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Student will learn:

• How to employ approximate forms for the three equations that 

supplement the stellar structure equations i.e. opacity, equation of 

state and energy generation

• How to derive a sequence of homologous stellar models

• Why these homologous sequences are useful

• How the approximate homologous sequence compares to 

observations of stars  



Introduction and recap 

• We have 4 differential equations of stellar structure

• Completely accurate expressions for pressure, opacity and 
energy generation are extremely complicated, but we can find 
simple approximate forms

• Eqns of stellar structure too complicated to find exact analytical 
solution, hence must be solved with computer

• But we can verify position of main-sequence and find mass-
luminosity relation without solving eqns completely.

• We will attempt to simply derive relationships between luminosity, 
temperature and mass for a population of stellar models. This will 
allow comparison with observations. 
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Equation of state of an ideal gas
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We have seen that stellar gas is ionized plasma, and although density is so 

high that typical inter-particle spacing is of the order of an atomic radius, the 

effective particle size is more like a nuclear radius (105) times smaller. Hence 

material behaves like an ideal gas. 

Where n is number of particles per cubic meter,  k is Boltzmann’s constant

But we want this equation in the form:

Following the class derivation, this can be written:

R=k/mH =the gas constant

mu = mean molecular weight = mean mass of 

particles in terms of H-atom (mH) 

If radiation pressure is important



Mean molecular weight
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We can derive an expression for the mean molecular weight μ. An exact solution 

is complex, depending on fractional ionisation of all the elements in all parts of 

the star. We will assume that all of the material in the star is fully ionised. 

Justified as H and He are most abundant, and they are certainly fully ionised in 

stellar interiors (assumption will break down near stellar surface). 

X=fraction of material by mass of H

Y=fraction of material by mass of He

Z=fraction of material by mass of all heavier elements

X + Y + Z = 1

Hence in 1m3 of stellar gas of density 𝜌 there is mass X𝜌 of H, Y𝜌 of He,  Z𝜌 of 

heavier elements. In  a fully ionised gas, 

H gives 2 particles per mH 

He gives 3/4 particles per mH (alpha particle, plus two e–  ) 

Heavier elements give ~1/2 particles per mH (
12C has nucleus plus 6e–  = 7/12)

                                                                       (12O has nucleus plus 8e–  = 9/16)
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The total number of particles per cubic metre is then given by the sum: 

Now as before we define 𝜌 = n mH μ

 

Which is a good approximation to μ except in the cool outer regions of stars. For 

solar composition, X


=0.747, Y


=0.236, Z


=0.017, resulting in μ ~0.6,      

i.e. the mean mass of particles in a star of solar composition is a little over half the 
mass of the proton



Opacity
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Concept of opacity introduced when deriving the equation of radiation transport, 

and will be discussed extensively in “Corso di Processi radiative”. Opacity is the 

resistance of material to the flow of radiation through it. In most stellar interiors it 

is determined by all the processes which scatter and absorb photons 

Four processes:

• Bound-bound absorption

• Bound-free absorption

• Free-free absorption

• scattering



Approximate form for opacity
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We need an expression for opacity to solve the eqns of stellar structure. For 

stars in thermodynamic equilibrium with only a slow outward flow of energy, the 

opacity should have the form

Opacity coefficients may be calculated, taking into account all possible 

interactions between the elements and photons of different frequencies.

 This requires an enormous amount of calculation and is beyond the scope of 

this course. When it has been done, the results are usually approximated by 

the relatively simple formula :

Where alpha, beta are slowly varying functions of density and temperature 

and k0 is a constant for a given chemical composition
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Figure shows opacity as a function of 

temperature for a star of given 𝜌
(10-1 kgm-3 ).  Solid curve is from 

detailed opacity calculations. Dotted 

lines are approximate power-law 

forms. 

At high T: k  is low and remains 

constant. Most atoms fully ionised, 

high photon energy, hence free-free 

absorption unlikely, Dominant 
mechanism is electron scattering, 

independent of T,  alpha=beta=0

Opacity is low a low T, and decreases with T. Most atoms not ionised, few 

electrons available to scatter photons or for free-free absorption. Approx 

analytical form is alpha=1/2 , beta=4  

At intermediate T, k peaks, when bound-free and free-free absorption are very 

important, then decreases with T (Kramers opacity law, see Böhm-Vitense Ch. 4)



Homologous stellar models
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We already have the four eqns of stellar structure in terms of mass (m)

With boundary conditions:

R=0, L=0 at M=0

𝜌=0, T=0 at M=Ms

And supplemented with the three additional relations for P, k, 𝜀  

(assuming that the stellar material behaves as an ideal gas with 

negligible radiation pressure, and laws of opacity and energy generation 

can be approximated by power laws)

Where alpha, beta, eta are constants and k0 and 

𝜀0  are constants for a given chemical 

composition.



