Compufaﬂonal Physics
week 7
November 4, 2024

Maria Peressi
Universita degli Studi di Trieste - Dipartimento di Fisica
Sede di Miramare (Strada Costiera 11, Trieste)
e-mail: peressi@units.it
tel.: +39 040 2240242

mailto:peressi@units.it

Monte Carlo methods

® Monte Carlo integration

® Metropolis method to generate
non-uniform random number distributions

Monte Carlo methods:
“acceptance-rejection” or “hit or miss”

(to calculate areas) ,
® enclose the pond in a box of Area Avox

which is Apond ? ® throw pebbles uniformly and randomly in
the box

® count the number of pebbles felt in the
pond with respect to the number felt in the

’ PO nd . box

. ¢ ® Assuming a uniform distribution, the
& number of pebbles falling into the ponds is
proportional to the area of the pond:

N pond A‘pond

Noond + Nbox Abox

Npond
A
K A'pond Npond +Nbox pox

Monte Carlo methods:
“acceptance- rejectlon " or “hit or miss”

(to calculate ar'eas)

N random points in the unit square (
“coordinates x;,y;

Then, the number of

points NN, lying within the quarter circle (i.e. fulfilling the relation 2 + y* < 1)
is compared to the total number N of points and the fraction will give us an
approximate value of

N.(N)

T(N) =14 N

Monte Carlo methods:
“acceptance-rejection” or “hit or miss’

(to calculate definite integrals)

)

For W(x) positive in the integration
/ W(%)dﬂ? = 7 interval, the value of the area under

W(x) can be obtained by producing
random points (i.e. (X,y) random pairs)
uniformly distributed in a rectangle
containing W(x).

For each point (x,y) compare y with
W(x): if yY<W(x), the point is accepted.
The area under W(x) is the number of
points accepted divided by the total
number of points generated and
multiplied by the area of the rectangle.

(remember: also used to generate random numbers Xx; distributed according VW(x))

Other simple

Monte Carlo methods
b
We can always write:]:/ f(x)dx = (b—a)(f)

i.e., the value of the integral of f(x)

| between a and b equals the length
of the interval (b-a) times the

| average value of the function <f>

| over the same interval.

I (If f:[a,b] @ R is a continuous

function, then there exists a number

c in [a,b] such that f(c)=<f>
(mean value theorem for integration))

13 10

how to estimate <f> efficiently and accurately?

A simple Monte Carlo method:
“sample mean”

b
o) = | f@de= 0= a0
/7 \\ . f (xz) B @
(1o The sample mean can be calculated
by sampling the function (if smooth
enough...) with a sequence of N
uniform random numbers in [a,b]:
N
1
. b ()~ 5 D F ()
i=1

Monte Carlo methods:
error estimate

Example: MC estimate of 7 (exact value known)
1
We can use either acceptance-rejection or sample mean method: I = 4/ V1—2?2=m=23.1416...
0

Since we know the “exact” result I, we can calculate the error in two ways:

|) the actual error from the difference with respect to the exact value:
1 n
= g | with (a)n ;:1 f(x;), x; random

2) the numerical error from the variance of the data {f(z;)}:

Monte Carlo methods:
error estimate

1
Results: I=4/ V1—122=m=231416...
0
n Fy actual error On i

10 3.0692 0.0724 0.8550 | - 3
103 3.1704 0.0288 0.8790 | -
10* 3.1489 0.0073 0.8850

) the actual error 4\,, decreases as 1/n'/?

2) the numerical error from the variance of the data, On,
is roughly constant and is much larger than the actual error

what is the correct error estimate?

Monte Carlo methods:
error estimate

...typically you do not know which is the “actual error” (you do not know
the “true” value and you cannot compare your result with that!)....

but we would like to give an error to our numerical estimate...

(to which extent is our numerical estimate reliable?)

