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Monte Carlo methods

• Monte Carlo integration

• Metropolis method to generate 
     non-uniform random number distributions 
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• enclose the pond in a box of Area Abox

• throw pebbles uniformly and randomly in 
the box

• count the number of pebbles felt in the 
pond with respect to the number felt in the 
box

• Assuming a uniform distribution, the 
number of pebbles falling into the ponds is 
proportional to the area of the pond:

which is Apond   ?
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Monte Carlo methods:
“acceptance-rejection” or “hit or miss”

(to calculate areas)
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Monte Carlo methods:
“acceptance-rejection” or “hit or miss”
(to calculate areas)

π =???
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Monte Carlo methods:
“acceptance-rejection” or “hit or miss”

For W(x) positive in the integration 
interval,  the value of the area under  
W(x)  can be obtained by producing 
random points (i.e. (x,y) random pairs) 
uniformly distributed in a rectangle 
containing W(x). 

For each point (x,y) compare y with 
W(x): if y<W(x), the point is accepted. 
The area under W(x) is the number of 
points accepted divided by the total 
number of points generated and 
multiplied by the area of the rectangle.
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∫
W (x)dx = ?

(remember:     also used to generate random numbers xi distributed according W(x))

(to calculate definite integrals)
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i.e., the value of the integral of  f(x) 
between a and b equals the length 
of the interval (b-a) times the 
average value of the function <f> 
over the same interval.
(If   f:[a,b] → R   is a continuous 
function, then there exists a number 
c in [a,b] such that f(c)=<f>
(mean value theorem for integration))
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Other simple 

Monte Carlo methods
I =

∫ b

a

f(x)dx = (b − a)〈f〉We can always write:

how to estimate <f> efficiently and accurately?
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The sample mean can be calculated 
by sampling the function (if smooth 
enough...) with a sequence of N 
uniform random numbers in [a,b]:

A simple Monte Carlo method:

“sample mean”

∫ b

a

f(x)dx ≈ (b − a)
1

N

N∑
i=1

f(xi) = (b − a)〈f〉

〈f〉 ≈
1

N

N∑

i=1

f(xi)

I =

∫ b

a

f(x)dx = (b − a)〈f〉

N = 10, 000 Nc = 7, 854 �(10, 000) = 3.1416
⇤ 1�

N

g(x)
[a, b]

N xi

g(xi)

ˆ b

a

g(x)dx ⇥ (b� a)

�
1

N

N⇤

i=1

g(xi)

⇥

xi

g(x)

g(x)

p(x)
g(x)
p(x)

f(x)

〈f〉
f(xi)



8

Since we know the “exact” result I, we can calculate the error in two ways:

1) the actual error from the difference with respect to the exact value:
    

2) the numerical error from the variance of the data           :

Monte Carlo methods:
error estimate

 We can use either acceptance-rejection or sample mean method: I = 4

∫ 1

0

√

1 − x2 = π = 3.1416 . . .

∆n = |Fn − I|

{f(xi)}

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 382

of f(x) = 4
√

1 − x2 in the interval [0, 1] (see Problem 11.3). Our result for a particular sequence
of n = 104 random numbers using the sample mean method is Fn = 3.1489. How does this result
for Fn compare with your result found in Problem 11.3 for the same value of n? By comparing
Fn to the exact result of F = π ≈ 3.1416, we find that the error associated with n = 104 trials is
approximately 0.0073.

How can we estimate the error if the exact result is unknown? How can we know if n = 104

trials is sufficient to achieve the desired accuracy? Of course, we cannot answer these questions
definitively because if the actual error in Fn were known, we could correct Fn by the required
amount and obtain F . The best we can do is to calculate the probability that the true value F is
within a certain range centered on Fn.

If the integrand were a constant, then the error would be zero, that is, Fn would equal F for
any n. Why? This limiting behavior suggests that a possible measure of the error is the variance
σ2 defined by

σ2 = 〈f2〉 − 〈f〉2, (11.14)

where

〈f〉 =
1
n

n
∑

i=1

f(xi), (11.15a)

and

〈f2〉 =
1
n

n
∑

i=1

f(xi)2. (11.15b)

From the definition of the standard deviation σ, we see that if f is independent of x, σ is zero. For
our example and the same sequence of random numbers used to obtain Fn = 3.1489, we obtain
σn = 0.8850. Because this value of σ is two orders of magnitude larger than the actual error, we
conclude that σ cannot be a direct measure of the error. Instead, σ is a measure of how much the
function f(x) varies in the interval of interest.

Another clue to finding an appropriate measure of the error can be found by increasing n and
seeing how the actual error decreases as n increases. In Table 11.2 we see that as n goes from 102

to 104, the actual error decreases by a factor of 10, that is, as ∼ 1/n
1
2 . However, we also see that

σn is roughly constant and is much larger than the actual error.

n Fn actual error σn

102 3.0692 0.0724 0.8550
103 3.1704 0.0288 0.8790
104 3.1489 0.0073 0.8850

Table 11.2: Examples of Monte Carlo measurements of the mean value of f(x) = 4
√

1 − x2 in the
interval [0, 1]. The actual error is given by the difference |Fn − π|. The standard deviation σn is
found using (11.14).

One way to obtain an estimate for the error is to make additional runs of n trials each.
Each run of n trials yields a mean or measurement that we denote as Mα. In general, these
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and
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i=1

f(xi), xi randomwith 

Example:  MC estimate of  π (exact value known)
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Monte Carlo methods:
error estimate
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√

1 − x2 in the
interval [0, 1]. The actual error is given by the difference |Fn − π|. The standard deviation σn is
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One way to obtain an estimate for the error is to make additional runs of n trials each.
Each run of n trials yields a mean or measurement that we denote as Mα. In general, these

1/n1/2

σn

what is the correct error estimate?

∆n

Results: I = 4

∫ 1

0

√

1 − x2 = π = 3.1416 . . .

1) the actual error          decreases as     

2) the numerical error from the variance of the data,      ,        
is roughly constant and is much larger than the actual error         
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...typically you do not know which is the “actual error” (you do not know 
the “true” value and you cannot compare your result with that!)....
but we would like to give an error to our numerical estimate...
(to which extent is our numerical estimate reliable?)

