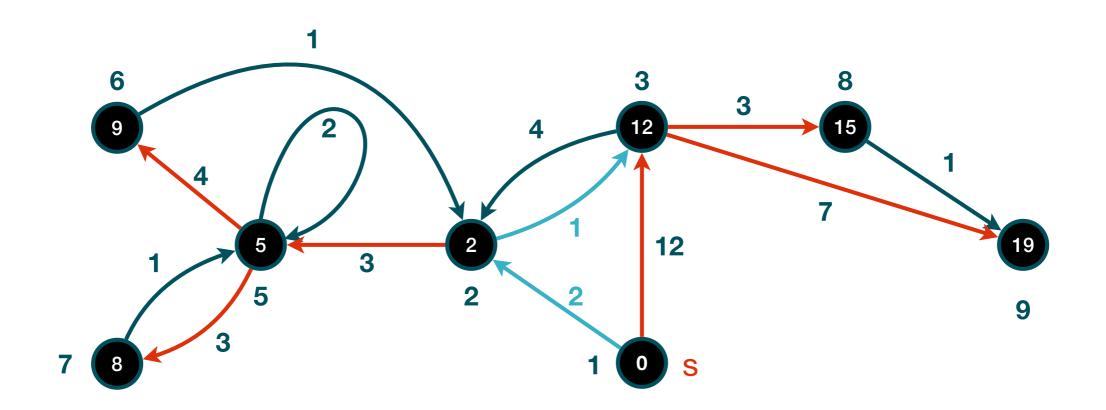
The shortest weighted path between two vertices may not be the one with the least number of edges!



Why does BFS not work for weighted graphs?

The shortest weighted path between two vertices may not be the one with the least number of edges!

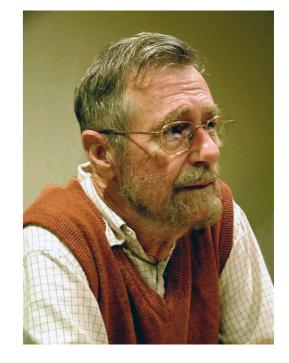
The shortest path from S to vertex number 3 would be through vertex 2: the length of $1 \ 2 \ 3$ is 2+1=3<12, even if this path has two edges in place of one.



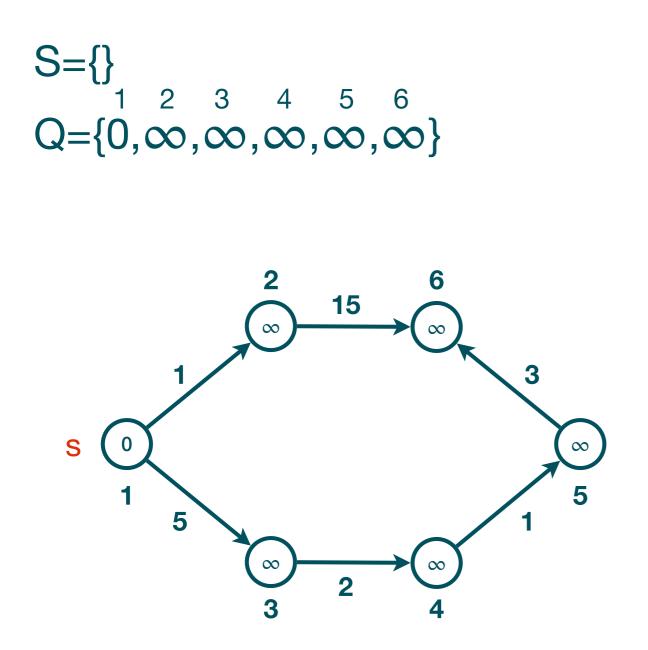
If all the weights are nonnegative, we can use Dijkstra's (pronounced "Deikstra") algorithm.

