
60 5 Variational Quantum Algorithms

5.4 Quantum Annealing

The quantum annealing is an heuristic quantum algorithm based on the adiabatic theorem. It aims at solving
hard combinatorial optimisation problems using the Ising Hamiltonian as a target Hamiltonian.

The algorithm exploits an Hamiltonian transformation of the form

Ĥ(t) = (1 � s(t)) Ĥ0 + s(t)ĤC, (5.26)

where s(t) is a suitable smooth function of time with s(0) = 0 and s(⌧) = 1, and ĤC is the Ising Hamiltonian
in Eq. (5.1) whose ground state encodes the solution of the problem. Moreover, one requires that H0 has a
non-degenerate ground state that is easy to prepare and that [Ĥ0, Ĥ1] 6= 0. A simple choice is

Ĥ0 = �
nX

i=1

�̂(i)
x , (5.27)

which has |+i⌦n as ground state. This can be easily prepared via Hadamard gates: |+i⌦n = Ĥ⌦n |0i⌦n.
If the quantum annealing time ⌧ is not su�ciently long (i.e. the transformation is not su�ciently adiabatic),

which is essentially always the case, then one reach a state | (⌧)i, which has a probability p of being the solution
of the problem. Such a probability (of success) is given by p = | hzsol| (⌧)i |2, where |zsoli is the state encoding
the exact solution. To obtain the solution with a 99% certainty, one has to repeat the annealing procedure m
times. Indeed,

Pm
succ = 1 � (1 � p)m = 0.99. (5.28)

The corresponding total time required is given by

T99% = m⌧ =
ln(1 � 0.99)

ln(1 � p)
⌧ (5.29)

A strong challenge for the quantum annealing is the full connectivity of the qubits. Indeed, in a quantum
computer, the qubits interactions, which are parameterised by Jij , are typically null beyond nearest-neighbour
sites. This strongly limits the scaling of universally annealing where one can suitably tune all the values of Jij .

5.5 Quantum Approximate Optimisation Algorithm (QAOA)

The Quantum Approximate Optimisation Algorithm (QAOA) is a hybrid quantum-classical algorithm that
allows for optimising a cost function and finding an approximated solution. It is an application of the adiabatic
theorem, similarly as the quantum annealing, which is run on a quantum computer, while a classical computer
optimises the cost function.

We start from a quantum annealing Hamiltonian of the form

Ĥ(t) = (1 � s(t))ĤM + s(t)ĤC, (5.30)

where s(t) is an arbitrary function such that s(0) = 0 and s(⌧) = 1 with ⌧ being the total time of the
algorithm. The initial Hamiltonian ĤM is such that its ground state can be prepared easily. ĤC is instead
the cost Hamiltonian whose ground state encodes the solution to the problem. The QAOA is based on the
observation that the best way to implement the annealing Hamiltonian in Eq. (5.30) is a Trotter procedure.
Namely, this is to consider the unitary evolution with respect to Ĥ(t) and decompose it in small time steps.
Then, we have

Û(⌧) = T exp


� i

~

Z ⌧

0
dt Ĥ(t)

�
'

pY

k=1

exp
h
� i

~Ĥ(k�t)�t
i
, (5.31)
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where T indicates the time ordering, one assumes a large number of steps p � 1 of length � = ⌧/p. Owing that
for [Â, B̂] 6= 0 one has

ei(Â+B̂)�t = eiÂ�teiB̂�t + O((�t)2), (5.32)

and since we require that [ĤC, ĤM] 6= 0, one has that at each time step the following approximation is valid to
the order (�t)2:

Û(⌧) '
pY

k=1

exp
h
� i

~ (1 � s(k�t)) ĤM�t
i
exp

h
� i

~s(k�t)ĤC�t
i
. (5.33)

Now, the key idea of QAOA is to redefine the time dependence in the following way:

1
~ (1 � s(k�t))�t ! �k, and 1

~s(k�t)�t ! �k. (5.34)

Thus, we have

Û(⌧) '
pY

k=1

exp
h
�i�kĤM

i
exp

h
�i�kĤC

i
, (5.35)

where the parameters � = (�1, . . . ,�p) and � = (�1, . . . , �p) become the variational parameters to be optimised.
Crucial di↵erence with respect to the quantum annealing case is that one optimises over a set of 2p parameters
instead of a fixed time segments. Finally, one constructs the variational state

|�,�i =
pY

k=1

e�i�kĤMe�i�kĤC |initi , (5.36)

where the initial state |initi is the ground state of ĤM. In the case of ĤM being equal to Eq. (5.27), one has

|initi = Ĥ⌦n |0i⌦n . (5.37)

