
The structure and evolution of 
stars

Lecture 8: Polytropes and simple 
models
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Introduction and recap 

In previous lecture we saw how a homologous series of models could 
describe the main-sequence approximately. These models where not full 
solutions of the equations of stellar structure, but involved simplifications 
and assumptions

Before we move on to description of the models from full solutions, we will 
come up with another simplification method that will allow the first two 
equations of stellar structure to be solved, without considering energy 
generation and opacity. 

This form was historically very important and used widely by Eddington 
and Chandrasekhar
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Learning Outcomes

•What is a polytrope

•Simplifying assumptions to relate pressure and 
density 

•How to derive the Lane-Emden equation

•How to solve the Lane-Emden equation for 
various polytropes

•How realistic a polytrope is in describing the 
structure of the Sun
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What is a simple stellar model 
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• We have seen the seven equations required to be solved to determine stellar 

structure. Highly non-linear, coupled and need to be solved simultaneously 

with two-point boundary values.  

• Simple solutions (i.e. analytic) rely on finding a property that changes 

moderately from stellar centre to surface such that it can be assumed only 

weakly dependent on r or m - difficult, as for example T varies by 3 orders of 
magnitude and P by >14! Chemical composition is a property that can be 

assumed uniform (e.g. if stars is mixed by convective processes).  

• Polytropic models: method of simplifying the equations. Simple relation 

between pressure and density (for example) is assumed valid throughout the 

star. Eqns of hydrostatic support and mass conservation can be solved 

independently of the other 5. 

• Before the advent of computing technology, polytropic models played an 

important role in the development of stellar structure theory. 



Polytropic models
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Take the equation for hydrostatic support (in terms of the radius variable r), 

Multiply by r2/𝜌 and differentiating with respect to r, gives

Now substitute the equation of mass-conservation on the right-hand side, and 

we obtain

Let us now adopt an equation of state of the form (where is it customary to 

adopt 𝛾= 1+1/n) . K is a constant and n is known as the polytropic index.



Recall the equations:
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We already have the four eqns of stellar structure in terms of mass (m)

With boundary conditions:

R=0, L=0 at M=0

𝜌 =0, T=0 at M=Ms

And supplemented with the three additional relations for P, rho, eps  

(assuming that the stellar material behaves as an ideal gas with 

negligible radiation pressure, and laws of opacity and energy generation 

can be approximated by power laws)

Where α, β, η are constants and κ0 and ε0

are constants for a given chemical composition.



Polytropic models
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Take the equation for hydrostatic support (in terms of the radius variable r), 

Multiply by r2/𝜌 and differentiating with respect to r, gives

Now substitute the equation of mass-conservation on the right-hand side, and 

we obtain

Let us now adopt an equation of state of the form (where is it customary to 

adopt 𝛾= 1+1/n) . K is a constant and n is known as the polytropic index.



The solution ρ(r) for  0 ≤ r ≤ R is called a polytrope and requires two boundary 

conditions. Hence a polytrope is uniquely defined by three parameters : K, n, and 

R. This enables calculation of additional quantities as a function of radius, such 

as pressure, mass or gravitational acceleration.   

Now for the solution, it is convenient to define a dimensionless variable θ

 in the range 0 ≤ θ ≤ 1 by 

Which allows the derivation of the well-known Lane-Emden equation, of index n



Solving the Lane-Emden equation
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It is possible to solve the equation analytically for only three values of the 

polytropic index n

Solutions for all other values of n must be solved numerically i.e. we use a 

computer program to determine  θ for values of  ξ 

Solutions are subject to boundary conditions:



Computational solution of the equation
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We start by expressing the Lane-Emden equation in the form:

The numerical integration technique - step outwards in radius from the centre

of the star and evaluate density at each radius (i.e. evaluate θ for each of ξ).