Two methods to estimate the error numerically
from the variance of the data
(“reduction of variance”):

|) average of the averages

) block average

MC error handling: method |
“average of the averages”

make additional runs of n trials each.
Let M, be the average of each run :

run o M, actual error o A)
1 31489 0.0073 one run = n = 10" trials each
2 3.1326 0.0090
3 3.1404 0.0012
4 3.1460 0.0044
5 3.1526 0.0110
6 3.1397 0.0019
7 3.1311 0.0105
3 3.1358 0.0058
9 3.1344 0.0072
10 3.1405 0.0011

Examples of Monte Carlo measurements of the mean value of f(z) = 4v/1 — 22 in the
interval [0,1]. A total of 10 measurements of n = 10* trials each were made. The mean value M,
and the actual error |M, — 7| for each measurement are shown.

m 1 m
Calculate: 0, = (M?) — (M)? with (M) = %Z ‘ = - > Mo
— 5, = 0.0068 o !

o, 18 consistent with the results for the actual errors

MC error handling: method |1
“block averages”

Instead of doing additional measurements, divide them into “s SUBSETS”
and let S}, be the average within each subset :

subset k Sk
3.14326
3.15633
3.10940
3.15337
3.15352
3.11506
3.17989
3.12398
3.17565

0 3.17878

—_ O 0 J O OU i O =

The variance associated to the average of the subsets ¢ 52 — < S 2> — <S > 2
gives 05 = 0.029, but
04 /\/3, which for our example is approximately 0.025/+/(10) ~ 0.008.

1s consistent with the actual error

Monte Carlo methods:

error estimate - variance reduction
summary

O-n/T\/ﬁ ~ Om ~ O-S/T\@

from the variance of

from the variance
the whole set of data

of the
block averages

Note: for the variance
uncorrelated data ! Y .
. of the the most convenient!
average of but: change block size

and check that
(proof) the averages it does not change

Monte Carlo methods:
summary

We have introduced :
* (¥4 . o b B)
acceptance-rejection

N
1
*“sample mean” to estimate (/) ~) f(x:)
1=1

both OK for smoothly varying functions, but
not very efficient for rapidly varying functions

How to improve the efficiency of MC integration?

A trick for numerical integration:
“reduction of variance”

(Note: same word, but different meaning w.r.t. previous slides on error handling)

Given a function f(a:‘)to integrate, suppose that g(m) exists,
whose integral is known and such that:

f(z) —g(z)] <<e

Therefore:

b b
F- / f(x)da = / ((f(2)—g(2)) +g(x))dz = / <f<a:>—g<x>>dx-+/ g(x)dz

T

easy to calculate

Another simple Monte Carlo method:
“importance sampling”

Mean value: easy to calculate for smoothly varying functions.
But not for functions rapidly varying.

g9() g()

y N _~

—
b &
>z a z; b

smooth function function with singularity

How to manage such cases?

Another simple Monte Carlo method:
“importance sampling”

Mean value: easy to calculate for smoothly varying functions.
|dea: in order to calculate:

(h~ 5 S @)

consider a distribution function p(x) easy to integrate
analytically and close to f(z):

F = /abf(x)dx - /ab l%l p(z)dz = <%> /abp(x)dx

f(:l?) 1 al f(:ljz) (particular case:
where (=/)~ — Z uniform distrib.
p(z) N — | p(z;) o(x)=1/(b-a) ...

with {Z; } distributed according to p(x)

Monte Carlo methods:

“importance sampling”

Calculate: 1
F:/ e v dx.
0

with “sample mean” with random numbers with uniform

distribution or using the “importance sampling” with p(z) = e~

p(z) =1 | p(x) = Ae”"
n (trials) 4 x 10° 8 x 10°
F, 0.7471 0.7469
o 0.2010 0.0550
o/\/n 3 x 1074 6 x 10~
Total CPU time (s) 35 1.35
CPU time per trial (s) 104 2 x 1074

(pay attention to the normalization of p(x)...)

€T

<« efficient !

error(MC)~| /\/N =2 see log(error) vs. log(N)

but with different prefactors
for sample means vs importance sampling

I I I I [I I
log(numero di step) vs. log(scarto q. medio) per: sample mean
importance_sampling.dat

+

+ o+ ++

10

Choice of the importance sampling function

[F = /016_1,2 da;]

e /abf(a:)dx _ /ab [%] p(x)dz = <%> /abp(x)dx

2 Ll T
exp(-xooQ) 1
this p(x) is normalized to 1 in (0 —» exp{=x)*exp{1,)}/ {exp{1,)=1) =
this is not normalize eHpl=n) =
1 —
1.5
CRE!
—
8.%
o A A
1) 6.2 6.4 0.6 0.8 1

(pay attention to the normalization of p(x)...)