Recall:

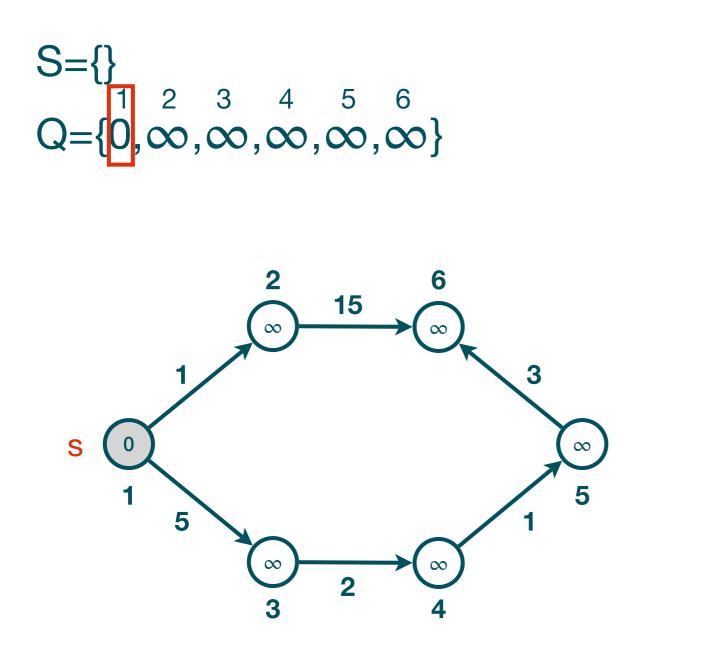
RELAX(u, v, w) **if** v.d > u.d + w(u, v) v.d = u.d + w(u, v); $v.p \leftarrow u;$



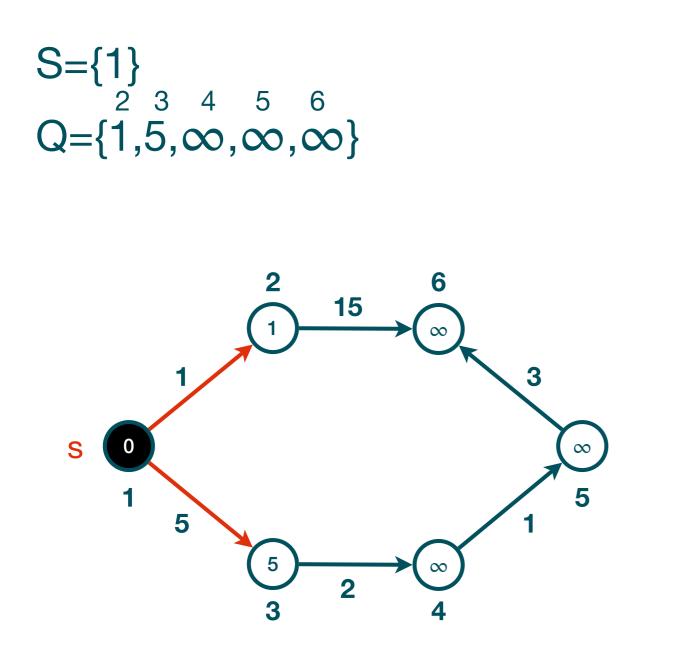
At each step, one edge is relaxed. The vertices that are still to be finalised are maintained in a min-priority queue (many different implementations are possible). S is the set of finalised vertices.



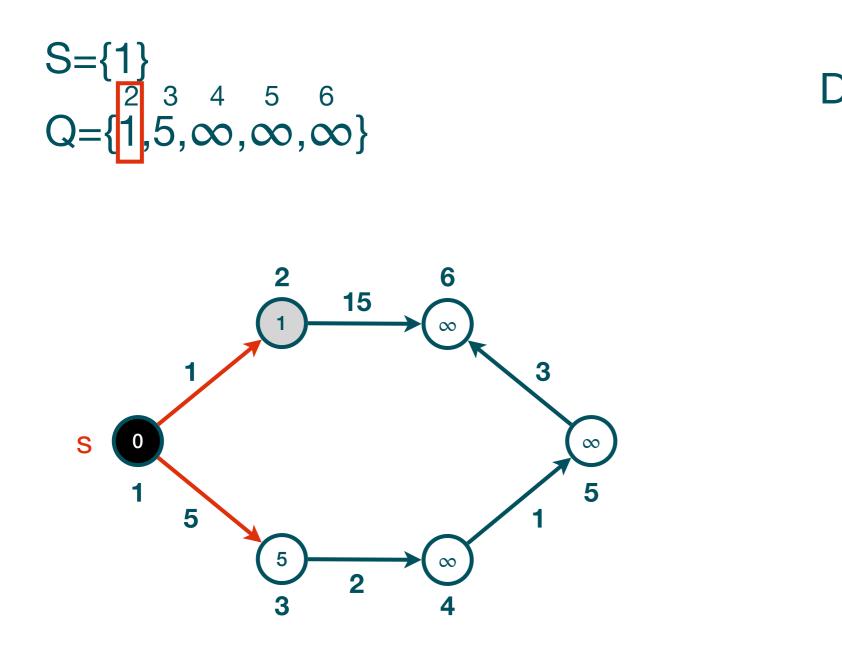
At each step, one edge is relaxed. The vertices that are still to be finalised are maintained in a min-priority queue (many different implementations are possible). S is the set of finalised vertices.