Two methods to estimate the error numerically 
from the variance of the data
(“reduction of variance”):

1) average of the averages

II) block average

Monte Carlo methods:
error estimate
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MC error handling: method 1
“average of the averages”

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 383

run α Mα actual error
1 3.1489 0.0073
2 3.1326 0.0090
3 3.1404 0.0012
4 3.1460 0.0044
5 3.1526 0.0110
6 3.1397 0.0019
7 3.1311 0.0105
8 3.1358 0.0058
9 3.1344 0.0072
10 3.1405 0.0011

Table 11.3: Examples of Monte Carlo measurements of the mean value of f(x) = 4
√

1 − x2 in the
interval [0, 1]. A total of 10 measurements of n = 104 trials each were made. The mean value Mα

and the actual error |Mα − π| for each measurement are shown.

measurements are not equal because each measurement uses a different finite sequence of random
numbers. Table 11.3 shows the results of ten separate measurements of n = 104 trials each. We see
that the actual error varies from measurement to measurement. Qualitatively, the magnitude of
the differences between the measurements is similar to the actual errors, and hence these differences
are a measure of the error associated with a single measurement. To obtain a quantitative measure
of this error, we determine the differences of these measurements using the standard deviation of
the means σm which is defined as

σm
2 = 〈M2〉 − 〈M〉2, (11.16)

where

〈M〉 =
1
m

m
∑

α=1

Mα, (11.17a)

and

〈M2〉 =
1
m

m
∑

α=1

Mα
2. (11.17b)

From the values of Mα in Table 11.3 and the relation (11.16), we find that σm = 0.0068. This
value of σm is consistent with the results for the actual errors shown in Table 11.3 which we see
vary from 0.00112 to 0.01098. Hence we conclude that σm, the standard deviation of the means, is
a measure of the error for a single measurement. The more precise interpretation of σm is that a
single measurement has a 68% chance of being within σm of the “true” mean. Hence the probable
error associated with our first measurement of Fn with n = 104 is 3.149 ± 0.007.

Although σm gives an estimate of the probable error, our method of obtaining σm by making
additional measurements is impractical because we could have combined the additional measure-

one run ≡ n = 10
4

trials each
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Although σm gives an estimate of the probable error, our method of obtaining σm by making
additional measurements is impractical because we could have combined the additional measure-
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run α Mα actual error
1 3.1489 0.0073
2 3.1326 0.0090
3 3.1404 0.0012
4 3.1460 0.0044
5 3.1526 0.0110
6 3.1397 0.0019
7 3.1311 0.0105
8 3.1358 0.0058
9 3.1344 0.0072
10 3.1405 0.0011

Table 11.3: Examples of Monte Carlo measurements of the mean value of f(x) = 4
√

1 − x2 in the
interval [0, 1]. A total of 10 measurements of n = 104 trials each were made. The mean value Mα

and the actual error |Mα − π| for each measurement are shown.

measurements are not equal because each measurement uses a different finite sequence of random
numbers. Table 11.3 shows the results of ten separate measurements of n = 104 trials each. We see
that the actual error varies from measurement to measurement. Qualitatively, the magnitude of
the differences between the measurements is similar to the actual errors, and hence these differences
are a measure of the error associated with a single measurement. To obtain a quantitative measure
of this error, we determine the differences of these measurements using the standard deviation of
the means σm which is defined as

σm
2 = 〈M2〉 − 〈M〉2, (11.16)

where

〈M〉 =
1
m

m
∑

α=1

Mα, (11.17a)

and

〈M2〉 =
1
m

m
∑

α=1

Mα
2. (11.17b)

From the values of Mα in Table 11.3 and the relation (11.16), we find that σm = 0.0068. This
value of σm is consistent with the results for the actual errors shown in Table 11.3 which we see
vary from 0.00112 to 0.01098. Hence we conclude that σm, the standard deviation of the means, is
a measure of the error for a single measurement. The more precise interpretation of σm is that a
single measurement has a 68% chance of being within σm of the “true” mean. Hence the probable
error associated with our first measurement of Fn with n = 104 is 3.149 ± 0.007.

Although σm gives an estimate of the probable error, our method of obtaining σm by making
additional measurements is impractical because we could have combined the additional measure-

withCalculate: ,

Let Mα be the average of each run :
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vary from 0.00112 to 0.01098. Hence we conclude that σm, the standard deviation of the means, is
a measure of the error for a single measurement. The more precise interpretation of σm is that a
single measurement has a 68% chance of being within σm of the “true” mean. Hence the probable
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=⇒ σm = 0.0068
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ments to make a better estimate. In Appendix 11.8 we derive the relation

σm =
σ√

n − 1
(11.18a)

≈ σ√
n

. (11.18b)

The reason for the expression 1/
√

n − 1 in (11.18a) rather than 1/
√

n is similar to the reason for the
expression 1/

√
n − 2 in the error estimates of the least squares fits (see (7.27c)). The idea is that to

compute σ, we need to use n trials to compute the mean, 〈f(x)〉, and, loosely speaking, we have only
n− 1 independent trials remaining to calculate σ. Because we almost always make a large number
of trials, we will use the relation (11.18b) and consider only this limit in Appendix 11A. Note that
(11.18) implies that the most probable error decreases with the square root of the number of trials.
For our example we find that the most probable error of our initial measurement is approximately
0.8850/100 ≈ 0.009, an estimate consistent with the known error of 0.007 and with our estimated
value of σm ≈ 0.007.

subset k Sk

1 3.14326
2 3.15633
3 3.10940
4 3.15337
5 3.15352
6 3.11506
7 3.17989
8 3.12398
9 3.17565
10 3.17878

Table 11.4: The values of Sk for f(x) = 4
√

1 − x2 for 0 ≤ x ≤ 1 is shown for 10 subsets of 103

trials each. The average value of f(x) over the 10 subsets is 3.14892, in agreement with the result
for Fn for the first measurement shown in Table 11.3.

