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Overview
● Sampling

– Nyquist theorem
● Discrete Fourier transform

– Undersampling and Aliasing
● Interpolation (resampling)
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Sampling
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Undersampling and aliasing



Sampling and DFT

The Nyquist-Shannon sampling theorem

“The largest frequency that can be 
represented in a signal sampled at intervals 
s is 1/2s”
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Periodic signals



Sampling and DFT

X-ray diffraction by a crystal

Periodic signals
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Sampling with the Dirac comb
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Fourier transform of a Dirac comb
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Discrete Fourier Transform
● A periodic function has a discrete spectrum 

in the Fourier domain;
● A function with discrete values in the spatial 

domain is periodic in the Fourier domain;

 ⇒ A periodic and discrete function has a 
periodic and discrete Fourier transform. 
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Aliasing
Moiré: after resampling, high spatial frequencies appear as low spatial 
frequencies
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Aliasing
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Undersampling
“Fresnel zone” test pattern: radial linear increase in spatial frequency
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Undersampling & aliasing

● Aliasing is not caused by FT, but can be understood using FT

2048x2048 1024x1024 512x512

256x256 128x128 96x96



Sampling and DFT

Sampling with a pixel-array detector
● A 2D light field is sampled with a 2D pixel-

array detector. 
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Discrete Fourier Transform

● On computers, the signal is both sampled and 
of finite extent → using DFT on this signal 
means that is it assumed to be periodic.

● If the signal is sufficiently sampled, then the 
DFT can be interpreted as a sampled version 
of the continuous Fourier Transform. 
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DFT example
● Example: relation between space, sampling and frequency

zero frequency component is in the top left corner output array.
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FT to DFT conversion
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Fourier space translation
original amplitude of Fourier spectrum

shifted imagephase of filter function

Image shifting using 
shifting property of FT

Image gets wrapped 
around
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Zero-padding
zero-padded original amplitude of padded Fourier spectrum

croppedshifted padded image

1. Add zeros around 
original image (zero-
padding)

2. Shift using FT

3. Crop result
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Zero-padding in Fourier space
original amplitude of Fourier spectrum

resultzero-padded amplitude

Result: increased 
sampling!
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Interpolation
● Discrete sampling of a continuous function

● Reconstruct original function from sampled data?
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Interpolation
Finding unknown points between known ones

● wide field, many different approaches

● closely related to approximation theory and curve fitting
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Interpolation
Various “classical” interpolation methods available

sampled points

nearest neighbor

linear

cubic spline
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Image pixels
Images are discrete samples of a continuous function

● ...with coordinates

● ...and values (voltage at coordinate, integral over pixel area, …)

● ...represented by pixel basis functions on a sampling grid
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Linear interpolation
● Interpolation as an operator

● Linear interpolation

● Shift invariance

● Kernel
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Linear interpolation
● Linear interpolation can be written as a convolution with a kernel (e.g. 

a basis function)
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Linear interpolation

source: http://bigwww.epfl.ch/tutorials/unser_isbi_06_part1
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2D interpolation
● Make 2D interpolation linear in each variable

nearest neighbor bilinear bicubic

source: http://www.ipol.im/pub/art/2011/g_lmii/
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Python plotting
plt.imshow(im, interpolation='none') plt.imshow(im, interpolation='nearest')plt.imshow(im)

plt.imshow(im, interpolation='bicubic') plt.imshow(im, interpolation='gaussian')plt.imshow(im, interpolation='bilinear')
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Python plotting
plt.imshow(im, interpolation='none') plt.imshow(im, interpolation='nearest')plt.imshow(im)

plt.imshow(im, interpolation='bicubic') plt.imshow(im, interpolation='gaussian')plt.imshow(im, interpolation='bilinear')
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Sinc interpolation and zero-padding
Also known as “Whittaker–Shannon interpolation”
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Sinc interpolation and zero-padding
Also known as “Whittaker–Shannon interpolation”
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Reconstruction from samples
● Sinc interpolation can perfectly reconstruct a function from its samples 

if

– sampled at a rate higher than Nyquist rate

– bandlimited up to Nyquist frequency

– no aliasing

● Sinc interpolation introduces ringing otherwise, due to leakage of 
aliased frequencies
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Other Interpolation
● Change from polar to cartesian grid

● Linear, but not translation invariant

polar vs. cartesian sampling
irregular sampling
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Summary
● Images can be represented as a sampling grid and pixel basis functions

● Need for interpolation arises when changing the grid

● Linear and translation invariant interpolation can be written as a 
convolution with an interpolation kernel function

● Typical interpolation kernels include nearest neighbor, linear, cubic and 
higher B-spline interpolation

● Zero-padding in one domain equals sinc interpolation in the other

● “ideal” sinc interpolation may lead to ringing artifacts


