Image Processing for Physicists

Prof. Pierre Thibault pthibault@units.it

Overview

- The Discrete Fourier Transform as a change of basis
- Discrete Cosine Transform
- Windowed Fourier Transform
- Wavelet Transform
- (many others omitted!)

Image representations

$$f(x,y) = \sum_{n} c_{n} B_{n}(x,y) \qquad C_{n}: coefficients$$

$$B_{n}: basis functions$$

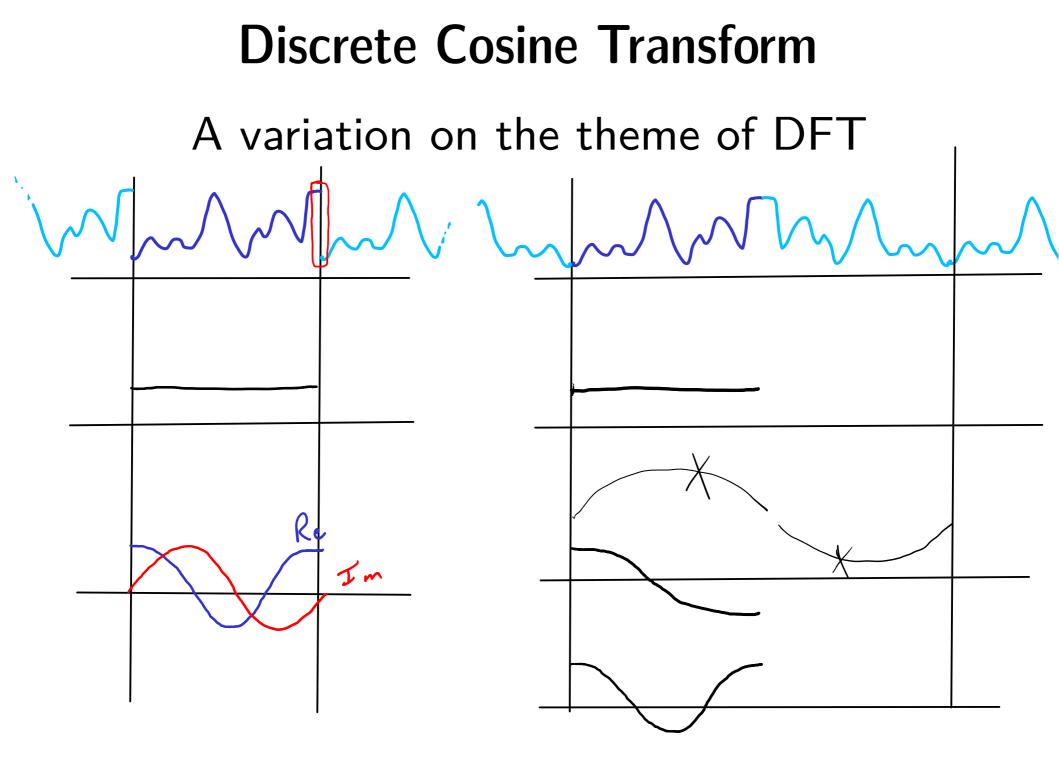
$$= convenient; orthonormal$$

$$DFT:$$

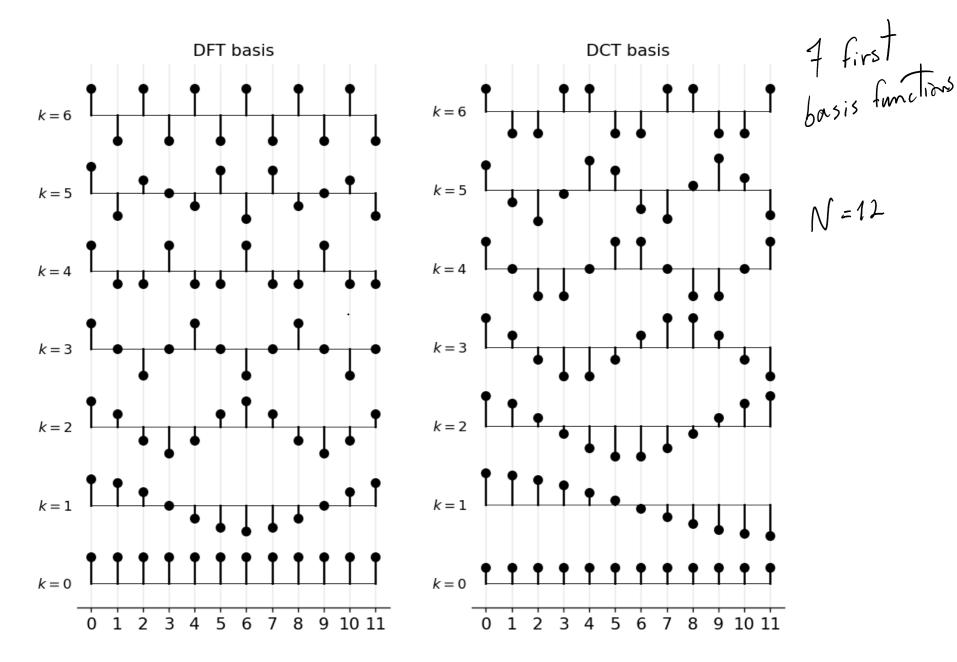
$$f(m,n) = \sum_{k,e} F_{ke} e^{2\pi i \left(\frac{mk}{M} + \frac{nl}{N}\right)} \qquad shope of image is (A_{1}N)$$

$$B_{ke}(m,n) \quad DFT \quad basis function$$

$$OFT(10): z = e^{2\pi i N} \qquad \left(\begin{array}{c} \langle ke|(mn), z \rangle \\ \langle q^{2}|x^{2} \rangle = e \end{array} \right)^{n} \right) \left[F \right] \qquad f_{n} = \sum_{k} F_{k} z^{nk} \qquad z - transform$$



Discrete Cosine Transform



Discrete Cosine Transform 64 DCT basis vectors for 8x8 image

Discrete Cosine Transform

Image compression

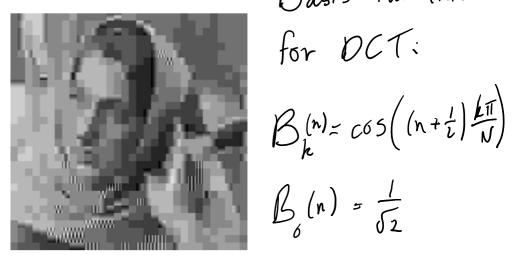
1:1 bit rate

8:1 bit rate

JPEG Lof Leeping 8 B He coefficients

Basis functions for DCT:

32:1 bit rate

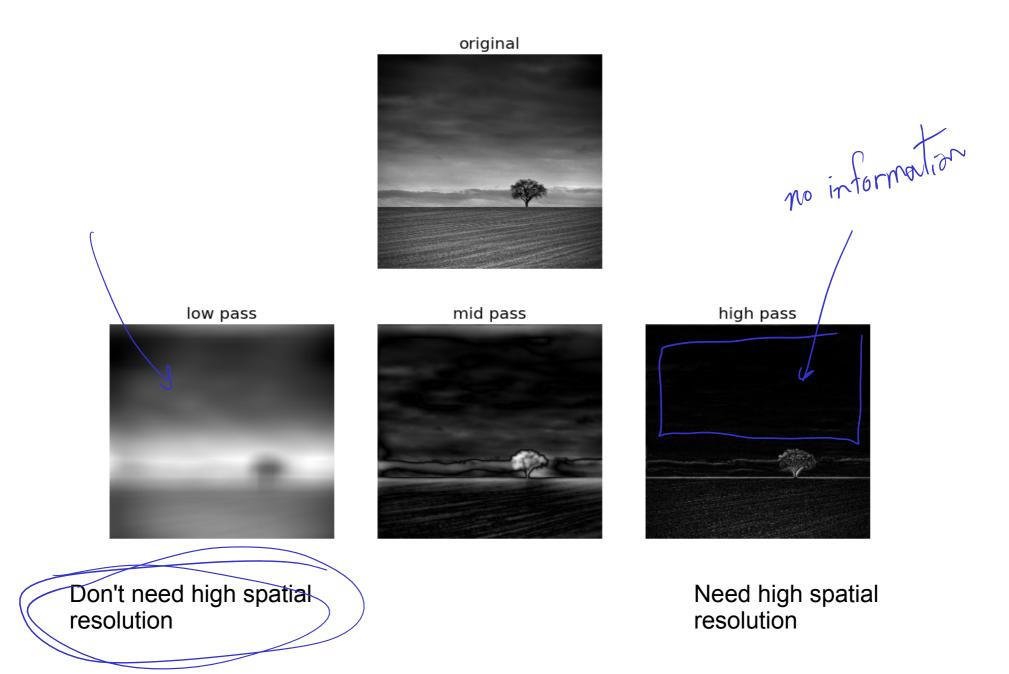


128:1 bit rate

Historical overview

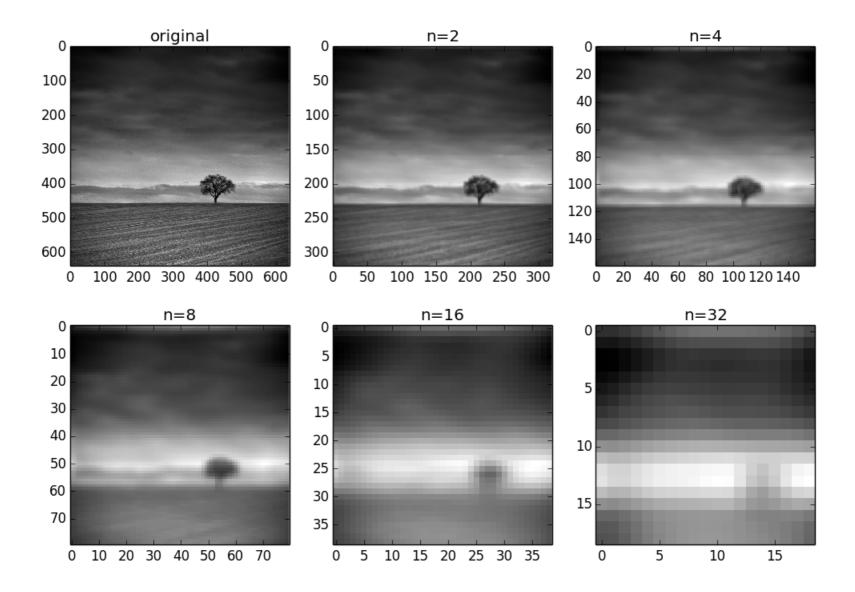
- 1822 Fourier: Fourier transform
- 1946 Gabor: "Gabor transform", Short-time Fourier transform (STFT)
- 1974 Ahmed, Natarajan & Rao: Discrete Cosine Transform
- 1980s Morlet, Mallat, Daubechies, ... : Wavelets