At each radius, the value of density θ I+1 is given by the density at previous

radius, θI plus the change in density over the step (Δξ)

Now dθ/dξ is unknown, but by same technique we can write
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Then we can replace the second derivative term in the above by the 

rearranged form of the Lane-Emden equation:

Now we can adopt a value for n and integrate numerically. We have the 

boundary conditions at the centre. 

So starting at the centre, we determine 

Which can be used to determine θI+1 . The radius is then incremented by

adding Δξ to ξ and the process is repeated until the surface of the star is

reached (when θ becomes negative).

In your own time - Fortran program on course website to do these 

calculations - useful experience. 
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Numerical solutions to the 

Lane-Emden equation for 

(left-to-right) n = 0,1,2,3,4,5

Compare with analytical 

Solutions decrease monotonically and have θ=0 at ξ= ξR (i.e. the stellar radius)

With decreasing polytropic index, the star becomes more centrally condensed. 

What does a polytrope of n=5 represent ?
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For n < 5 polytropes, the solution for θ drops below zero at a finite value of ξ

and hence the radius of the polytrope ξR can be determined at this point. In

the numerically integrated solutions, a linear interpolation between the

points immediately before and after θ becomes negative will give the value

for ξ at θ=0. The roots of the equation for a range of polytropic indices are

listed below. In the two cases where an analytical solution exists, the

solutions are easily derived.

n R

0 2.45 3.33  10-1

1 3.14 1.01  10-1

2 4.35 2.92  10-2

3 6.90 6.14  10-3

4 15.00 5.33  10-4

Recall:
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How do these polytropic models, compare to the results of a detailed

solution of the equations of stellar structure ? To make this comparison we

will take an n=3 polytropic model of the Sun (often known as the

Eddington Standard Model), with the co-called Standard Solar Model

(SSM - Bahcall 1998, Physics Letters B, 433, 1). We need to convert the

dimensionless radius ξ and density θ to actual radius (in m) and density

(in kg m-3). We must also determine how the mass, pressure and

temperature vary with radius:

To determine the scale factor α :

At the surface of the n=3 polytrope (θ=0) , we have

Where R=radius of the star (Sun in this case), and ξR is the value of ξ at

the surface (i.e. the root of the Lane-Emden equation that we listed in the

table above)

http://www.sns.ias.edu/~jnb/SNdata/solarmodels.html

SSM data available at:
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Next we determine the mass as a function of radius. The rate of change 

of mass with radius is given by the equation of mass conservation 

By integrating and substituting r = αξ and ρ = ρcθ
n

So now we assume that we know M
   and R

 independently, then we 

can find expressions for the internal structure 
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We can use this equation to determine ρc which in turn allows us to determine

the variation of M with ξ. This can be transformed to the variation of M with r

using r = αξ (assuming that we know R independently, which we do for the

Sun).

Comparison of numerical 

solution for n=3 polytrope 

of the Sun versus the 

Standard Solar Model. 

We have derived the 

variation of M with r

Now straightforward to 

determine the variation of 
density, pressure and 

temperature with r



How does the polytrope compare ?
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Polytrope does remarkably well 

considering how simple the 

physics is - we have used only 

the mass and the radius of the 

Sun and an assumption about 
the relationship between internal 

pressure and density as a 

function of radius. 

The agreement is particularly 

good at the core of the star:

Property n=3 

polytrope

SSM

c 7.65  104 

kgm-3

1.52  105

kgm-3

Pc 1.25  1016

Nm-2

2.34  1016

Nm-2

Tc 1.18  107 

K

1.57  107 

K

In the outer convective regions the solutions deviate significantly 



Summary

• We have defined a method to relate the internal 
pressure and density as a function of radius - the 
polytropic equation of state

• We derived the Lane-Emden equation  

• We saw how this equation could be numerically 
integrated in general 

• We compared the n=3 polytrope with the Standard 
Solar model, finding quite good agreement considering 
how simple the input physics was 

• Now we are ready to discuss modern computational 
solutions of the full structure equations
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