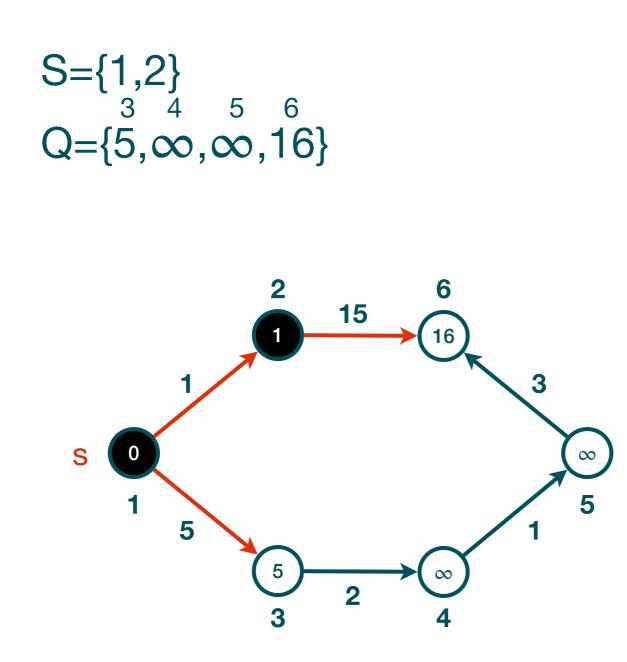
At each step, one edge is relaxed. The vertices that are still to be finalised are maintained in a min-priority queue (many different implementations are possible). S is the set of finalised vertices.



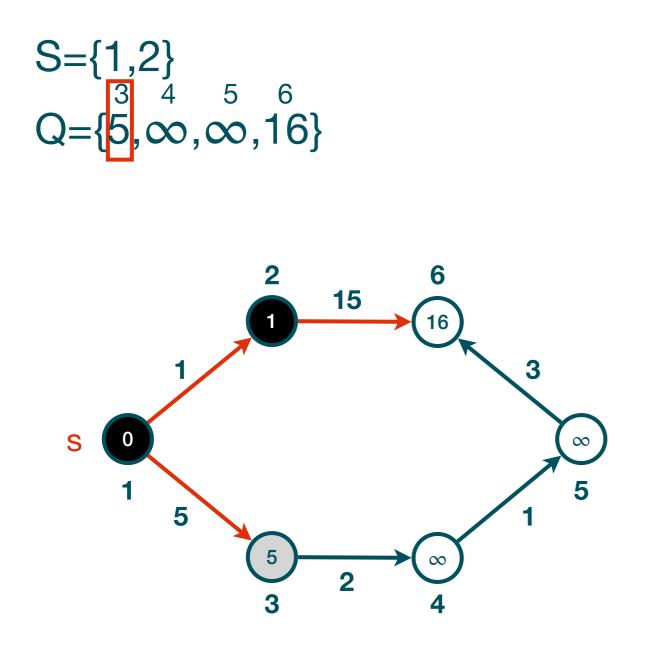
At each step, one edge is relaxed. The vertices that are still to be finalised are maintained in a min-priority queue (many different implementations are possible). S is the set of finalised vertices.