One way to verify the relation (11.18) is to divide the initial measurement of n trials into s
subsets. This procedure does not require additional measurements. We denote the mean value of
f(xi) in the kth subset by Sk. As an example, we divide the 104 trials of the first measurement into
s = 10 subsets of n/s = 103 trials each. The results for Sk are shown in Table 11.4. As expected,
the mean values of f(x) for each subset k are not equal. A reasonable candidate for a measure
of the error is the standard deviation of the means of each subset. We denote this quantity as σs

where

σs
2 = 〈S2〉 − 〈S〉2, (11.19)

where the averages are over the subsets. From Table 11.4 we obtain σs = 0.025, a result that is
approximately three times larger than our estimate of 0.007 for σm. However, we would like to
define an error estimate that is independent of how we subdivide the data. This quantity is not σs,

Instead of doing additional measurements, divide them into “s SUBSETS”
and let           be the average within each subset :
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subsets. This procedure does not require additional measurements. We denote the mean value of
f(xi) in the kth subset by Sk. As an example, we divide the 104 trials of the first measurement into
s = 10 subsets of n/s = 103 trials each. The results for Sk are shown in Table 11.4. As expected,
the mean values of f(x) for each subset k are not equal. A reasonable candidate for a measure
of the error is the standard deviation of the means of each subset. We denote this quantity as σs

where

σs
2 = 〈S2〉 − 〈S〉2, (11.19)

where the averages are over the subsets. From Table 11.4 we obtain σs = 0.025, a result that is
approximately three times larger than our estimate of 0.007 for σm. However, we would like to
define an error estimate that is independent of how we subdivide the data. This quantity is not σs,

MC error handling: method 1I
“block averages”

Sk

The variance associated to the average of the subsets 
gives                          , but 
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of the error is the standard deviation of the means of each subset. We denote this quantity as σs

where

σs
2 = 〈S2〉 − 〈S〉2, (11.19)
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approximately three times larger than our estimate of 0.007 for σm. However, we would like to
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but the ratio σs/
√

s, which for our example is approximately 0.025/
√

(10) ≈ 0.008. This value is
consistent with both σm and the ratio σ/

√
n. We conclude that we can interpret the n trials either

as a single measurement or as a collection of s measurements with n/s trials each. In the former
interpretation, the probable error is given by the standard deviation of the n trials divided by the
square root of the number of trials. In the same spirit, the latter interpretation implies that the
probable error is given by the standard deviation of the s measurements of the subsets divided by
the square root of the number of measurements.

We can make the error as small as we wish by either increasing the number of trials or by
increasing the efficiency of the individual trials and thereby reducing the standard deviation σ.
Several reduction of variance methods are introduced in Sections 11.7 and 11.8.
Problem 11.6. Estimate of the Monte Carlo error

a. Estimate the integral of f(x) = e−x in the interval 0 ≤ x ≤ 1 using the sample mean Monte
Carlo method with n = 102, n = 103, and n = 104. Compute the standard deviation σ as
defined by (11.14). Does your estimate of σ change significantly as n is increased? Determine
the exact answer analytically and estimate the n dependence of the error. How does your
estimated error compare with the error estimate obtained from the relation (11.18)?

b. Generate nineteen additional measurements of the integral each with n = 103 trials. Compute
σm, the standard deviation of the twenty measurements. Is the magnitude of σm consistent with
your estimate of the error obtained in part (a)? Will your estimate of σm change significantly
if more measurements are made?

c. Divide your first measurement of n = 103 trials into s = 20 subsets of 50 trials each. Compute
the standard deviation of the subsets σs. Is the magnitude σs/

√
s consistent with your previous

error estimates?

d. Divide your first measurement into s = 10 subsets of 100 trials each and again compute the
standard deviation of the subsets. How does the value of σs compare to what you found in part
(c)? What is the value of σs/

√
s in this case? How does the standard deviation of the subsets

compare using the two different divisions of the data?

e. Estimate the integral
∫ 1

0
e−x2

dx (11.20)

to two decimal places using σn/
√

n as an estimate of the probable error.
∗Problem 11.7. Importance of randomness
We will learn in Chapter ?? that the random number generator included with many programming
languages is based on the linear congruential method. In this method each term in the sequence
can be found from the preceding one by the relation

xn+1 = (axn + c) modm, (11.21)

where x0 is the seed, and a, c, and m are nonnegative integers. The random numbers r in the unit
interval 0 ≤ r < 1 are given by rn = xn/m. The notation y = xmodm means that if x exceeds m,

is consistent with the actual error
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Monte Carlo methods:
error estimate - variance reduction 

summary
σn/

√
n ≈ σm ≈ σs/

√
s

from the variance of 
the whole set of data

the variance 
of the 

average of 
the averages

from the variance 
of the

block averages

the most convenient! 
but: change block size 
and check that             
it does not change(proof)

Note: for 
uncorrelated data !
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We have introduced :

* “acceptance-rejection”

* “sample mean” to estimate 

both  OK  for smoothly varying functions, but
not very efficient for rapidly varying functions

〈f〉 ≈
1

N

N∑

i=1

f(xi)

Monte Carlo methods:
summary

How to improve the efficiency of MC integration?
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Therefore:

A trick for numerical integration:

“reduction of variance”

Given a function         to integrate, suppose that          exists,
whose integral is known and such that:     

f(x) g(x)

|f(x) − g(x)| << ε

F =

∫ b

a

f(x)dx =

∫ b

a

((

f(x)−g(x)
)

+g(x)
)

dx =

∫

(f(x) − g(x)) dx−

∫

g(x)dx

easy to calculate

(Note: same word, but different meaning w.r.t. previous slides on error handling)

+
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Another simple Monte Carlo method:

“importance sampling”
Mean value: easy to calculate for smoothly varying functions.    
But not for functions rapidly varying.