Bandpass filtering



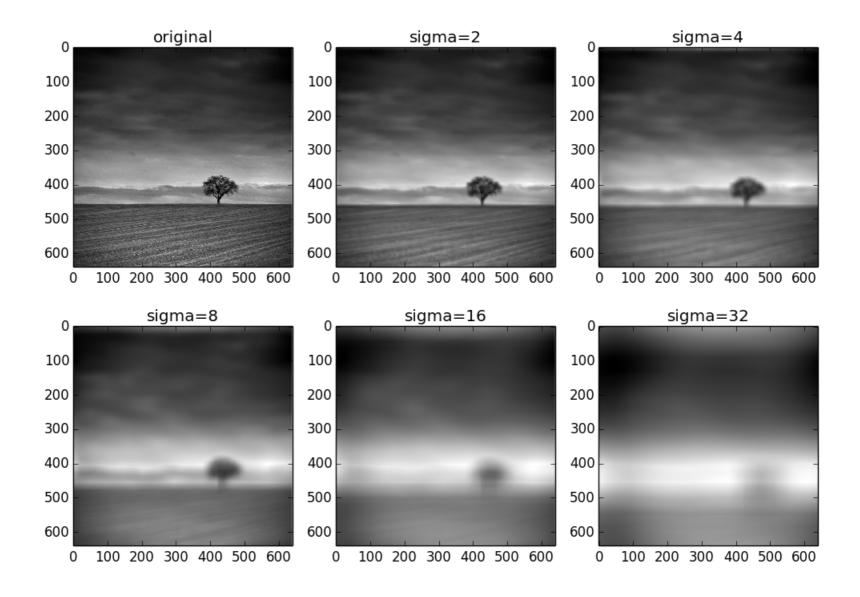
Multiresolution analysis

Subsampling (taking every nth pixel) successively reduces high frequency content



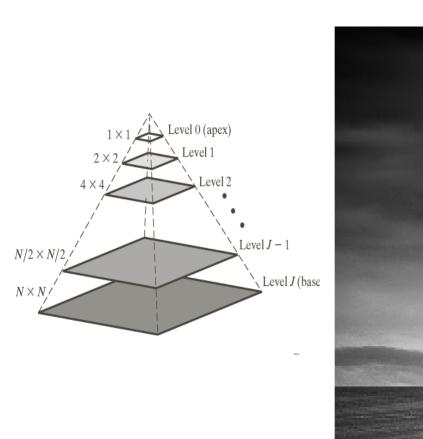
Multiresolution analysis

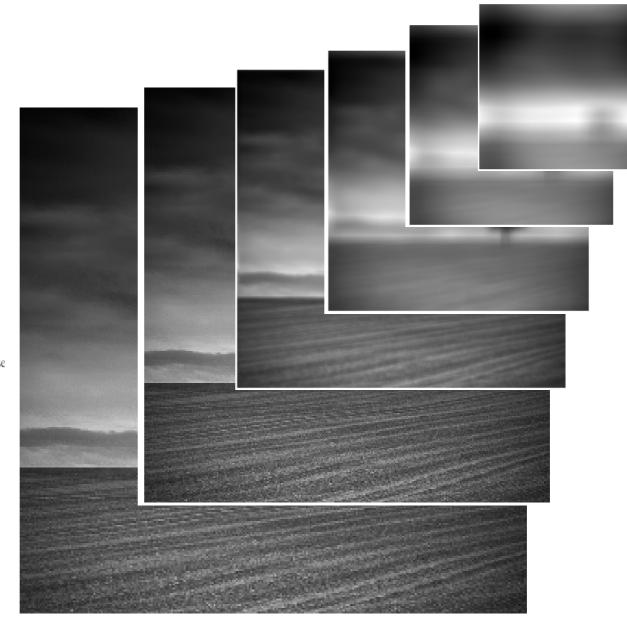
Multiple filtering with Gaussian filters, sigma determines resolution



Pyramid representation

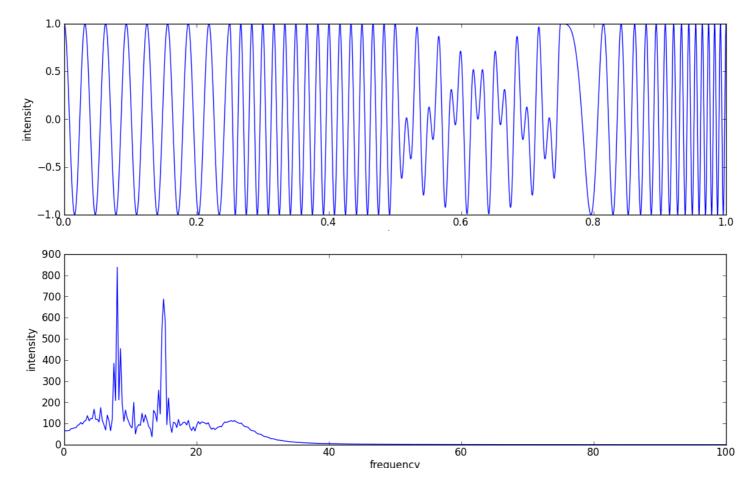
Scale-space representation, pyramidal representation





