Reinforcement Learning

€D

Who am I?

Simone Silvetti (simone.silvetti@dia.units.it)
application of quantitative

Studied mathematics in Rome formal methods and
machine learning techniques

. . . to Verification and
Phd in Computer Science @ Udine " podel-based Testing of
Complex Systems

Worked for 11 years in ESTECO

\ Z T 2

Currently PostDoc @ units

Who are you?

-> Which is your background?
-> Who knows Machine Learning? Supervised, unsupervised learning?

-> Who knows Reinforcement Learning?

Lessons

- 5/11 14:15-16:00 (~15 min break) - Introduction to RL

- 7/11 11:15-14:00 (~15 min break)
4 11:15 - 12:30 - Model free RL
4 12:30 - 14:00 - Hands on session (plain Python - PyTorch)

-> ?? Reinforcement Learning and Temporal Logics

Who am I?

Simone Silvetti (silvetti@esteco.com)
application of quantitative

-> Studied mathematics in Rome formal methods and
machine learning techniques

. . . to Verification and
= Phdin Computer Science @ Udine " yjogel-based Testing of
Complex Systems

- Currently working in|[ESTECO

Numerical multi-objective optimization algorithms, machine
Methods Group learning, object-oriented programming

Who am I?

- Currently working in

Numerical
Methods Group

Research and
Development

Simone Silvetti (silvetti@esteco.com)

application of quantitative

- Studied mathematics in Rome formal methods and

machine learning techniques

. .) to Verification and
= Phdin Computer Science @ Udine " yjogel-based Testing of

Complex Systems

ESTECO

multi-objective optimization algorithms, machine
learning, object-oriented programming

process mining, research projects related to
technology and domains useful for ESTECO
products

Who am I?

Simone Silvetti (silvetti@esteco.com)

application of quantitative

- Studied mathematics in Rome formal methods and
machine learning techniques

. .) to Verification and
= Phdin Computer Science @ Udine " yjogel-based Testing of

Complex Systems

- Currently working in|[ESTECO

Numerical multi-objective optimization algorithms, machine

/' Methods Group learning, object-oriented programming

I worked on “Inverse

Reinforcement process mining, research projects related to

Learning” applied to [R)ese?rch anil technology and domains useful for ESTECO
autonomous driving evelopmen products

W h O a re yo u ? Do you know Python? Numpy, Scipy?

13 responses
13 IR 4T p

o 6
¢
)
| 5
v

4 (38.5%)

2

0

| know Python and Numpy... I know only Python Yes Yes. (working/research ex...

| know Python. | have a go... No Yes, | used some time ago... pyhton and n...

During your studies have you participated in courses of Reinforcement Learning? If yes, which
topics have you covered?

13 responses

Will you follow the "Learning-based Controllers and the Reality Gap" course?

No 5 responses
Only partially @ Yes
® No

| did not partecipate to any course.
| have never participated in a course about Reinforcement Learning.

| have never participated at any course of bayesian optimization

no

Reference

A book from Sutton et al.

Reinforcement
Learning

An Introduction
second edition

Richard S. Sutton and Andrew G. Barto

Free available here!

/

http://incompleteideas.net/book/the-book-2nd.html

http://incompleteideas.net/book/the-book-2nd.html

Reference O Voulube

Google DeepMind
A bOOk from Sutton et al. @Google_DeepMind - 482K subscribers - 186 videos

Artificial intelligence could be one of humanity's most useful inventions. Google DeepMind ... >

Q Subscribed v

Home Videos Shorts Live Podcasts Playlists Community

Created playlists = Sortby

Reinforcement
Learning

An Introduction
second edition

=5 9videos

Inside Google DeepMind Visualising Al Scholarships | Al by you Unfolded: Meet the scienti Life at DeepMind The story of AlphaFold
using AlphaFold

View full playlist View full playlist View full playlist View full playlist View full playlist

View full playlist

DeepMind:

The Podcast

DeepMind:

Introductic T St Introducti Introduction
il) Wcroqiasly Eeknion i O
Learning = 43videos SeesirD If“_mmg ::mi | =y
Learning resources Talks | Al for science DeepMind: The Podcast - Season DeepMind: The Podcast - Season DeepMind x UCL | Deep Learning DeepMind x UCL | Deep Learning
- View full playlist View full playlist 2 1 Lecture Series 2021 Lecture Series 2020
] View full podcast View full podcast View full playlist View full playlist

Free available here!

http://incompleteideas.net/book/the-book-2nd.html

http://incompleteideas.net/book/the-book-2nd.html

Reference

A book from Sutton et al.