N = 10, 000 Nc = 7, 854 �(10, 000) = 3.1416
⇤ 1�

N

g(x)
[a, b]

N xi

g(xi)

ˆ b

a

g(x)dx ⇥ (b� a)

�
1

N

N⇤

i=1

g(xi)

⇥

xi

g(x)

g(x)

p(x)
g(x)
p(x)

N = 10, 000 Nc = 7, 854 �(10, 000) = 3.1416
⇤ 1�

N

g(x)
[a, b]

N xi

g(xi)

ˆ b

a

g(x)dx ⇥ (b� a)

�
1

N

N⇤

i=1

g(xi)

⇥

xi

g(x)

g(x)

p(x)
g(x)
p(x)

N = 10, 000 Nc = 7, 854 �(10, 000) = 3.1416
⇤ 1�

N

g(x)
[a, b]

N xi

g(xi)

ˆ b

a

g(x)dx ⇥ (b� a)

�
1

N

N⇤

i=1

g(xi)

⇥

xi

g(x)

g(x)

p(x)
g(x)
p(x)

N = 10, 000 Nc = 7, 854 �(10, 000) = 3.1416
⇤ 1�

N

g(x)
[a, b]

N xi

g(xi)

ˆ b

a

g(x)dx ⇥ (b� a)

�
1

N

N⇤

i=1

g(xi)

⇥

xi

g(x)

g(x)

p(x)
g(x)
p(x)

How to manage such cases?
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where

F =

∫ b

a

f(x)dx =

∫ b

a

[

f(x)

p(x)

]

p(x)dx =

〈

f(x)

p(x)

〉
∫ b

a

p(x)dx

〈f〉 ≈
1

N

N∑

i=1

f(xi)

Another simple Monte Carlo method:

“importance sampling”
Mean value: easy to calculate for smoothly varying functions.    
Idea: in order to calculate:

consider a distribution function          easy to integrate 
analytically and  close to        :f(x)

p(x)

〈

f(x)

p(x)

〉

≈

1

N

N
∑

i=1

[

f(xi)

p(xi)

]

 with         distributed according to   {xi} p(x)

(particular case: 
uniform distrib.
 p(x)=1/(b-a) ...)
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Monte Carlo methods:
“importance sampling”

Calculate:

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 393

We can evaluate the integral (11.45) by sampling according to the probability distribution p(x)
and constructing the sum

Fn =
1
n

n
∑

i=1

f(xi)
p(xi)

. (11.46)

The sum (11.46) reduces to (11.10) for the uniform case p(x) = 1/(b − a).
We wish to choose a form for p(x) that minimizes the variance of the integrand f(x)/p(x).

Because we cannot evaluate σ analytically in general, we determine σ a posteriori and choose a
form of p(x) that mimics f(x) as much as possible, particularly where f(x) is large. A suitable
choice of p(x) would make the integrand f(x)/p(x) slowly varying, and hence the variance will be
reduced. As an example, we again consider the integral (see Problem ee)

F =
∫ 1

0
e−x2

dx. (11.47)

The estimate of F with p(x) = 1 for 0 ≤ x ≤ 1 is shown in the first column of Table 11.5.
A reasonable choice of a weight function is p(x) = Ae−x, where A is chosen such that p(x) is
normalized on the unit interval. Note that this choice of p(x) is positive definite and is qualitatively
similar to f(x). The results are shown in the second column of Table 11.5. We see that although
the computation time per trial for the nonuniform case is larger, the smaller value of σ makes the
use of the nonuniform probability distribution more efficient.

p(x) = 1 p(x) = Ae−x

n (trials) 4 × 105 8 × 103

Fn 0.7471 0.7469
σ 0.2010 0.0550
σ/

√
n 3 × 10−4 6 × 10−4

Total CPU time (s) 35 1.35
CPU time per trial (s) 10−4 2 × 10−4

Table 11.5: Comparison of the Monte Carlo estimates of the integral (11.47) using the uniform
probability density p(x) = 1 and the nonuniform probability density p(x) = Ae−x. The normal-
ization constant A is chosen such that p(x) is normalized on the unit interval. The value of the
integral to four decimal places is 0.7468. The estimates Fn, variance σ, and the probable error
σ/n1/2 are shown. The CPU time (seconds) is shown for comparison only.

Problem 11.13. Importance sampling

a. Choose f(x) =
√

1 − x2 as in the text and consider p(x) = A(1−x) for x ≥ 0. What is the value
of A that normalizes p(x) in the interval [0, 1]? What is the relation for the random variable
x in terms of r assuming this form of the probability density p(x)? What is the variance of
f(x)/p(x) in the unit interval?

b. Choose the importance function p(x) = Ae−x and evaluate the integral
∫ 3

0
x3/2 e−x dx. (11.48)

efficient !
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Because we cannot evaluate σ analytically in general, we determine σ a posteriori and choose a
form of p(x) that mimics f(x) as much as possible, particularly where f(x) is large. A suitable
choice of p(x) would make the integrand f(x)/p(x) slowly varying, and hence the variance will be
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A reasonable choice of a weight function is p(x) = Ae−x, where A is chosen such that p(x) is
normalized on the unit interval. Note that this choice of p(x) is positive definite and is qualitatively
similar to f(x). The results are shown in the second column of Table 11.5. We see that although
the computation time per trial for the nonuniform case is larger, the smaller value of σ makes the
use of the nonuniform probability distribution more efficient.
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Fn 0.7471 0.7469
σ 0.2010 0.0550
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Table 11.5: Comparison of the Monte Carlo estimates of the integral (11.47) using the uniform
probability density p(x) = 1 and the nonuniform probability density p(x) = Ae−x. The normal-
ization constant A is chosen such that p(x) is normalized on the unit interval. The value of the
integral to four decimal places is 0.7468. The estimates Fn, variance σ, and the probable error
σ/n1/2 are shown. The CPU time (seconds) is shown for comparison only.

Problem 11.13. Importance sampling

a. Choose f(x) =
√

1 − x2 as in the text and consider p(x) = A(1−x) for x ≥ 0. What is the value
of A that normalizes p(x) in the interval [0, 1]? What is the relation for the random variable
x in terms of r assuming this form of the probability density p(x)? What is the variance of
f(x)/p(x) in the unit interval?

b. Choose the importance function p(x) = Ae−x and evaluate the integral
∫ 3

0
x3/2 e−x dx. (11.48)

with “sample mean” with random numbers with uniform 
distribution or using the “importance sampling” with p(x) = e

−x

(pay attention to the normalization of p(x)...)
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log(numero di step) vs. log(scarto q. medio) per: sample mean
importance_sampling.dat

error(MC)~1/√N  => see log(error) vs. log(N)

but with different prefactors 
for sample means vs importance sampling
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ization constant A is chosen such that p(x) is normalized on the unit interval. The value of the
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σ/n1/2 are shown. The CPU time (seconds) is shown for comparison only.