Stationary vs. non-stationary signals

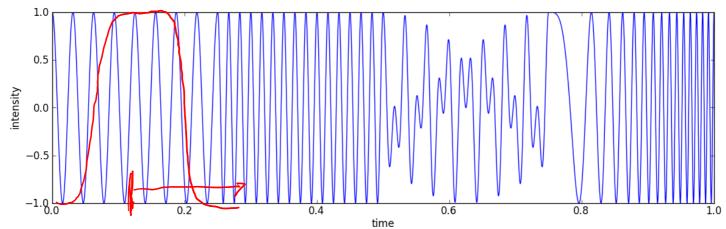
- Stationary signals: frequency doesn't change over time (spatially over the image)
- Non-stationary signals: frequency changes over time (spatially over the image)
- Examples of non-stationary signals: speech, most images



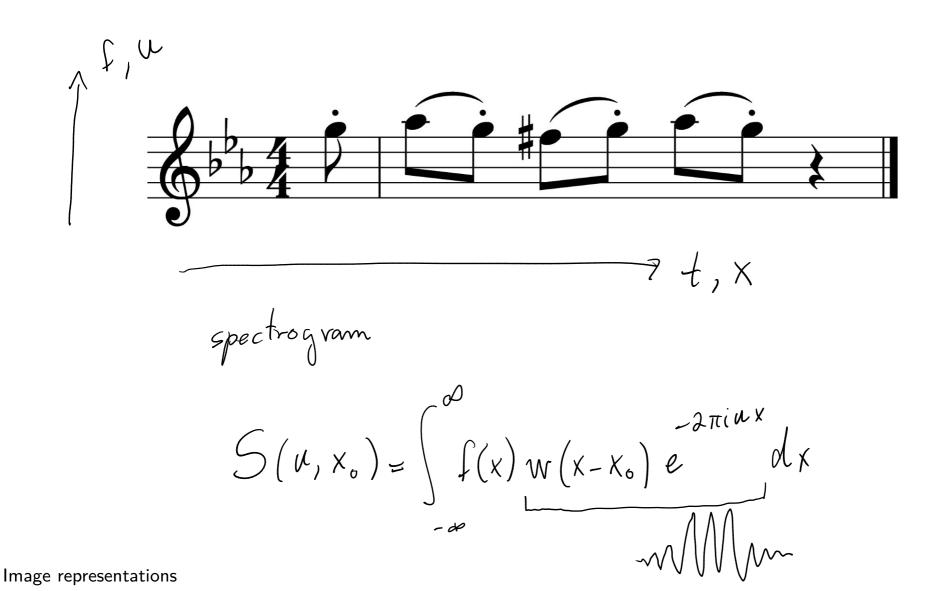
FT insufficient to localize the frequencies in our signal (image)

Windowed Fourier transform

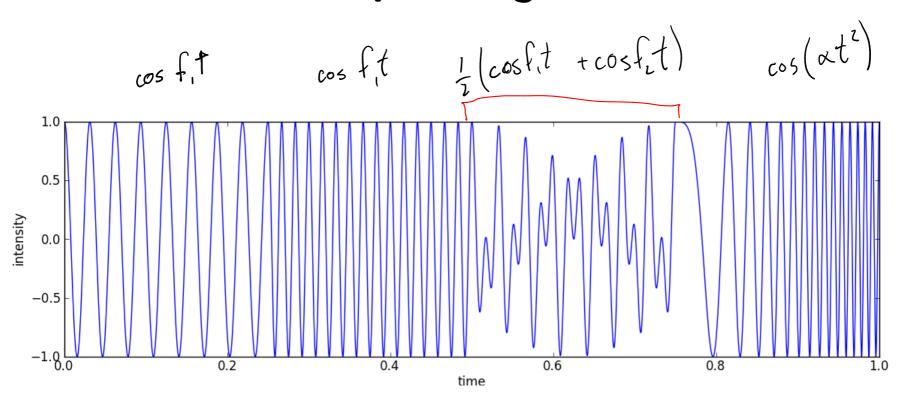
- Windowed Fourier transform is part of the field of "time-frequency analysis"
- Also known as Short-time Fourier Transform (STFT)
- Time-frequency representations are used in many different contexts (Audio, image processing/optics, quantum mechanics)
- Idea: slice up signal into small parts, analyze each separately
 - ⁻ Multiply with window function w (of width d) at position $\times 0$
 - Take Fourier transform of result
 - Slide window to new position
 - repeat

