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Introduction

The equations of stellar structure are coupled differential equations
which, along with supplementary equations or data (equation of state,
opacity and nuclear energy generation) need to be solved numerically.
Useful insight can be gained, however, using analytical methods in-
volving some simple assumptions.

• One approach is to assume that stellar models are homologous;
that is, all physical variables in stellar interiors scale the same
way with the independent variable measuring distance from the
stellar centre (the interior mass at some point specified byM(r)).
The scaling factor used is the stellar mass (M).

• A second approach is to suppose that at some distance r from
the stellar centre, the pressure and density are related by P (r) =
K ργ where K is a constant and γ is related to some polytropic
index n through γ = (n+ 1)/n. Substituting in the equations of
hydrostatic equilibrium and mass conservation then leads to the
Lane-Emden equation which can be solved for a specific poly-
tropic index n.



Equation of State

Stellar gas is an ionised plasma, where the density is so high that the average particle
spacing is of the order of an atomic radius (10−15 m):

• An equation of state of the form

P = P (ρ, T, composition)

defines pressure as needed to solve the equations of stellar structure.

• The effective particle size is more like a nuclear radius (105 times smaller) and
hence stellar envelope material behaves like an ideal gas and so

Pgas =
k

mHµ̄
ρ T

where as before µ̄ is the mean molecular weight.

• If radiation pressure is significant, the total pressure is

P =
k

mHµ̄
ρ T +

a T 4

3
.



Mean Molecular Weight – I

Mean molecular weight depends on the ionisation fractions of all elements, and their
association into molecules, in all parts of a star.

• H and He are the most abundant elements and are fully ionised in stellar interiors.

• All material in the star is therefore assumed to be fully ionised.

• Assumption breaks down near the stellar surface and in cool stars (M dwarfs and
brown dwarfs in particular) where association into molecues becomes important.

The following definitions are made:

• X = hydrogen mass fraction,

• Y = helium mass fraction and

• Z = metal (all elements heavier than helium) mass fraction.

• Clearly X + Y + Z = 1.

Therefore in 1m3 of stellar gas at density ρ, there are Xρ kg of H, Yρ kg of He and Zρ kg
of heavier elements.



Mean Molecular Weight – II

In a fully ionised gas:

• H gives two particles per mH (mass of hydrogen atom taken to be the proton rest
mass).

• He gives 0.75 particles per mH (α-particle and two e−) and

• Metals give ∼ 0.5 particles per mH (12C contributes nucleus with six e− = 7/12
and 16O contributes nucleus with eight e− = 9/16).

The total number of particles per unit volume is then

n =
2Xρ

mH

+
3Y ρ

4mH

+
Zρ

2mH

n =
ρ

4mH

(8X + 3Y + 2Z) =
ρ

4mH

(6X + Y + 2)

Now µ̄ = ρ/(nmH) and so

µ̄ =
4

6X + Y + 2
is a good approximation to µ̄ except in the outer regions and in cool dwarfs.

For example, X� = 0.747, Y� = 0.236 giving µ̄� ∼ 0.6 or the mean mass of particles in
the solar envelope is ∼ 0.5mH.



Opacity – I

Opacity as introduced in the discussion of radiation transport is the resistance
of material to the flow of radiation through. In most stellar interiors it is
determined through a combination of all processes which scatter and absorb
photons; these are illustrated below:

E1 n = 1

E2 n = 2

E3 n = 3

Eκ

En n = n

OO

bound-bound

E2 − E1 = hνbb

OO

bound-free

En − E1 = hνbf

OO free-free

Eκ − En = hνff

�� ??

e−

ν ν1
scattering



Opacity – II

An expression, or some way of interpolating in pre-compued tables, is needed if
the equations of stellar structure are to be solved. For stars in thermodynamic
equilibrium with a comparively slow outward flow of energy, opacity should
have the form

κ = κ(ρ, T, chemical composition).

• Opacities may be interpolated in tables computed twenty years ago by
the OP and OPAL projects.

• All possible interactions between photons of all frequencies and atoms,
ions and molecules need to be taken into account.

• An enormous effort, the OP collaboration involved about thirty man-years
of effort.

It turns out that opacity over restricted temperature ranges is well represented
by

κ = κ0 ρ
α T β,

where α and β are dependent on selected density and temperature ranges and
κ0 is a composition dependent constant in a selected temperature range.



Opacity – III



Opacity – IV

Opacity as a function of temperature is shown for a solar composition star at
fixed ρ = 10−4 gm cm−3. Points are accurate OPAL calculations. Lines are
approximate power-law representations.

• For T > 106 K most atoms are fully ionised and photon energy is high.
Free-free absorption is unlikely and electron scattering is expected to be
the only significant source of opacity; this independent of T and so α =
β = 0.0 and κ = κ0.