Problem 11.13. Importance sampling

a. Choose f(x) =
√

1 − x2 as in the text and consider p(x) = A(1−x) for x ≥ 0. What is the value
of A that normalizes p(x) in the interval [0, 1]? What is the relation for the random variable
x in terms of r assuming this form of the probability density p(x)? What is the variance of
f(x)/p(x) in the unit interval?

b. Choose the importance function p(x) = Ae−x and evaluate the integral
∫ 3

0
x3/2 e−x dx. (11.48)

this p(x) is normalized to 1 in (0,1)

F =

∫ b

a

f(x)dx =

∫ b

a

[

f(x)

p(x)

]

p(x)dx =

〈

f(x)

p(x)

〉
∫ b

a

p(x)dx

this is not normalized

(pay attention to the normalization of p(x)...)

Choice of the importance sampling function
Ex. 2
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Some programs

on https://moodle2.units.it/ 

pi.f90 Monte Carlo integration for the calculation of π

For the other exercises: write yourself the codes 
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Figura 2: Andamento dell’errore, 
differenza tra il valore stimato 
ed il valore vero, in funzione dei 
punti generati per i 100 seed.  
Si fa notare la presenza delle 
fluttuazioni casuali che rendono 
necessaria una media sui seed. 
Da fit sulla media: 
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Figura 6: Punto V.2.a Si è implementato il programma per il metodo del sample mean e

si è osservata la di↵erenza tra valore esatto e calcolato in funzione del numero di punti

usati, qui indicati con NMCstep.
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Figura 3: Si è implementato il programma 
per il metodo del sample mean e si è 
osservata la differenza tra valore esatto e 
calcolato in funzione del numero di punti 
usati, qui indicati con .  NMCstep
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sampling e di nuovo si grafica la di↵erenza tra valore esatto e calcolato in funzione del

numero di punti usati, NMCstep.
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Figura 4: Si è implementato il programma 
per il metodo dell’ importance sampling e 
di nuovo si grafica la differenza tra 
valore esatto e calcolato in funzione del 
numero di punti usati, .  NMCstep
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Figura 8: Punto V.2.c Si sono implementate le stime numeriche richieste. Qui riporto

in scala log-log separatamente tutti i risultati ottenuti per i due metodi: per entrambi si

nota come l’andamento della di↵erenza tra integrale esatto e calcolato non sia costante

come lo è �, ma abbia lo stesso andamento di �/
p
NMCstep.
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Figure 5-6: Si sono implementate le stime numeriche richieste. Qui si riportano in scala log-
log separatamente tutti i risultati ottenuti per i due metodi: per entrambi si nota come 
l’andamento della differenza tra integrale esatto e calcolato non sia costante come invece è 
, ma abbia lo stesso andamento di .  σ σ / NMCstep

Ex. 2: error(MC)~1/√N : “true” error and statistical error

ΔΝ=

(credits: G. Lautizi, a.y. 2019-20)



∫ b

a

f(x)dx =

∫ b

a

f(x)

p(x)
p(x)dx =<

f(x)

p(x)
>

∫ b

a

p(x)dx ≈

1

N

N∑
i=1

f(xi)

p(xi)

∫ b

a

p(x)dx

∫ b

a

f(x)dx ≈

N∑
i=1

vif(xi) with xi = a +
b − a

N
i , vi to be determined

with {xi} randomly distributed according p(x)

∫ b

a

f(x)dx ≈
N∑

i=1

vif(xi) with {xi} , {vi} to be determined

Summary of numerical integration 
(MC and deterministic) methods

MC sample mean

MC importance sampling

Deterministic, equispaced points

Deterministic, non equispaced points

∫ b

a

f(x)dx = (b−a) < f >≈ (b−a)
1

N

N∑
i=1

f(xi) with {xi} randomly uniformly distributed in [a, b]
(

it can be considered as Importance sampling with p(x) =
1

b − a
in [a, b]

)
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Error estimate: 
comparison between 
deterministic and MC 

methods 
in d-dimension
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Error estimate for numerical integration 
with deterministic methods
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c. In part (b) you should have found that the estimated error is much smaller than the actual
error. The reason is that the {xi} are not statistically independent. The Metropolis algorithm
produces a random walk whose points are correlated with each other over short times (measured
in the number of Monte Carlo steps). The correlation of the points decays exponentially with
time. If τ is the characteristic time for this decay, then only points separated by approximately
2 to 3τ can be considered statistically independent. Rerun your program with the data grouped
into 20 sets of 50 points each and 10 sets of 100 points each. If the sets of 50 points each are
statistically independent (that is, if τ is significantly smaller than 50), then your estimate of
the error for the two groupings should be approximately the same.

Appendix 11A: Error Estimates for Numerical Integration

We derive the dependence of the truncation error estimates on the number of intervals for the
numerical integration methods considered in Sections 11.1 and 11.3. These estimates are based on
the assumed adequacy of the Taylor series expansion of the integrand f(x):

f(x) = f(xi) + f ′(xi)(x − xi) +
1
2
f ′′(xi)(x − xi)2 + . . . , (11.59)

and the integration of (11.1) in the interval xi ≤ x ≤ xi+1:
∫ xi+1

xi

f(x) dx = f(xi)∆x +
1
2
f ′(xi)(∆x)2 +

1
6
f ′′(xi)(∆x)3 + . . . (11.60)

We first estimate the error associated with the rectangular approximation with f(x) evaluated
at the left side of each interval. The error ∆i in the interval [xi, xi+1] is the difference between
(11.60) and the estimate f(xi)∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− f(xi)∆x ≈ 1
2
f ′(xi)(∆x)2. (11.61)

We see that to leading order in ∆x, the error in each interval is order (∆x)2. Because there
are a total of n intervals and ∆x = (b − a)/n, the total error associated with the rectangular
approximation is n∆i ∼ n(∆x)2 ∼ n−1.

The estimated error associated with the trapezoidal approximation can be found in the same
way. The error in the interval [xi, xi+1] is the difference between the exact integral and the estimate,
1
2 [f(xi) + f(xi+1)]∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− 1
2
[f(xi) + f(xi+1)]∆x. (11.62)

If we use (11.60) to estimate the integral and (11.59) to estimate f(xi+1) in (11.62), we find that
the term proportional to f ′ cancels and that the error associated with one interval is order (∆x)3.
Hence, the total error in the interval [a, b] associated with the trapezoidal approximation is order
n−2.
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We see that to leading order in ∆x, the error in each interval is order (∆x)2. Because there
are a total of n intervals and ∆x = (b − a)/n, the total error associated with the rectangular
approximation is n∆i ∼ n(∆x)2 ∼ n−1.