Some programs

on https://moodle2.units.it/

pl.f90 Monte Carlo integration for the calculation of Tt

For the other exercises: write yourself the codes

21

-10

-12

14

-16

-18

el"l"OI"(MC)"' | /\/N =2 see log(error) vs. log(N)

plgr dat’ u(0g($1)): (Iog($2))
pigr.db.dat’ u (I g($1)) (log($2))

X
X
X
X
X

+
X

17

error(MC)~1/+/N :“true” error and statistical error

Sample mean
AN=| lesatto 'IMC| o
o o
0/Nl/ZMC step
([e © o ® © o o © o o e 6 o o o o
°
o
o
o
g * .
[o
-8 o
° ° ©
-10
e ©
-12
o
2 4 8 10 12 14 16 18
log(Nmc step)

(credits: G. Lautizi, a.y. 2019-20)

Summary of numerical integration
(MC and deterministic) methods

MC sample mean

b N
1
/ f(x)dx = (b—a) < f >~ (b—a)N g f(x;) with {x;} randomly uniformly distributed in [a,b]

MC importance sampling

=1 <z’t can be considered as Importance sampling with p(x) = b i a in |a, b])
[sz = [LD y@ar =< TS [y NLiﬂxi)/b (@)
,J@dr= | et =< gy > [, e s 7 2 gy |, P

with {x;} randomly distributed according p(x)

Deterministic, equispaced points

b—a
7

b N
/a f(x)dx ;U f(x;) with z; =a+ N v; to be determine

Deterministic, nhon equispaced points

b N
/ f(x)dx ~ vazf(xz) with {z;} , {v;} to be determined
a i=1

24

Error estimate:
comparison between
deterministic and MC

methods

in d-dimension

Error estimate for numerical integration
with deterministic methods

(Reminder from
previous slides)

/f(x)da: = I, + error

How to evaluate the error? Consider the Taylor expansion
of the integrand function and then integrate:

fl2) = fa) + f/(@) @ —z) + o [(@2 + ...

Ar =11 — T;
26

Error estimate for numerical integration:
Rectangular approximation

(Reminder from
previous slides)

Compare || with (¥):
/%Hlf(x) dr = f(x;)Ax + %f’(wz)(Ax)Q 4 éf”(xz‘)(Aa?)g L

(leading order in Az)

For T intervals (Az = (b—a)/n): erroris n(Az)* ~ 1/n

(...and similarly for
27 higher-order approximations)

Numerical integration:

multidimensional integrals
F= [foy)dody
R

The rectangular approximation gives ArAy ~ (Az)* ~ 1/n, beingn
the number of parts (or pairs of points) of the integration domain:

Lg+4+1 Yi+1 "
/ / f(x,y)dzdy ~ f(x:,y;)AxAy (%)
The Tayk;r expanzsion of the integrand function gives:

Lit1 Yi+1 X . = ;

2
(*) against (**) => error
(leading order in Ax)

| . 1/2
For " intervals: erroris n(Ax)S ~ 1/n / 28

Numerical integration:
multidimensional integrals

Therefore for rectangular approx.:

d=1: error ~ 1/n d=2: error ~ 1/n'/?

In general:

if the error decreases as n=% for d = 1, then the error decreases as n~%¢ in d dimensions.

Classical formulas with equispaced points:
slowly decreasing error for multidimensional integration !

29

Numerical integration:
error in MC methods

On/\VN = oy = os/\/s

(O nis roughly constant with n ; for uncorrelated points,
the variance of the averages goes like ~ 1/n!/?)

The average function value
(f) = %if(%)

The average squared function value
(f?) = N{iﬁ(%)

Estimate of the integrand (+/- standard error)
o\ 2
/f AV =~V (f) iv\/Uz)N(f)

30

Numerical integration:
errors in multidimensional integrals

d | Rect. Trap. | Simps. | MC

1 | 1/n 1/n? 1/n* 1/nt/?
2 | 1/n'/?2 | 1/n 1/n?2 | 1/nt/?
4 | 1/nt/4 | 1/nY2 | 1/n 1/nt/?

if the error decreases as n=% for d = 1, then the error decreases as n=%% in d dimensions.

the error for all Monte Carlo integration methods decreases as n™'/? independently
of the integral.