Homologous models
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We aim to formulate the eqns of stellar structure so that they are independent 

of mass MS. Hence, we will assume that the way in which a physical quantity 

(e.g. L ) varies from centre of star to surface is the same for all stars of all 

masses (only absolute L varies). 

Schematic illustration: ratio of 

luminosity to surface luminosity is 

plotted against fractional mass (m) , 

which is defined as the ratio of 

mass to total mass

m=M/Ms

We then assume this curve is the 
same for ALL stars with the same 

laws of opacity and energy 

generation. But that LS is 

proportional to some power of MS, 

which depend on the values of 
alpha, beta, eta 

The same will also be true for rs 

and Te (effective temperature)
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Mathematically expressing this:

Where a1, a2, a3, a4, a5, are constants and r*, 

rho*, L*, T*, P*,  all depend only on fractional 

mass m

Now we can substitute these expressions into the four stellar structure 

equations (and the equation of state). Remember our goal is to eliminate 

the dependence on M in those equations and replace it with m.
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So now we have obtained 5 equations for the five constants a1, a2, a3, a4, a5 . 

We also have 5 new equations for stellar structure which are independent of 

MS. They are only independent of MS however if the 5 equations for a1, a2, a3, 

a4, a5  have consistent solutions.   

These are inhomogeneous algebraic equations (i.e. some contain terms 

independent of the a values). They can be solved for all reasonable values 

of 𝛼, 𝛽, 𝜂. The general solution is very complicated, we won’t derive it, but 

will consider solutions with particular values of 𝛼, 𝛽, 𝜂 shortly. 



Collecting the new equations together
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Now we have the 5 new equations

These equations can now be solved to find r*, rho*, L*, T*, and P* in terms of 

m using the boundary conditions

r*=0, L*=0 at m=0

rho*=0, T*=0 at m=1

Where the centre and surface of the star are at m=0 and m=1 respectively. 

These must be solved on a computer,and then the r*, rho*, L*, T*, and P*  

quantities can be converted to r, rho, L, T, and P for a star of any given mass, 

using the relations previously derived. 



Homologous models
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Such a set of models of stars in which the dependence of the physical quantities 

on fractional mass m is independent of the total mass of the star is known as a 

homologous sequence of stellar models. 

Without even fully solving the homologous equations of stellar structure, we can 

deduce a mass-luminosity relation for main-sequence stars and also a simple 

relation between luminosity and effective temperature – this characterises the 
main-sequence in the HR diagram, so can be compared to observations. 

M-L and L-Te relations

Actually it’s trivial to write down a mass-luminosity relation from our definition 

of the homologous sequence
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Now for the luminosity – effective temperature relation, these quantities are 

related to the radius of a star through:

We can show :

Combining this with:

This shows that stars lie in the theoretical HR diagram (logLs versus 

logTe) and this might be identified with the main-sequence



18

 

Now although the homologous models do predict a power-law mass-

luminosity relation and the existence of a main-sequence type structure in the 

HR-diagram, we still have not shown that the exponent in these power laws is 

agreement with the observed values. In order to do this we must solve the 5 

algebraic equations : 

Now the general solution is complex, but we can solve for particular 

values of α, β, η 

In the discussions of stellar opacity, we found that one approximation to 
the opacity law, which works well at intermediate temperatures is given 

by α =1 and β =-3.5

And a reasonable approximation of the rate of energy generation by the 

PP-chain is given with η =4.
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Hence:

And substituting α=1, β=-3.5 and η=4 into the five algebraic equations, we 

obtain the simplified set of equations: 

 

We now have 5 equations in 5 unknowns – so simply can eliminate 

each of the a’s in turn to obtain a solution for a3 and a1. It is left to the 

student to demonstrate !
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So we have the result 

a3=71/13    and

a1=1/13

Substituting these into the mass-luminosity and luminosity – effective 
temperature relations we get

The observed mass-luminosity law is not a simple power law but if the 

central part of the curve (corresponding to close to a solar mass) is 

approximated by  a power law, it has an exponent of approximately 5. 

Which is in good agreement with the value of 5.46 above. 

Similarly the lower part of the main-sequence on the observed L-Te 

diagram (HR diagram) is well represented by a power law of exponent 4.1. 

We have therefore verified the observed mass-luminosity relation of main-

sequence stars and the existence of the main-sequence on the HR 

diagram – one of our goals from Lecture 1



Summary and conclusions
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Revisit the learning outcomes

• How to employ approximate forms for the three equations that 

supplement the stellar structure equations i.e. opacity, equation of 

state and energy generation

• How to derive a sequence of homologous stellar models

• Why these homologous sequences are useful

• How the approximate homologous sequence compares to 

observations of stars  

Next lecture: Another method of simplifying the solution of the stellar 

structure equations. After that we will move on to discussing the 

output of full numerical solutions of the equations and realistic 

predictions of modern theory
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