• For 104.5 K < T < 106 K, κ peaks when bound-free and free-free absorp-
tion are very important; it then decreases as T increases. Approximate
analytical form is given by α = 1 and β = −3.5.

• For 103.8 K < T < 104.5 K, κ increases as T increases. Most atoms are
not ionised resulting in few electrons to scatter photons or participate in
free-free absorption. Approximate analytical form is given by α = 1/2
and β = 4.



Homologous Models – I

Homologous stellar models are defined such that their properties scale in the
same way with fractional mass x = M(r)/M . That is x = 0 at the stellar
centre and x = 1 at the stellar surface.

• For some property X(x) (which may be T (x) or ρ(x) for example), a plot
of X(x) against x would be the same for all homologous models.

• Zero-age Main Sequence stars have a uniform chemical composition and
homologous models should be a reasonable representation in this case.

• The aim is to recast stellar structure equations to be independent of
absolute mass M and depend only on relative mass x.

• Variables of interest are therefore expressed as functions of x with depen-
dencies on M being assumed to be power laws:



Homologous Models – II

r =Ma1 rs(x)

ρ(r) =Ma2 ρs(x)

T (r) =Ma3 Ts(x)

P (r) =Ma4 Ps(x)

L(r) =Ma5 Ls(x)

dr =Ma1 drs(x)

dρ(r) =Ma2 dρs(x)

dT (r) =Ma3 dTs(x)

dP (r) =Ma4 dPs(x)

dL(r) =Ma5 dLs(x)

where the ai exponents are constants to be determined and the variables rs(x),
ρs(x) etc. depend only on the fractional mass x. Also M(r) = Mx, dM(r) =
M dx,

κ(r) = κ0 ρ
α(r)T β(r) = κ0 ρs

α(x)Ts
β(x)Mαa2Mβa3

and
ε(r) = ε0 ρ(r)T

η(r) = ε0 ρs(x)Ts
η(x)Ma2M ηa3.



Homologous Models – III

Substitution into the stellar structure equations now allows these to be ex-
pressed in terms of the dimensionless mass x:

• Mass Conservation:
dr

dM(r)
=

1

4 π r2 ρ(r)
becomes

M (a1−1)drs(x)

dx
=

1

4 π rs
2(x) ρs(x)

M−(2a1+a2).

A requirement of the homology condition is that scaling is independent of
actual mass; the M exponents on either side of the above equation must
then be equal giving

3a1 + a2 = 1.

• Hydrostatic Equilibrium:

dP (r)

dM(r)
= −GM(r)

4 π r4
becomes

M (a4−1)dPs(x)

dx
= − Gx

4 π rs
4
M (1−4a1) and by the homology condition

4a1 + a4 = 2.



Homologous Models – IV

• Energy Production:

dL(r)

dM(r)
= ε(r)

= ε0 ρ(r)T η(r) becomes

Ma5−1dLs(x)

dx
= ε0ρs(x)T η(x)Ma2+η a3 and by the homology condition

a2 + η a3 + 1 = a5.

• Radiative Transport:

dT (r)

dM(r)
= − 3 κ̄RossL(r)

16 π2 r4 a c T (r)3
becomes

M (a3−1)dTs(x)

dx
= −3(κ0 ρs(x)αTs(x)β)Ls(x)

16 π2 rs(x)4 a c Ts(x)3
M (a5+(β−3)a3+αa2−4a1) and

4a1 + (4− β)a3 = αa2 + a5 + 1 by the homology condition.



Homologous Models – V

• Equation of State:
If gas pressure dominates and we neglect any radial dependence of the mean molec-
ular weight (µ̄):

Pgas(r) =
ρ(r) k T (r)

µ̄mH

becomes

Ma4 Ps(x) =
ρs(x) k Ts(x)

µ̄mH

Ma2+a3 and by the homology condition

a2 + a3 = a4.

Alternatively, if radiation pressure dominates:

Prad =
1

3
a T 4 becomes

Ma4 Ps(x) =
1

3
a (Ma3Ts(x))4 and by the homology condition

a4 = 4a3.



Homologous Models – VI

In matrix form, the five equations (assuming Pgas � Prad) for the exponents ai are



+3 +1
+4 +1

+1 +η −1
+4 −α +(4− β) −1

+1 +1 −1







a1
a2
a3
a4
a5




=




1
2
−1

1
0




and which can be solved for given values of α, β and η.

Consider two cases:

• Low-mass stars (∼ 0.7 .M . 2M�) corresponding to spectral types F and later:
Adopt Kramers opacity κ ∝ ρT−3.5 and a nuclear generation rate for PP-Chain
ε ∝ T 4 so that α = 1, β = −3.5 and η = 4.