The estimated error associated with the trapezoidal approximation can be found in the same
way. The error in the interval [xi, xi+1] is the difference between the exact integral and the estimate,
1
2 [f(xi) + f(xi+1)]∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− 1
2
[f(xi) + f(xi+1)]∆x. (11.62)

If we use (11.60) to estimate the integral and (11.59) to estimate f(xi+1) in (11.62), we find that
the term proportional to f ′ cancels and that the error associated with one interval is order (∆x)3.
Hence, the total error in the interval [a, b] associated with the trapezoidal approximation is order
n−2.

∫
f(x)dx = Fn + error

How to evaluate the error? Consider the Taylor expansion 
of the integrand function and then integrate:

(*)

∆x ≡ xi+1 − xi

(Reminder from  
previous slides)
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Error estimate for numerical integration: 
Rectangular approximation

∫ xi+1

xi

f(x)dx ≈ f(xi)∆x
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the assumed adequacy of the Taylor series expansion of the integrand f(x):

f(x) = f(xi) + f ′(xi)(x − xi) +
1
2
f ′′(xi)(x − xi)2 + . . . , (11.59)

and the integration of (11.1) in the interval xi ≤ x ≤ xi+1:
∫ xi+1

xi

f(x) dx = f(xi)∆x +
1
2
f ′(xi)(∆x)2 +

1
6
f ′′(xi)(∆x)3 + . . . (11.60)

We first estimate the error associated with the rectangular approximation with f(x) evaluated
at the left side of each interval. The error ∆i in the interval [xi, xi+1] is the difference between
(11.60) and the estimate f(xi)∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− f(xi)∆x ≈ 1
2
f ′(xi)(∆x)2. (11.61)

We see that to leading order in ∆x, the error in each interval is order (∆x)2. Because there
are a total of n intervals and ∆x = (b − a)/n, the total error associated with the rectangular
approximation is n∆i ∼ n(∆x)2 ∼ n−1.

The estimated error associated with the trapezoidal approximation can be found in the same
way. The error in the interval [xi, xi+1] is the difference between the exact integral and the estimate,
1
2 [f(xi) + f(xi+1)]∆x:

∆i =
[
∫ xi+1

xi

f(x) dx

]

− 1
2
[f(xi) + f(xi+1)]∆x. (11.62)

If we use (11.60) to estimate the integral and (11.59) to estimate f(xi+1) in (11.62), we find that
the term proportional to f ′ cancels and that the error associated with one interval is order (∆x)3.
Hence, the total error in the interval [a, b] associated with the trapezoidal approximation is order
n−2.

Compare          with  (*):

error 
(leading order in         )∆x

For       intervals                               :  error is n n(∆x)2 ∼ 1/n(∆x = (b − a)/n)

(...and similarly for 
higher-order approximations)27

(Reminder from  
previous slides)



Numerical integration: 
multidimensional integrals
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the error as a function of the number of trials n for n ≥ 104. How many trials are needed to
determine Fn to two decimal places? What is the approximate functional dependence of the
error on n for large n?

c. Determine the computational time per trial using the two Monte Carlo methods. Which Monte
Carlo method is preferable?

11.3 ∗Numerical Integration of Multidimensional Integrals

Many problems in physics involve averaging over many variables. For example, suppose we know
the position and velocity dependence of the total energy of ten interacting particles. In three
dimensions each particle has three velocity components and three position components. Hence
the total energy is a function of 60 variables, and a calculation of the average energy per particle
involves computing a d = 60 dimensional integral. (More accurately, the total energy is a function
of 60 − 6 = 54 variables if we use center of mass and relative coordinates.) If we divide each
coordinate into p intervals, there would be p60 points to sum. Clearly, standard numerical methods
such as Simpson’s rule would be impractical for this example.

A discussion of the n dependence of the error associated with the standard numerical methods
for d-dimensional integrals is given in Appendix 11A. We show that if the error decreases as n−a for
d = 1, then the error decreases as n−a/d in d dimensions. In contrast, we find (see Section 11.4) that
the error for all Monte Carlo integration methods decreases as n−1/2 independently of the dimension
of the integral. Because the computational time is roughly proportional to n in both the classical
and Monte Carlo methods, we conclude that for low dimensions, the classical numerical methods
such as Simpson’s rule are preferable to Monte Carlo methods unless the domain of integration
is very complicated. However, the error in the conventional numerical methods increases with
dimension (see Appendix 11A), and Monte Carlo methods are essential for higher dimensional
integrals.

To illustrate the general method for evaluating multidimensional integrals, we consider the
two-dimensional integral

F =
∫

R
f(x, y) dxdy, (11.11)

where R denotes the region of integration. The extension to higher dimensions is straightforward,
but tedious. Form a rectangle that encloses the region R, and divide this rectangle into squares of
length h. Assume that the rectangle runs from xa to xb in the x direction and from ya to yb in the
y direction. The total number of squares is nxny, where nx = (xb − xa)/h and ny = (yb − ya)/h.
If we use the midpoint approximation, the integral F is estimated by

F ≈
nx
∑

i=1

ny
∑

j=1

f(xi, yj)H(xi, yj) h2, (11.12)

where xi = xa + (i − 1
2 )h, yj = ya + (j − 1

2 )h, and the function H(x, y) equals unity if (x, y) is in
R and is zero otherwise.