Monte Carlo convenient for multidimensional integration !

31

Summary:
advantages of MC integration methods

convergence as ~N!"2 in any dimension regardless of the smoothness of
the integrand

simplicity: only two simple steps required (namely, producing a set of
sampling points and evaluating the integrand function over such points)

generality: sampling can be used even on domains that do not have a
natural correspondence with the ‘standard’ domain [0, |]dand thus are not
well-suited to numerical quadrature

better suited than quadrature for integrands with singularities
(importance sampling can handle this problem)

flexibility: easy to add more points as needed (in the Gaussian quadrature,

increasing the accuracy implies doing calculations from scratch)
32

Metropolis Algorithm

by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953)

to generate random peints with a given distribution

33

Metropolis Algorithm

how to generate random points with a given distribution?
p(x)

Idea: produce a random walk with points {ZEZ}

whose asymptotic probability distribution pn(Xx)

of the occupied positions approaches p(r) after

a large number N of steps

34

Metropolis Algorithm

how to generate random points with a given distribution?
p(x)

Idea: produce a random walk with points {ZEZ}

whose asymptotic probability distribution pn(Xx)

of the occupied positions approaches p(r) after

a large number N of steps

A random walk in general is defined by specifying a
transition probability T'(x; — ;) from one value x;
to another value x; and the distribution of points

To, T1, Ty, ... converges to a certain p(x)

35

Comment:
need to consider a RW more general than the ‘standard’
RW with length and probability fixed for each step.

Remind: a RW with fixed length and pieft = prighe gives
Pn(x) that for large N tends to a gaussian distribution
with a standard deviation that depends on N:

62 t 2 —332/(2)
2 __) _ . _ 2 __ p2 — -
0° =Dt D=g; Al=g =0 = N/2 P(x, NAt) =4/ N E A

(here (= I; remind also the factor of 2 due to discretization)

The recipe to obtain a gaussian distribution with given O
from simple RWs was to generate several RWs with the
same N and do the histogram of their end-points.

The approach we are going to discuss now is something

different, the focus being one RW.

Markov chains

Consider a sequence of “configurations” C={C,, C,, ...
CnN } stochastically generated, i.e. Ci+ is obtained from
the previous one, Ci, by making some random changes
on the former.

The sequence is a Markov chain if the probability of
making a transition from Cy to Cy+| is not dependent
on how we arrived at Cy (its history), i.e. no memory.

The sequence of points zg, x1, T3, ... of a simple RW
is a Markov chain.

37

The detailed balance

Choose a transition probability T'(x; — ;) from
one value g ; to another value z; (from one
configuration C; to another one Ci+|) such that the
distribution of points xg, 1, T2, ... (of configurations)
converges to the desired p(x).

It is sufficient (not necessary) to satisfy the condition:

p(zi)T(z; — ;) = p(z;)T(x; — ;)

A simple choice (not unique!) is:

T(x; — x;) = min |1,

(We can easily verify...)

Example:

probability
distribution

)
1

initial pos3gtion

probability
distribution

new trial posjtion

.
r

initial poigtion

probability
distribution

. 0

e —

1

initial poilition

probability
distribution

. 0

move with probability —<€—
p(x)/p(x) < | t

initial poﬂtion

probability
distribution

)
1

initial po§3ition

probability
distribution

another new trial position

Xj’
—>

1

initial poﬂtion

P(X})

probability
distribution

O
r

initial poisition

P(X})

probability
distribution

X%

T_’ GO! since p(x;)/p(xi) > |
T(x; — x;) = min [1, p(%)]

initial poigtion

Summarizing: P(Xj’)

probability
distribution

Xj (%) %
move with probability <€— 77— GO! since p(x)/p(xi) > |

p()/p(x) < | 1

initial po:i;tion

T(z; — x;) = min [1,p(‘rf)]

The Metropolis algorithm

P (Qj) 1s given,

If the “walker” is at position x; and we wish to generate x;,1, we can implement this choice of
T(x; — x;) by the following steps:

1. Choose a trial position xyia1 = x; + d;, where d; is a random number in the interval [—4, J].

2. Calculate w = p(ia1) /p(T;).

3. If w > 1, accept the change and let ;11 = T{yal-
else

4. If w < 1, generate a random number r.

5. If r < w, accept the change and let x;11 = T¢yial-

6. If the trial change is not accepted, then let z; 11 = x;.

The algorithm from |) to 6) has to be repeated until
the distribution p(x) of the points {z;} is reached.