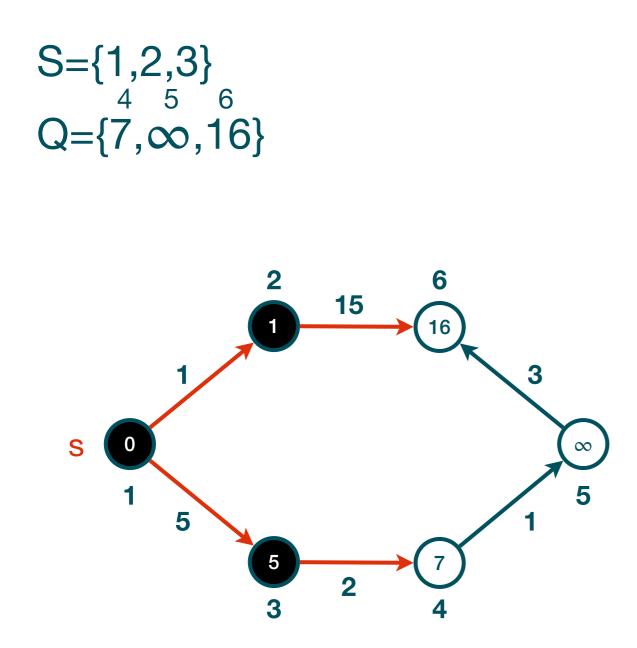
At each step, one edge is relaxed. The vertices that are still to be finalised are maintained in a min-priority queue (many different implementations are possible). S is the set of finalised vertices.



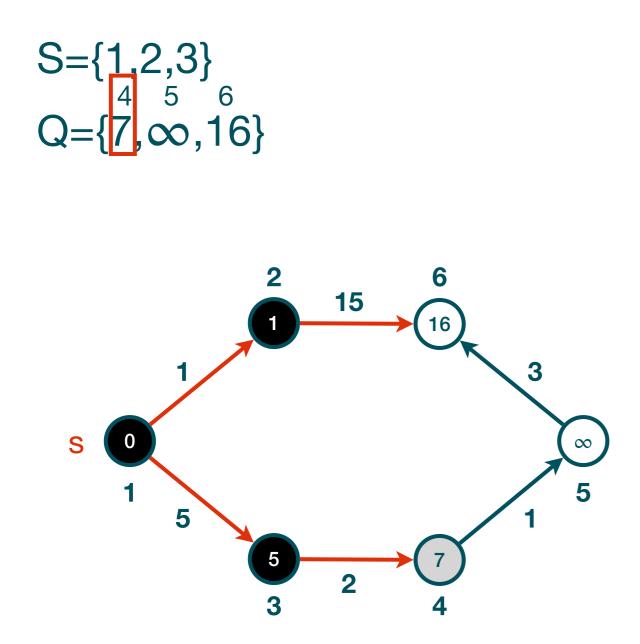
At each step, one edge is relaxed. The vertices that are still to be finalised are maintained in a min-priority queue (many different implementations are possible). S is the set of finalised vertices.



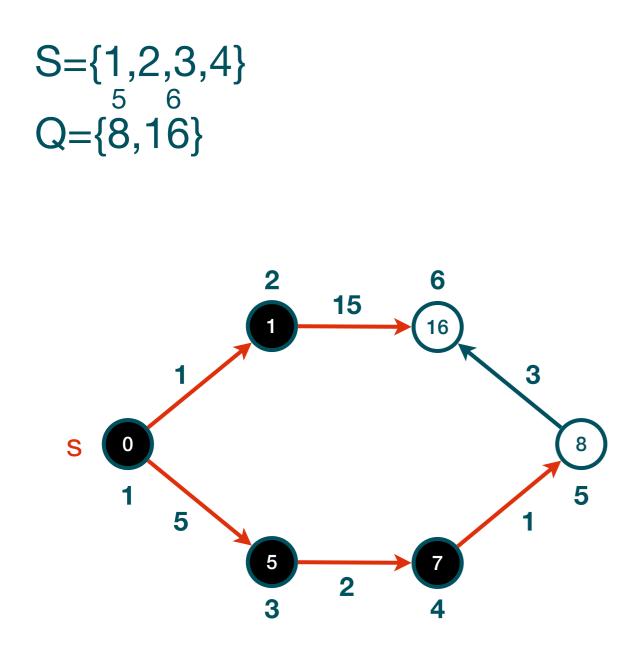
At each step, one edge is relaxed. The vertices that are still to be finalised are maintained in a min-priority queue (many different implementations are possible). S is the set of finalised vertices.