In the computational basis, the variational state reads

|�,�i =
2n�1X

z=0

dz(�,�) |zi , (5.38)

where dz(�,�) defines the superposition in the Z basis. Notably, since ĤC encodes in its ground state the
solution of the problem, one needs to minimise the expectation value of ĤC computed on the variational state.
Namely

Ep(�,�) = h�,�|ĤC|�,�i =
2n�1X

z=0

Pz(�,�)C(z), (5.39)

where Pz(�,�) = |dz(�,�)|2 is the probability of having the |zi state and C(z) = hz|ĤC|zi is the corresponding
cost. The best (�,�) are such that

(�⇤,�⇤) = arg min
�,�

Ep(�,�). (5.40)

Such an optimisation is performed on classical computer (classical optimiser). The circuit representation of the
QAOA is
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quantum computer classical optimiser
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(5.41)

Exercise 5.2
Derive the explicit expression of the cost fucntion C(z) in terms of the coe�cients Jij and hi.

The single k step of the QAOA, when considering ĤM as in Eq. (5.27) and ĤC being the Ising Hamiltonian,
is implemented as the following. First we consider ĤM,

ĤM = �
nX

i=1

�̂(i)
x . (5.42)

Then, the corresponding unitary acts independently on each qubit

e�i�kĤM = ei�k
Pn

i=1
�̂(i)
x =

nY

i=1

ei�k�̂
(i)
x . (5.43)

Then, the corresponding action can be implemented with a rotation on the single i-th qubit. The circuit
implementing it is

RX(�2�k) (5.44)

Indeed a rotation around n by an angle ✓ is defined a R̂n(✓) = e�i✓n·�̂/2. The implementation of the unitary
related to ĤC can be divided in two steps, indeed the two terms of ĤC in Eq. (5.1) commute. Then, one writes

e�i�kĤC = ei�k(
Pn

i=1
hi�̂

(i)
z +

P
1i<jn Jij �̂

(i)
z �̂(j)

z ) =
Y

1i<jn

ei�kJij �̂
(i)
z �̂(j)

z

nY

i=1

ei�khi�̂
(i)
z . (5.45)

Here, the single qubits factors act as rotations, with a circuit being

RZ(�2�khi) (5.46)

On the other hand, the two qubits interactions are 2-local gates, which can be implemented via a rotation
between two CNOT gates. Namely, the corresponding circuit will read

RZ(�2�kJij)
(5.47)

thus becoming very easy to be implemented.
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5.6 Variational Quantum Eigensolver (VQE)

Similarly as the QAOA, the Variational Quantum Eigeinsolver (VQE) is an heuristic approach to solve combi-
natorial optimisation problem that exploits a combination of quantum computation and classical optimisation.
In particular, the QAOA can be seen as a specific implementation of the VQE algorithm.

The algorithm is designed to solve problems that can be stated as finding the ground state energy E0 of n
qubit Hamiltonian. Namely, to find the configuration corresponding to the state | 0i that

Ĥ | 0i = E0 | 0i . (5.48)

The generality with respect to QAOA comes in the form of the cost Hamiltonian ĤC. Indeed, one assumes for
it the most general form, which is

ĤC =
X

↵

h↵P̂↵ =
X

↵

h↵

nO

j=1

�̂(j)
↵j

, (5.49)

where h↵ are coe�cients and the P̂↵ are called Pauli strings. The latter are product of n single-qubit Pauli
matrices (including the identity). Thus, compared to QAOA (which exploits the Ising model), this Hamiltonian
is not limited to two qubit interactions only, but can consider n qubit interactions. This is particularly relevant
when considering more complex systems where the Ising model fails to describe the entire complexity of the
problem.

Then, the steps of VQE are the following:

1. Map the problem in a cost Hamiltonian ĤC so that the solution is embedded in its ground state.
2. Prepare the initial state as the ground state of Ĥ.
3. Generate the trial state | (✓)i, which is determined by a set of parameters ✓.
4. Measure the expectation values of the Pauli strings in the Hamiltonian, i.e. h (✓)|P̂↵| (✓)i. This is the end

of the computation on the quantum computer.
5. Compute the corresponding energy, i.e. E(✓) =

P
↵ h↵ h (✓)|P̂↵| (✓)i

6. Update or accept the values of ✓ based on the result.
7. If updated, one goes back to point 2.

Notably, when searching for the ground state energy of the cost Hamiltonian, there are several pitfalls that
the update step must deal with. For example, the parameter landscape may have local minima where one does
not want to remain stacked.
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