• Higher mass stars (M & 2M�) corresponding to spectral types A and earlier:
Assume opacity to be dominated by electron scattering and a nuclear generation
rate dominated by the CNO cycle with a stronger temperature dependence ε ∝ T 16

so that α = 0, β = 0 and η = 16.



Homologous Models – VII

Regime α β η a1 a2 a3 a4 a5
Low-Mass 1 -3.5 4 1/13 10/13 12/13 22/13 71/13

Higher-Mass 0 0 16 15/19 −26/19 4/19 −22/19 3

The system of stellar structure equations in the scaled mass (x) representation may be solved nu-

merically as previously described, subject to the same boundary conditions. But the beauty of the

homology approximation is that useful conclusions may be derived analytically from the ai obtained

from the above matrix equation and summarised in the table:

• From the definition of homologous models:

L = Ma5 Ls(1) and R = Ma1 rs(1)

it follows immediately that

– Low-mass stars L ∝M 71/13 ∼M 5.5 R ∝M 1/13 ∼M 0.1

– Higher-mass stars L ∝M 3 R ∝M 15/19 ∼M 0.8

which is not too bad when compared with the actual Main Sequence mass-luminosity relationship.



Homologous Models – VIII

• Secondly, since L ∝ R2 Teff
4 it also follows that

Ma5Ls(1) ∝M 2a1rs(1)2 Teff
4 or

Teff ∝M (a5−2a1)/4.

And so

– In the low-mass case Teff ∼M 1.2.

– In the higher-mass case Teff ∼M 0.35.

• Combining with the mass-luminosity relationship gives

L ∝ Teff
4a5/(a5−2a1)

– which for low-mass stars implies L ∼ Teff
4.5,

– and for higher-mass stars L ∼ Teff
8.5.

The qualitative result that there is a luminosity-temperature relationship is, in effect, a prediction

that a main sequence exists in the HR Diagram.

Convection becomes increasingly important at M . 0.7� and radiation pressure becomes more

important as the stellar mass increases; in these regimes the above homology approximation begins

to breakdown.



Lane-Emden Equation – I

• Four stellar structure and three auxilary equations are highly non-linear, coupled and need to

be solved simultaneously with two-point boundary values.

• Polytropic models suppose that a simple relation between pressure and density (for example)

exists throughout the star; the equations of hydrostatic equilibrium and mass conservation

may then be solved independently of the other five.

• Before the advent of computing technology, polytropic models played an important role in the

development of stellar structure theory; today they, like homologous models, usefully provide

insight.

Take the equation of hydrostatic equilibrium

dP (r)

dr
= −

GM(r) ρ(r)

r2
,

multiply by r2/ρ(r) and differentiate with respect to r gives

d

dr

(
r2

ρ(r)

dP (r)

dr

)
= −

GdM(r)

dr
.

Now substitute the equation of mass-conservation on the right-hand side to obtain

1

r2
d

dr

(
r2

ρ(r)

dP (r)

dr

)
= −4 π Gρ(r).



Lane-Emden Equation – II

Adopt an equation of state of the form

P (r) = K ρ(r)γ = K ρ(r)(n+1)/n and
dP (r)

dr
= K γ ρ(r)γ−1

dρ(r)

dr

where K is a constant and n (not necessarily an integer) is known as the polytropic index.

Substituting for dP (r)/dr in the hydrostatic equilibrium equation combined with the mass conser-

vation equation, and writing ρ for ρ(r) in order to simplify the notation, gives

1

r2
d

dr

(
r2K

ρ
γργ−1

dρ

dr

)
= −4 π Gρ or

1

α2

1

ξ2
d

dξ

(
ξ2K

ρ
γργ−1

dρ

dξ

)
= −4 π Gρ,

where the radial variable r has been rescaled by a constant α−1 so that r = αξ.

Suppose a radial density dependence

ρ = ρc θ(ξ)
n and

dρ

dξ
= ρc n θ(ξ)

(n−1)dθ(ξ)

dξ
,

where ρc is the central density. Writing θ for θ(ξ) in order to simplify notation, the above equation

then becomes
K (n + 1)

4 π Gρc
(1−1/n)α2

1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn.



Lane-Emden Equation – III

As α is arbitrary, choose

α2 =
K (n + 1)

4 π Gρc
(1−1/n)

in which case
1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn.

The above equation is known as the Lane-Emden equation; it defines the rate of change of density

within a stellar interior subject to:

• At the centre of the star where ξ(0) = 0, θ(0) = 1 so that ρ = ρc.

• since dP/dr → 0 as r → 0, dθ/dξ = 0 at ξ = 0.