Reinforcement }
Learning j’
/

An Introduction /
second edition

Richard S. Sutton and Andrew G. Barto / /
/4

Free available here!

/

3 YouTube

Google DeepMind

(@Google_DeepMind - 482K subscribers - 186 vid|

LECTURE !

Introduction to
£\ Subscribed v Reinforcement e

Learning =, 13 videos

Artificial intelligence could be one of humanity's r{

Home Videos Shorts Live Podcasts Playlists Coi
REINFORCEMENT LEARNING

Created playlists Sort by

DeepMind x UCL | Deep Learning
Lecture Series 2021

Inside Google DeepMind Visualising Al Scholarsh

View full playlist View full playlist View full pl}

DeepMind:
The Podcast

Introduction (o i |)Y N Tl < Introduction to Introduction to
Reinforcement A)Y Reinforcement !\h‘;‘lli:lo Learning
an

lmmlng) SeesirD Izamms
Learning resources Talks | Al for science Deelend The Podcast - Season Deelend The Podcast - Season DeepMind x UCL | Deep Learning DeepMind x UCL | Deep Leamlng
Lecture Series 2021 Lecture Series 2020
View full playlist View full playlist
View full podcast View full podcast View full playlist View full playlist

http://incompleteideas.net/book/the-book-2nd.html

http://incompleteideas.net/book/the-book-2nd.html

Reference O Voulube

A book from Sutton et al.

ICTP Quantitative Life Sciences

@ictpquantitativelifescienc9505 - 5.14K subscribers - 1K videos

Reinforcemeht \
Learning /

More about this channel >

Home Videos Live Playlists Community Q

An Introduction /‘ /
second edition |

Richard S. Sutton and Andrew G. Barto / 7\
/4

~______— Prof. Antonio Celani

Free available here!

=» 29 videos

/ 2020-2021 Reinforcement
Learning (QLS-RL)
http://incompleteideas.net/book/the-book-2nd.html

http://incompleteideas.net/book/the-book-2nd.html

Introduction

What is Reinforcement Learning?

A map

|nte|||gence

Science

Formal Science

Computer

Science

Artificial
Intelligence

statistics & data -+

environment

Machine Learning

Supervised Unsupervised
Learning Learning

Reinforcement
Learning

the systematic study of physical and natural world through observation,
experimentation, and the testing of theories against the evidence obtained

uses formal systems to generate knowledge

is the study of computation, information and automation

enabling machines to perceive their environment and uses learning and

intelligence to take actions that maximize their chances of achieving defined
goals

development and study of statistical algorithms that can learn from data and
generalize to unseen data, and thus perform tasks without explicit instructions.

technique that trains software to make decisions to achieve the most optimal
results

A definition

Reinforcement

] X technique that trains software to make decisions to achieve the most optimal results
earning

A definition

Reinforcement technique that trains seftware to make-geeisions to achieve-the-mosteptimatresttts
Learning

A definition

Reinforcement technique that trains agents to make-deeisions to achieve-the-mesteptimatresutts
Learning

A definition

Reinforcement technique that trains agents to map states into actions to achieve-the-mostoptimat
Learning resuits

A definition

Reinforcement

L X technique that trains agents to map states into actions to maximize a cumulative reward
earning

A definition

Reinforcement

L X technique that trains agents to map states into actions to maximize a cumulative reward
earning

agent

A definit

Reinforcement
Learning

[

agent

DOOOO

Dl fesl >

ion

technique that trains agents to map states into actions to maximize a cumulative reward

Goal

HinEna

/LJ

A definition

Reinforcement

L X technique that trains agents to map states into actions to maximize a cumulative reward
earning

A definition

Reinforcement
Learning

technique that trains agents to map states into actions to maximize a cumulative reward

states

A definition

Reinforcement

L X technique that trains agents to map states into actions to maximize a cumulative reward
earning

states

A definition

Reinforcement

L X technique that trains agents to map states into actions to maximize a cumulative reward
earning