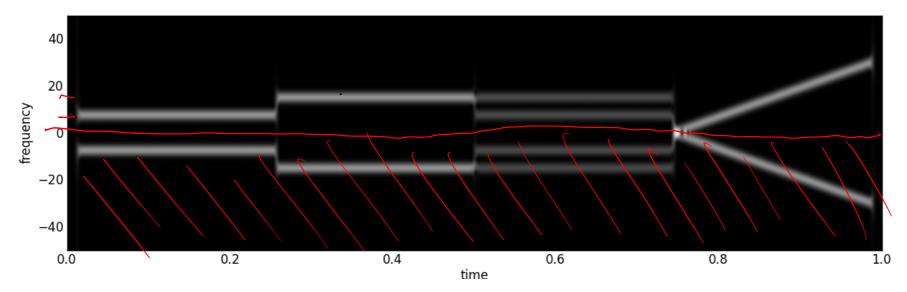


Analogy to audio signals

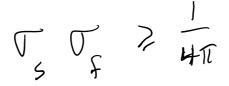


Spectrogram

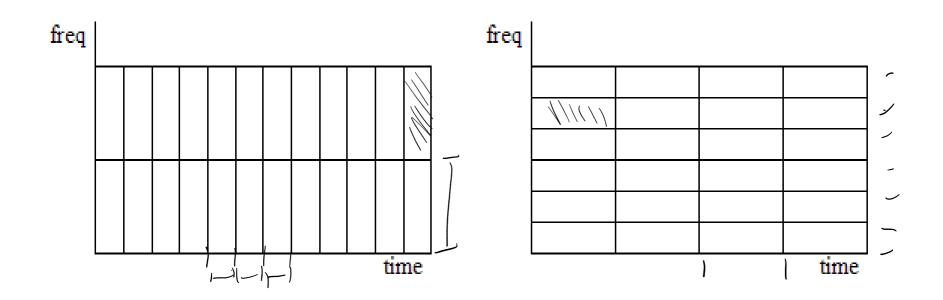




Uncertainty relation

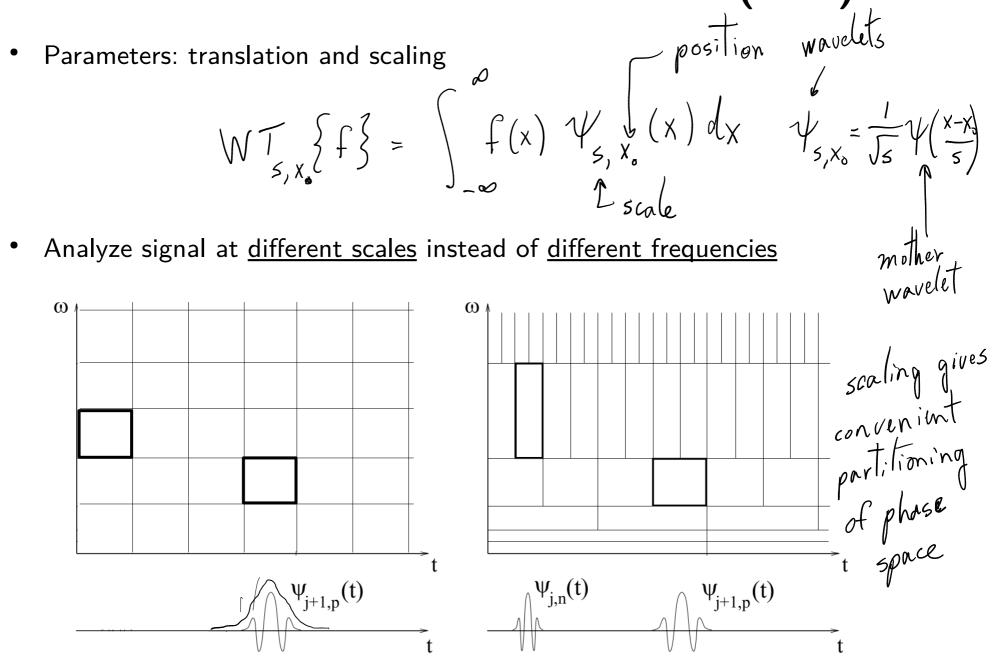


• Finite area in the time-frequency plane



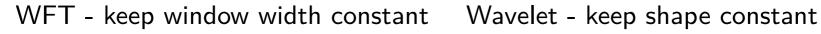
• This is limitation of WFT and hence development of wavelets

Continuous wavelet transform (WT)



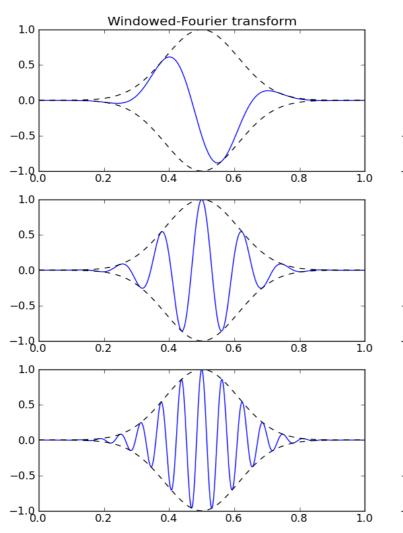
Source: Mallat, "A wavelet tour of signal processing"

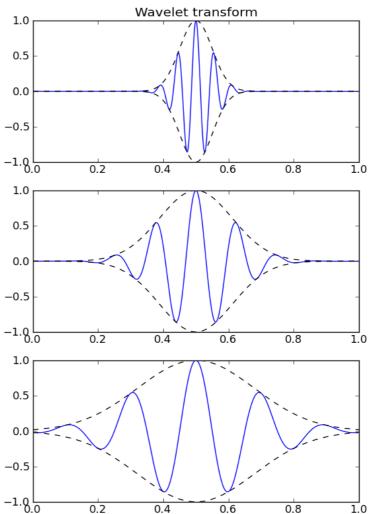
WFT vs WT



- change modulation

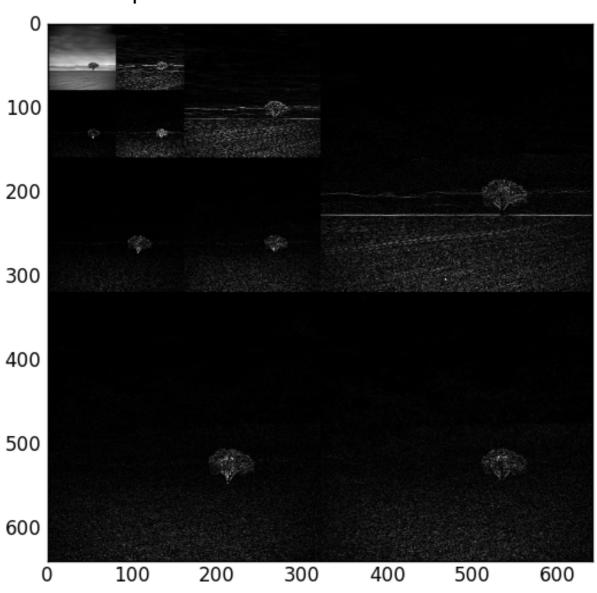
Wavelet - keep shape constant - change scale





Discrete Wavelet decomposition of image

- Perform each DWT, collect and tile all coefficients
- Here: 3 level decomposition



used for instance as a way to impose sparsity of a signal/image

Image representations

Summary

- Images can be represented by different basis functions.
- Fourier basis: localized in frequency, delocalized in real space.
- Windowed Fourier Transform: localized to some extent in both spaces
- Wavelet analysis decomposes a signal in position and scale (instead of position and frequency as for WFT).
- Sparse representations are representations in which the image content is represented by a few relevant coefficients, while the other pixels) are close to zero
- Sparse representations have advantages for compression, denoising, ...

regularizers,...