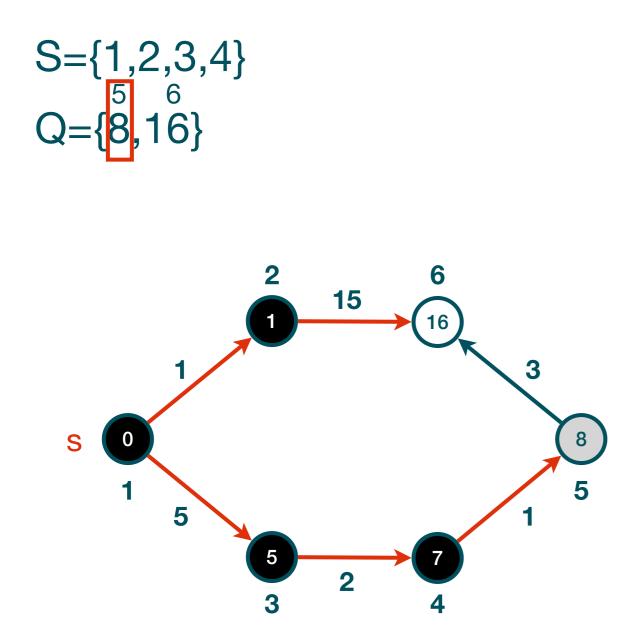
At each step, one edge is relaxed. The vertices that are still to be finalised are maintained in a min-priority queue (many different implementations are possible). S is the set of finalised vertices.



At each step, one edge is relaxed. The vertices that are still to be finalised are maintained in a min-priority queue (many different implementations are possible). S is the set of finalised vertices.



At each step, one edge is relaxed. The vertices that are still to be finalised are maintained in a min-priority queue (many different implementations are possible). S is the set of finalised vertices.



At each step, one edge is relaxed. The vertices that are still to be finalised are maintained in a min-priority queue (many different implementations are possible). S is the set of finalised vertices.

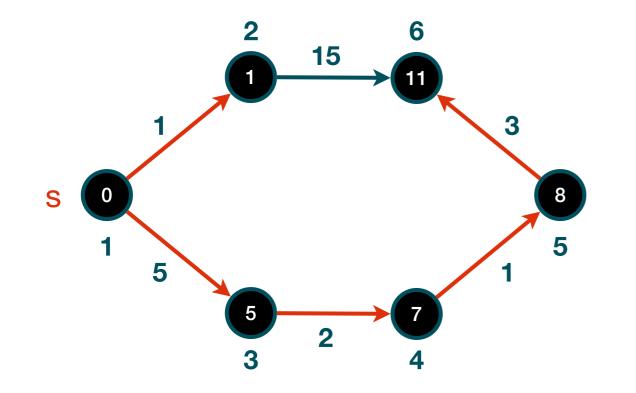
 $S = \{1, 2, 3, 4, 5\}$ DIJKSTRA(G,w,s) $Q = \{11\}$ INITIALISE(G, s); $S \leftarrow \emptyset;$ RELAX makes 6.*d* change from 16 to 11! $Q \leftarrow V;$ 15 while $Q \neq \emptyset$ 3 $u \leftarrow \text{EXTRACTMIN(Q)};$ $S \leftarrow S \cup \{u\};$ for each $v \in \operatorname{Adj}[u]$ 5 RELAX(u, v, w);2

At each step, one edge is relaxed. The vertices that are still to be finalised are maintained in a min-priority queue (many different implementations are possible). S is the set of finalised vertices.

S={1,2,3,4,5,6}

Q={}

RELAX makes 6.*d* change from 16 to 11! S ←



Dijkstra's algorithm: complexity

Time complexity: $\Theta(|V|) + T_B(|V|) + |V| \cdot T_E(|V|) + |E| \cdot T_R(|V|)$

Queue data structure	T _B (n)	T _E (n)	T _R (n)	T□ (G)
Arrays	Θ(n)	Θ(n)	Θ(1)	Θ(E + V ²)
Binary Heaps	Θ(n)	O(log n)	O(log n)	O((E + V)log V)
Fibonacci Heaps	Θ(n)	O(log n)	Θ(1)	O(E + V log V)

Exercises

Cormen 24.3-6: We are given a directed graph G which each edge (u,v) has an associated value r(u,v), which is a real number in the range [0,1] that represents the reliability of a communication channel from vertex u to vertex v. We interpret r(u,v) as the probability that the channel from u to v will not fail, and we assume that these probabilities are independent. Give an efficient algorithm to find the most reliable path between two given vertices. (*Hint: either modify Dijkstra or transform the weights...*)