A definition

Reinforcement

L X technique that trains agents to map states into actions to maximize a cumulative reward
earning

reward

A definition

Reinforcement

L X technique that trains agents to map states into actions to maximize a cumulative reward
earning

Cumulative
Reward

-1

reward

A definition

Reinforcement

L X technique that trains agents to map states into actions to maximize a cumulative reward
earning

reward

-1

A definition

Reinforcement

L X technique that trains agents to map states into actions to maximize a cumulative reward
earning

Cumulative
Reward

-6

reward reward

A definition

Reinforcement

L X technique that trains agents to map states into actions to maximize a cumulative reward
earning

A definition

Reinforcement technique that trains agents to map states into actions to maximize a cumulative reward

Learning
Cumulative
Reward
-5
reward
-5

A definition

Reinforcement

L X technique that trains agents to map states into actions to maximize a cumulative reward
earning

A definition

Reinforcement

L X technique that trains agents to map states into actions to maximize a cumulative reward
earning

Cumulative
Reward

-1

A definition

Reinforcement
Learning

technique that trains agents to map states into actions to maximize a cumulative reward

Cumulative
Reward

-6

A definition

Reinforcement
Learning

technique that trains agents to map states into actions to maximize a cumulative reward

Cumulative
Reward

94

reward

On reward

Goal and reward
coherence

we want the agent goes as fast as possible from A to B. We need to choose an appropriate
reward signal!

Cumulative
Reward

94

On reward

Goal and reward
coherence

we want the agent goes as fast as possible from A to B. We need to choose an appropriate
reward signal!

Cumulative
Reward

94

Why negative values?

A definition

Machine Learning

Supervised Unsupervised Reinforcement
Learning Learning Learning
trial-and-error
approach
Learning from labeled data Is not possible to have a trAwg
and trying to generalize to set in advance. RL interacts with
unseen data the environment.
Identifying structures in Does not aim to identify
unlabeled dataset structures but it

maximizes rewards

Elements of RL

Mathematical definition

List of the ingredients

Environment

Agent

Elements of
Reinforcement
Learning

Policy (of the
agent)

Reward signal

Model of the
environment

Value function
(of a policy)

usually exposes uncertainty

is a decision-maker and has a goal

defines the agent behaviour

defines the goal of the agent

exists model-free and model-based RL algorithms

quantifies how good is for an agent to be in a
specific state (if it follows that policy)

Observability

environment

Observability

nnnnnnnnnnn

Observability

e

action

ClCE—
interpréter reward
observation of the state i
\>

Observability

E

Ve \\ / ™ .
O‘ G \ action

intefpréter

\

observation of the state

model of the
environment

Observability

environment

M\ O .

O / G \ action
interpreter reward
UVTTRREE observation of the state i
—

e mOdel Of the
environment

knowledge |

Observability

RL = learning + prediction + controlling

Building a model of
the environment

Knowing the
cumulative reward
I'll get following a

policy

Discovering the
best action

Knowledge of the environment

The two axes of knowledge

observability

knowledge of the model

Epistemic

Empirical
< 4 knowledge

knowledge

Knowledge of the environment

The two axes of knowledge

observability

A

Markovian process
only matter knowledge

of the actual state

Pure planning

Empirical
knowledge

knowledge of the model

problem
Markov
Decision
Process
(MDP)
Epistemic
knowledge

Markovian process
only matter knowledge

Knowledge of the environment ot e atual siate

The two axes of knowledge
Pure planning

| problem
Markov
Decision
Process
(MDP)
P
= inference
e
©
&
)
wn
o]
° Partially ~ Planning with
Observable uncertainty
MDP We have model but
some params are
unknown
knowledge of the model
Empirical ¢ 3 Epistemic

knowledge knowledge

Knowledge of the environment

The two axes of knowledge

A

Model free

Trial-and-error

approaches
=
E
©
=
oy
2]
o)
o
Full RL

Markovian process
only matter knowledge

of the actual state

Pure planning

problem
Markov

Decision
Process
(MDP)

inference

Partially ~ Planning with
Observable uncertainty
MDP We have model but

some params are
unknown

knowledge of the model

Empirical ¢
knowledge

=

Epistemic
knowledge

Knowledge of the environment

The two axes of knowledge

A

Model free ’