• The outer boundary (surface) is the first location where ρ = 0 or θ(ξ) = 0; this location is

referred to as ξ1.

Solutions of the Lane-Emden equation, known as polytropes, specify ρ(r) although expressed as

θ(ξ). The order of the solution is determined by the index n; in particular it depends only on n

and can be scaled by varying Pc (central pressure) and ρc to give solutions for stars over a range of

total mass and radius. Analytical solutions exist for n = 0, 1 and 5; all other solutions need to be

obtained numerically.

• For n = 0, ρ(r) = ρc; this is the solution for an incompressible sphere.

• To approximate a fully convective star (such as a M, L or T dwarf) use polytropes having

n = 1→ 1.5.

• The Eddington Approximation discussed below corresponds to n = 3; it corresponds to a fully

radiative star and is a useful approximation for the Sun.



Lane-Emden Equation – Solutions



Comparison Between Polytrope and Real Models – I

Predictions of the n = 3 polytropic model for the Sun of mass, density, pressure and temperature

variations with radius are needed for comparison with the Standard Solar Model of Bahcall et al.

(1998 Physics Letters B, 433, 1).

At the surface of the n = 3 polytrope where θ = 0

α =
R�

ξ1
=

7× 108

6.9
m = 1.01× 108 m.

The rate of change of mass with radius is given by the Equation of Mass Conservation

dM(r)

dr
= 4π r2 ρ(r).

Integrating and substituting r = αξ and ρ = ρcθ
n gives

M� =

∫ R�

0

4 π r2 ρ dr = 4π α3 ρc

∫ ξ1

0

ξ2 θn dξ.

The Lane-Emden equation may expressed in the form

ξ1
2

∣∣∣∣
dθ

dξ

∣∣∣∣
ξ=ξ1

= −
∫ ξ1

0

ξ2 θn dξ

and substituting in the above expression for M� gives

M� = −4 π α3 ρc ξ1
2

∣∣∣∣
dθ

dξ

∣∣∣∣
ξ=ξ1

.



Comparison Between Polytrope and Real Models – II

The Lane-Emden Equation for n = 3 has a solution (θ = 0) relevant to stellar structure at

ξ1 = 6.90 and

∣∣∣∣
dθ

dξ

∣∣∣∣
ξ=ξ1

= −4.236× 10−2.

Taking M� = 2× 1030 kg and the Lane-Emden Equation solution for n = 3, the expression for M� above

gives an estimate for the central density of the Sun of

ρc = 7.66× 104 kg m−3

and the dependence of density on radial distance from the solar centre immediately follows from

ρ = ρc θ
n

since θ varies from θ = 1 at the centre to θ = 0 at the surface.

By definition

α2 =
K (n + 1)

4 πGρc
(1−1/n)

and as ρc and α are known, K = 3.85× 1010 Nm kg−1. It then follows since P = K ργ that an estimate

of the pressure at the centre of the Sun (where ρ = ρc) is

Pc = 1.25× 1016 Nm−2,

and the dependence of gas pressure on radial distance follows directly by substituting the appropriate ρ.



Comparison Between Polytrope and Real Models – III

By a similar argument, the equation of state for a perfect gas

Pgas =
k

mH µ̄
ρ T

gives the dependence of T on radial distance (r) on substituting the Pgas(r) and adopting µ̄ ' 0.6 as

previously derived. In particular, setting Pgas(r) = Pc gives a temperature at the solar centre of

Tc = 1.19× 107 K.

As previously discussed, the mass (M(r)) interior to some distance r from a stellar centre is given by the

mass conservation equation, to which the Lane-Emden equation may be applied, to give

M(r) = −4 πα3 ρc ξr
2

∣∣∣∣
dθ

dξ

∣∣∣∣
ξ=ξr

where ξr is the scaled radial distance r/α at distance r from the centre of the Sun. Evaluating the

right-hand side for successive values of ξr gives the mass interior to those points. Comparisons with the

Standard Solar Model (SSM) are shown in the plots which follow.



Comparison Between Polytrope and Real Models – IV



Comparison Between Polytrope and Real Models – V



Comparison Between Polytrope and Real Models – VI



Comparison Between Polytrope and Real Models – VII



Summary

Essential points covered in sixth lecture:

• Simple approximations allow a solution of the stellar structure problem
without resorting a computationally expensive full solution of the coupled
differential equations of stellar structure.

• In particular, with a polytropic index n = 3, an approximate solar model
can be obtained using the Lane-Emden equation.

• Agreement between the Lane-Emden solar model and the detailed stan-
dard solar model (incorporating the best physics and numerical methods)
is remarkably good over much of the solar interior.
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