(*)

The Taylor expansion of the integrand function gives:

∫ xi+1

xi

∫ yi+1

yi

f(x, y)dxdy ≈ f(xi, yi)∆x∆y

∫ xi+1

xi

∫ yi+1

yi

f(x, y)dxdy = f(xi, yi)∆x∆y+f ′

x(xi, yi)
(∆x)2

2
∆y+f ′

y(xi, yi)∆x
∆y)2

2
+. . . (**)

The rectangular approximation gives                               , being       
the number of parts (or pairs of points) of the integration domain:

(*) against (**) => error 
(leading order in         )∆x

For       intervals:   error is n n(∆x)3 ∼ 1/n1/2

∆x∆y ∼ (∆x)2 ∼ 1/n n

(

f(x, y) = f(xi, yi) + f 0
x(xi, yi)(x� xi) + f 0

y(xi, yi)(y � yi) + . . .

xi = a+
b� a

N
i, vi =

b� a

N
8i = 1, . . . N

xi = a+
b� a

N
i, vi = vN =

b� a

N
, vi = vN =

b� a

2N
, 8i 6= 1, N

1
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is very complicated. However, the error in the conventional numerical methods increases with
dimension (see Appendix 11A), and Monte Carlo methods are essential for higher dimensional
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F =
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where R denotes the region of integration. The extension to higher dimensions is straightforward,
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R and is zero otherwise.
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nx
∑
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ny
∑
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where xi = xa + (i − 1
2 )h, yj = ya + (j − 1

2 )h, and the function H(x, y) equals unity if (x, y) is in
R and is zero otherwise.

error ∼ 1/n error ∼ 1/n1/2

Therefore for rectangular approx.:

d=1: d=2:

In general:

Classical formulas with equispaced points: 
slowly decreasing error for multidimensional integration !
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Numerical integration: 
error in MC methods

(σ n is roughly constant with n ; for uncorrelated points, 
the variance of the averages goes like                 )      ∼ 1/n1/2

σn/
√

n ≈ σm ≈ σs/
√

s

Definitions

! The average function value

! The average squared function value

! Estimate of the integrand (+/- standard error)
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Numerical integration: 
errors in multidimensional integrals
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the error as a function of the number of trials n for n ≥ 104. How many trials are needed to
determine Fn to two decimal places? What is the approximate functional dependence of the
error on n for large n?

c. Determine the computational time per trial using the two Monte Carlo methods. Which Monte
Carlo method is preferable?

11.3 ∗Numerical Integration of Multidimensional Integrals

Many problems in physics involve averaging over many variables. For example, suppose we know
the position and velocity dependence of the total energy of ten interacting particles. In three
dimensions each particle has three velocity components and three position components. Hence
the total energy is a function of 60 variables, and a calculation of the average energy per particle
involves computing a d = 60 dimensional integral. (More accurately, the total energy is a function
of 60 − 6 = 54 variables if we use center of mass and relative coordinates.) If we divide each
coordinate into p intervals, there would be p60 points to sum. Clearly, standard numerical methods
such as Simpson’s rule would be impractical for this example.

A discussion of the n dependence of the error associated with the standard numerical methods
for d-dimensional integrals is given in Appendix 11A. We show that if the error decreases as n−a for
d = 1, then the error decreases as n−a/d in d dimensions. In contrast, we find (see Section 11.4) that
the error for all Monte Carlo integration methods decreases as n−1/2 independently of the dimension
of the integral. Because the computational time is roughly proportional to n in both the classical
and Monte Carlo methods, we conclude that for low dimensions, the classical numerical methods
such as Simpson’s rule are preferable to Monte Carlo methods unless the domain of integration
is very complicated. However, the error in the conventional numerical methods increases with
dimension (see Appendix 11A), and Monte Carlo methods are essential for higher dimensional
integrals.

To illustrate the general method for evaluating multidimensional integrals, we consider the
two-dimensional integral

F =
∫

R
f(x, y) dxdy, (11.11)

where R denotes the region of integration. The extension to higher dimensions is straightforward,
but tedious. Form a rectangle that encloses the region R, and divide this rectangle into squares of
length h. Assume that the rectangle runs from xa to xb in the x direction and from ya to yb in the
y direction. The total number of squares is nxny, where nx = (xb − xa)/h and ny = (yb − ya)/h.
If we use the midpoint approximation, the integral F is estimated by

F ≈
nx
∑

i=1

ny
∑

j=1

f(xi, yj)H(xi, yj) h2, (11.12)

where xi = xa + (i − 1
2 )h, yj = ya + (j − 1

2 )h, and the function H(x, y) equals unity if (x, y) is in
R and is zero otherwise.
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Monte Carlo convenient for multidimensional integration !

d Rect. Trap. Simps. MC

1 1/n 1/n2 1/n4 1/n1/2

2 1/n1/2 1/n 1/n2 1/n1/2

3 1/n1/4 1/n1/2 1/n 1/n1/2

... ... ... ...

1

4
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• convergence as ~N1/2 in any dimension regardless of the smoothness of 
the integrand

• simplicity: only two simple steps required (namely, producing a set of 
sampling points and evaluating the integrand function over such points)

• generality: sampling can be used even on domains that do not have a 
natural correspondence with the ‘standard’ domain [0,1]d and thus are not 
well-suited to numerical quadrature

• better suited than quadrature for integrands with singularities 
(importance sampling can handle this problem)

• flexibility: easy to add more points as needed (in the Gaussian quadrature, 
increasing the accuracy implies doing calculations from scratch)

Summary:  
advantages of MC integration methods
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to generate random points with a given distribution
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11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

by (1953)

(motivation: related to the “importance sampling” integratio
n method)



Idea:  produce a random walk with points         
whose asymptotic probability distribution pN(x) 
of the occupied positions approaches          after 
a large number N of steps
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 how to generate random points with a given distribution?
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A random walk in general is defined by specifying a 
transition probability                         from one value       
to another value       and the distribution of points 
                        converges to a certain         
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special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
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where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.
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If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

how to generate random points with a given distribution?
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Comment:
need to consider a RW more general than the  ‘standard’ 
RW with length and probability fixed for each step.

Remind:  a RW with fixed length and  pleft = pright  gives 
PN(x) that for large N tends to a gaussian distribution 
with a standard deviation that depends on N:

The recipe to obtain a gaussian distribution with given σ 
from simple RWs was to generate several RWs with the 
same N and do the histogram of their end-points.
The approach we are going to discuss now is something 
different, the focus being one RW.

σ2 = Dt; D =
"2

2∆t
; ∆t =

t

N
=⇒ σ2 = "2N/2 P (x, N∆t) =

√

2

πN
e−x2/(2N)

(here l=1; remind also the factor of 2 due to discretization)
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Markov chains
Consider a sequence of “configurations” C={C1, C2, ... 
CN } stochastically generated, i.e.  Ck+1 is obtained from 
the previous one, Ck, by making some random changes 
on the former.
The sequence is a Markov chain if the probability of 
making a transition from Ck to Ck+1 is not dependent 
on how we arrived at Ck (its history), i.e. no memory.