Trial-and-error

approaches
=
E
©
=
oy
2]
o)
o
Full RL

Markovian process
only matter knowledge

of the actual state

Pure planning

knowledge of the model

Empirical ¢
knowledge

problem
Markov
Decision
Process
(MDP)
inference
Partially ~ Planning with
Observable uncertainty
MDP We have model but
some params are
unknown
Epistemic
knowledge

(finite) Markov Decision Process

'J Agent |

state reward

)

action
S, | |R, A
L R1+I (
< Environment]4—
trajectory S(): A(): Rl: Sl: Al: RQ: SQ: AQ: R37 o
dynamics p(s’,r|s,a) = Pr{S;=s',Ry=r|S;_1=8,A;-1=0a}

Perfect knowledge
of the model

Z Z p(s’,r|s,a) =1, for all s € 8,a € A(s)

s’eSreR

(finite) Markov Decision Process

Definition [edit]

A Markov decision process is a 4-tuple (S, 4, P,, R,), where:

« Sis a set of states called the state space. The state space may be
discrete or continuous, like the set of real numbers.

« A is a set of actions called the action space (alternatively, A, is the
set of actions available from state s). As for state, this set may be
discrete or continuous.

« P,(s,s) is, on an intuitive level, the probability that action a in state
s at time ¢ will lead to state s’ attime £ + 1. In general, this
probability transition is defined to satisfy
Pr(si1 €5 | 8t =s,a, =a) = /, P,(s,s")ds', for every 1

S
s’ C S measurable. In case the state space is discrete, the integral

is intended with respect to the counting measure, so that the latter

. - Example of a simple MDP with three states (green circles) =
simplifies as P, (s, ') = Pr(s;11 = §' | st = s,a; = a); Incase . . (@)

and two actions (orange circles), with two rewards (orange
S C R?, the integral is usually intended with respect to the arrows)

Lebesgue measure.

« R, (s, s') is the immediate reward (or expected immediate reward) received after transitioning from state s to state s', due to
action a.

A policy function 7 is a (potentially probabilistic) mapping from state space (S) to action space (A).

(finite) Markov Decision Process

trajectory S()7 A(): Rl: Sl: Al: R27 SQ: AQ: R37 . e

dynamics p(s',r|s,a) = Pr{S; =" Ri=r | Spi=8, A4 =a}
state-transition (s'|8,8) = Pe{Si=4¢" | Se_1=8; 4 1=0} = Zp(s’,r|s,a)

probability reR

expected reward (I) r(s,a) = E[R: | St-1=s,At-1=a] = Z ZP r|s,a)

reR s'€8

p(s',r|s,a)

expected reward (II) r(s,a,8') = E[R; | St—1=8,4;_1=0a,S; =5] = Z p(s’,
reR

p(s']s,a)

Reward signal

| Reward

| Return

Discounted
Return

Reward hypothesis: that all of what we mean by goals and purposes can be

well thought of as the maximization of the expected value of the cumulative
sum of a received scalar signal (called reward).

Rt

Gi=Riy1 + Riyo+ Riys+ -+ Re

o0
Gt = Riy1 +YRis2 + Y Repz+ - = Z Y Ritkt1
k=0

Reward signal

Reward hypothesis: that all of what we mean by goals and purposes can be

well thought of as the maximization of the expected value of the cumulative
sum of a received scalar signal (called reward).

| Reward | Ry

Short-term view - |

Return | Gt = Rt+1 + Rt+2 4+ Rt+3 - st RT

Discounted . 2 _ k
Long-term view +iwr Rotur Gt = Rip1+YRi2+VRiss++ = > 7 Rirn

k=0

Reward signal

Reward hypothesis: that all of what we mean by goals and purposes can be

well thought of as the maximization of the expected value of the cumulative
sum of a received scalar signal (called reward).

| Reward | Riyq
Shortterm view :
| _Return | Gy=Riy1 +Riya+Riyzs+---+ Ry
Discounte) . P o p
Long_term view RO Return Gt = Rt+l +’)'Rt+2 + ,7 Rt+3 + — Z’}/ Rt+k+l

k=0

l

Gi = Rip1 + 1G4

RECURSIVE
DEFINITION

Policy

Policy is a mapping from states to probabilities of selecting each possible action

T:SxA—[0,1]

