X-Ray Diffraction

$$
m^2(h^2 + k^2 + l^2)
$$

From XRD spectra to the crystalline (here: cubic only) structures (i.e., from the angles to the Miller indices): how to?

M. Peressi - Cond Matt Phys I - a.y. 2024/25

1) from 2θ to $sin^2(0)$

The smallest θ (smallest $sin^2\theta$) is the peak with the smallest $m^2(h^2 + k^2 + l^2)$

we fix it as our reference, since the others $\,sin^2\theta\,$ should be its multiple by $m^2(h^2 + k^2 + l^2)$

2) calculate the ratios of the others $sin^2(0)$ w.r.t. the first peak

Do the numbers (~integers!) obtained correspond to $m^2(h^2 + k^2 + l^2)$?

(with proper choice of the indices, but ALL must be obtained in that way)

3) can we obtain ALL the numbers 1, 2, 3, ... 7 from $m^2(h^2+k^2+1^2)$?

We can try with the smaller Miller indices (permutation do not matter) and starting with m=1

=> NO!!! 7 CANNOT be obtained

4) may be the peak 1 does not correspond to (hkl)=(100); could be (110)?

consider its value as 2, and hence mutiply everything by 2

5) can we obtain ALL the even numbers 2, 4,…14 from m^2(h^2+k^2+l^2) ?

Let's continue filling our table…

K!!!! But which lattice does correspond to that list of Miller indices?

$$
\mathbf{K}_{SC} = \sum n_i \mathbf{b}_{i_{SC}} = \frac{2\pi}{a} (n_1, n_2, n_3) = \frac{2\pi}{a} (h, k, l) \Rightarrow \text{any } h, k, l \quad \text{Selection}
$$
\n
$$
\mathbf{K}_{BCC} = \sum n_i \mathbf{b}_{i_{BCC}} = \frac{2\pi}{a} (n_1 + n_2, n_1 + n_3, n_2 + n_3) = \frac{2\pi}{a} (h, k, l)
$$

a

 \Rightarrow $h + k + l = 2(n_1 + n_2 + n_3) \Rightarrow h + k + l =$ even number

a

$$
\mathbf{K}_{FCC} = \sum n_i \mathbf{b}_{i_{FCC}} = \frac{2\pi}{a} (n_1 + n_2 - n_3, n_1 - n_2 + n_3, -n_1 + n_2 + n_3) = \frac{2\pi}{a} (h, k, l)
$$

\n
$$
\Rightarrow h - k = 2(n_2 - n_3); \quad h - l = 2(n_1 - n_3); \quad k - l = 2(n_1 - n_2)
$$

 \Rightarrow *h*, *k*, *l* differ one from each other by an even number

6) check…

SC: no, since some combinations of Miller indices do not appear BCC: could be! h+k+l are all even

FCC: no, since for instance in (211), h and k do not differ by an even number

and this?

https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/ Introduction_to_Solid_State_Chemistry/06%3A_Recitations/6.16%3A_Xray_Diffraction_and_Selection_Rules

Comparing eq. 2 and 3

$$
\frac{\lambda}{2\sin\theta} = \frac{a}{\sqrt{h^2 + k^2 + l^2}} = \frac{a}{\sqrt{s}} \implies \frac{\sin^2\theta}{s} = \frac{\lambda^2}{4a^2}
$$

\n- As *s* must be an integer and
$$
\frac{\lambda^2}{4a^2}
$$
 is constant for a given pattern
\n- There is a set of integers for which $\frac{\sin^2 \theta}{s}$ yields a constant quotient
\n- Fixed number of possible relations
\n

Based on the atomic scattering factors (f) and structure factors (F) , the sets of integers for s (allowed reflections), corresponding to different crystal lattice types are as follows;

Simple cubic: Any
$$
h, k, l
$$

 $1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ldots$

\bullet Body-centered cubic: $h+k+l$ even 2, 4, 6, 8, 10, 12, 14, ...

\bullet Face-centered cubic: $h+k+1$ all odd or all even 3, 4, 8, 11, 12, 16, ...

 \bullet Diamond cubic: As FCC, if all even, then $h+k+l=4n$ h+k+l is a multiple of 4. That is, $3, 8, 11, 16, \ldots$