The sequence of points                         of a simple RW
is a Markov chain.
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11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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The detailed balance
Choose a transition probability                         from 
one value       to another value      (from one 
configuration Ci to another one Ci+1) such that the 
distribution of points                        (of configurations)
converges to the desired         . 
It is sufficient (not necessary) to satisfy the condition:
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If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
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where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
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If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.
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distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
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where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
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For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[
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If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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∫
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where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
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]
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If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition
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The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
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]
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If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

The algorithm from 1) to 6) has to be repeated until
the distribution         of the points        is reached.
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Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form
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where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[
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]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form
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∫
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where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

is given.

else

48



note:
it’s important how to handle the rejected attempts for 
the generation of the random walk:

in case of a rejected attempt, the walker does not move, 
and we have to consider again the point where we tried 
to move from;

in the integration with importance sampling, a point 
which is unchanged after a rejected attempt does enter 
again in the average, i.e. its weight in the sum increases
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Questions:
• how to choose        ?                                      

Convenient to start from a maximum 

• how to choose      ?                                       
(if too small, most trial steps accepted, but 
the walker moves too slowly; if too large, 
only a few trial steps are accepted...)               
A good compromise is a choice accepting      
from ~ 1/3 to ~1/2 of the trial steps

• equilibration is necessary (how many steps?)   
A possible criterion based on error estimate
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11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.

Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2*rnd.nextDouble() - 1.0)*delta;
double w = p(xtrial)/p(x);
if (rnd <= w)
{

x = xtrial
naccept++; // number of acceptances

}

Problem 11.15. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that ⟨x2⟩ ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
⟨xi+jxi⟩ − ⟨xi⟩2

⟨x2
i ⟩ − ⟨xi⟩2

, (11.57)

where ⟨. . .⟩ indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j ̸= 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.16. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

⟨x⟩ =
∫ ∞
0 xe−x dx
∫ ∞
0 e−x dx

, (11.58)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x +∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of ⟨x⟩. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?
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Answers:
• how to choose        ?                                      

Convenient to start from a maximum 

• how to choose      ?                                       
(if too small, most trial steps accepted, but 
the walker moves too slowly; if too large, 
only a few trial steps are accepted...)               
A good compromise is a choice accepting      
from ~ 1/3 to ~1/2 of the trial steps

• equilibration is necessary (how many steps?)   
A possible criterion based on error estimate
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11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.

Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2*rnd.nextDouble() - 1.0)*delta;
double w = p(xtrial)/p(x);
if (rnd <= w)
{

x = xtrial
naccept++; // number of acceptances

}

Problem 11.15. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that ⟨x2⟩ ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
⟨xi+jxi⟩ − ⟨xi⟩2

⟨x2
i ⟩ − ⟨xi⟩2

, (11.57)

where ⟨. . .⟩ indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j ̸= 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.16. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

⟨x⟩ =
∫ ∞
0 xe−x dx
∫ ∞
0 e−x dx

, (11.58)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x +∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of ⟨x⟩. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?
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in moodle2.units.it:

gauss_metropolis.f90

 

Some programs: 
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! gauss_metropolis.f90
! METROPOLIS generation of random numbers with a Gaussian distribution
! P(x) = exp(-x**2/(2*sigma**2))/sqrt(2*pi*sigma**2)
.... start from a given x=x0 .....
 do i=1,n
    

     !ccccccccccccccccccccccccccccccc
     expx = - x**2 /(2*sigma**2)    !
     call random_number(rnd)        !
     xp = x + delta * (rnd-0.5)     !
     expxp = - xp**2 /(2*sigma**2)  !   metropolis
     w = exp (expxp-expx)           !   algorithm
     call random_number(rnd)        !
     if (w > rnd) then              !
        x = xp                      !
     !ccccccccccccccccccccccccccccccc
     
     endif

  enddo
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the exponent of p(x)

the exponent of p(x’)

the ratio p(x’)/p(x)



! gauss_metropolis.f90
! METROPOLIS generation of random numbers with a Gaussian distribution
! P(x) = exp(-x**2/(2*sigma**2))/sqrt(2*pi*sigma**2)
.... start from a given x=x0 .....
 do i=1,n
     x1 = x1 + x
     x2 = x2 + x**2
     x3 = x3 + x**3
     x4 = x4 + x**4
     !ccccccccccccccccccccccccccccccc
     expx = - x**2 /(2*sigma**2)    !
     call random_number(rnd)        !
     xp = x + delta * (rnd-0.5)     !
     expxp = - xp**2 /(2*sigma**2)  !   metropolis
     w = exp (expxp-expx)           !   algorithm
     call random_number(rnd)        !
     if (w > rnd) then              !
        x = xp                      !
     !ccccccccccccccccccccccccccccccc
        acc=acc+1.               
     endif
     ibin = nint(x/deltaisto)
     if (abs(ibin) < maxbin/2) istog(ibin) = istog(ibin) + 1
  enddo

calculate some momenta

calculate the histogram
calculate the acceptance ratio
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Metropolis generation of 
random numbers distribution

let’s use the Metropolis method to generate a 
gaussian distribution   

(with gauss_metropolis.f90)

example of application:

1) 

(n=1000, x0=0, δ=5, σ=1) 
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• how to choose        ?                                      
Convenient to start from a maximum 

• how to choose      ?                                            
(if too small, most trial steps accepted, but the 
walker moves too slowly; if too large, only a few 
trial steps are accepted...)                                    
A good compromise is a choice accepting from ~ 
1/3 to ~1/2 of the trial steps: depends on 

• equilibration is necessary (how many steps?)         
A possible criterion based on error estimate: 
consider when 
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11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately
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one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.

Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2*rnd.nextDouble() - 1.0)*delta;
double w = p(xtrial)/p(x);
if (rnd <= w)
{

x = xtrial
naccept++; // number of acceptances

}

Problem 11.15. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that ⟨x2⟩ ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
⟨xi+jxi⟩ − ⟨xi⟩2

⟨x2
i ⟩ − ⟨xi⟩2

, (11.57)

where ⟨. . .⟩ indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j ̸= 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.16. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

⟨x⟩ =
∫ ∞
0 xe−x dx
∫ ∞
0 e−x dx

, (11.58)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x +∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of ⟨x⟩. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?

〈x2〉 ≈ σ
2

Answers from numerical experiments:

σ
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