48

note:

it's important how to handle the rejected attempts for
the generation of the random walk:

in case of a rejected attempt, the walker does not move,
and we have to consider again the point where we tried
to move from;

in the integration with importance sampling, a point

which is unchanged after a rejected attempt does enter
again in the average, i.e. its weight in the sum increases

49

Questions:

® how to choose I(?

® how to choose () ?
(if too small, most trial steps accepted, but
the walker moves too slowly; if too large,
only a few trial steps are accepted...)

® cquilibration is necessary (how many steps?)

50

Answers:

® how to choose I(?
Convenient to start from a maximum

® how to choose () ?
(if too small, most trial steps accepted, but
the walker moves too slowly; if too large,
only a few trial steps are accepted...)
A good compromise is a choice accepting
from ~ |/3 to ~1/2 of the trial steps

® cquilibration is necessary (how many steps?)
A possible criterion based on error estimate

51

Some programs:

in moodle2.units.it:

gauss_metropolis.f90

52

! gauss metropolis.f90
! METROPOLIS generation of random numbers with a Gaussian distribution
! P(x) = exp(-x**2/(2*sigma**2))/sqgrt(2*pi*sigma**2)
start from a given x=x0
do i=1,n

lccececeecececcecececececcecececececcecececececcececececece
expx = - x**2 /(2*sigma**2) <«—
call random number (rnd) !

th t of p(x’
Xp = X + delta * (rnd_o .5) / e exponent of p(x’)
eXpXp = - Xp**2 /(2*sigma**2) +! metropolis

the exponent of p(x)

W = exp (expxp-expx) ! algorithm
call random_number(rnay\\\\\\\\$\\\\ the ratio p(x’)/p(x)
if (w > rnd) then !

X = Xp !

lcccececeeeccecceccececececececececececeececeeececececcece

endif

enddo

53

! gauss metropolis.f90

! METROPOLIS generation of random numbers with a Gaussian distribution
! P(x) = exp(-x**2/(2*sigma**2))/sqgrt(2*pi*sigma**2)

.... start from a given x=x0

do i=1,n
Xl = x1 + X
X2 = X2 + x**2 calculate some momenta
X3 = X3 + xX**3
X4 = x4 + x**4
lcccecececececccecccccccCcCCcCcCCCccceeccee
expx = - x**2 /(2*sigma**2)

|

call random number (rnd) !

Xp = X + delta * (rnd-0.5) !
expxp = - xp**2 /(2*sigma**2) ! metropolis

|

!

!

!

W = exp (exXpxXp-expXx) algorithm

call random number (rnd)

if (w > rnd) then
X = Xp

lcccececececcccecccccecececccececcccceccecee .
acc=acc+l. > calculate the acceptance ratio

endif .

ibin = nint(x/deltaisto) «—— Calculate the histogram

if (abs(ibin) < maxbin/2) istog(ibin) = istog(ibin) + 1

enddo

54

Metropolis generation of
random numbers distribution

)
let’s use the Metropolis method to generate a
gaussian distribution

example of application:
(n=1000, x0=0, 5=5, 0=1)

(with gauss_metropolis.£90)

55

Answers from numerical experiments:

® how to choose X!
Convenient to start from a maximum

® how to choose O?
(if too small, most trial steps accepted, but the
walker moves too slowly; if too large, only a few
trial steps are accepted...)
A good compromise is a choice accepting from ~
1/3 to ~1/2 of the trial steps: depends on O

® cquilibration is necessary (how many steps?)
A possible criterion based on error estimate:
: 2\ ~ 2
consider when (z°) ~ o

56