If we are at time t, 7r(a|s) is the probability of having A =ahSi=3s

can be deterministic

Value function

Value Function is a function that quantify how good is to be on a state and follows a specific policy
v S =R
oo
state-value v:(8) = EiGi|.Sir=8] = Ex ZW’th+k+l Si=s|, forall s €8
function S

Si=8 A;=0a

action-value gr(s,a) = E[G; | Si=s,A;=a] = Ewlz V¥ Retk+1

function k=0

Solving a RL problem

find a policy that achieves the maximum reward over the long run

optimal policy Ty =~ ™ Vm € policies

Solving a RL problem

find a policy that achieves the maximum reward over the long run

optimal policy Ty =~ ™ Vm € policies

7! o = Y8 E S, vu(s) > v:(s)

Solving a RL problem

find a policy that achieves the maximum reward over the long run

optimal policy

optimal state-value
function

optimal action-value
function

T« = T Vm € policies

n o =% Yees, wu(s) = v:(s)

Uy (8) = max vy (s)
™

G+ (s, a) = max qr(s, a)
T

Solving a RL problem

find a policy that achieves the maximum reward over the long run

optimal policy Ty =~ ™ Vm € policies

n o =% Yees, wu(s) = v:(s)

optimal state-value
function

Uy (8) = max vy (s)
™

q«(s,a) = lE:[Rtﬂ + Y0 (Se41) | Se=s,As 2(1-]

optimal action-value
function

g+ (8, a) = maxq,(s,a)
T

Dynamic Programming

How to solve MDP problems

Dynamic Programming

Mr. Richard Ernest Bellman

Algorithm paradigm useful to solve a specific class of problems
that can be decomposed in sub-problems in recursive way

A

AL e A
ellm

!

an, 19505 |

Dynamic Programming
In the RL context

Collection of algorithms that can be used to compute
optimal policies given a perfect model of the environment as
a MDP.

|'}'\ k. i y A
ellman, 1950s

L

Key idea: use value function to organize and structure the
search of optimal policies

U (8) = EL[G: | St=3]
= Ex[Rey1 + YGiy1 | Se=5]

Consistency relation - wlals (s, 7|8, a {r +AE.[G g :S/]
of state-value ; (al)Zs;z; (s's7|s,a) YE[Gt41]|St41]
function

- Zw(a|s) Zp(s’, r|s,a) [r + 'yfu,,(s')], for all s € 8.

Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value Uala) = Z 7(als) Z p(s',r|s,a) [r + yvx(s')]
S_' r

function a

Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value vr(s) = Z m(als) Zp(slr r|s,a) [r + yvz(s")]
function a s',r

AN
i))
@ «&\‘“\‘\ % \

Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value vr(s) = Z m(als) Zp(slr r|s,a) [r + yvz(s")]
function a s',r

AN
i))
@ «&\‘“\‘\ % \

Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value vr(s) = Z m(als) Z p(s',rls,a) [r + yvr(s')]
function a s',r
qﬁ(ssal)

qﬁ(saaQ)

Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value vr(s) = Z m(als)gx(s,a)
function a
=(s,a

\%\\ qr(1)

\i\,\,

(o))

)/\/2)4

)

qﬂ‘(sa (12)

Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value
function

QW(5~ (1.1)

qﬁ(sa (12)

What about the optimal policy
and the optimal state-value
function?

Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value
function

QW(5~ (1.1)

qﬁ(sa (12)

What about the optimal policy
and the optimal state-value
function?

It’s an average

Dyn am iC Progra mm i N g What about the optimal policy

and the optimal state-value

Towards the Bellman Equation function?
Consistency relation
Pt = m(a|s 5.a) ...
ol s ZRF D ... —

The optimal policy is a policy so
it should satisfy the consistency
qr(s,a1) relation

qt(sa a‘z)

l

Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value
function

q«(s,a1)

q*(s, (12)

What about the optimal policy
and the optimal state-value
function?

It’s an average

The optimal policy is a policy so
it should satisfy the consistency
relation

Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value
function

q«(s,a1)

q*(s, (12)

What about the optimal policy
and the optimal state-value
function?

It’s an average

The optimal policy is a policy so
it should satisfy the consistency
relation

The optimal policy is optimal

Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value
function

q«(s,a1)

q*(s, (12)

What about the optimal policy
and the optimal state-value
function?

It’s an average

The optimal policy is a policy so
it should satisfy the consistency
relation

The optimal policy is optimal

Dynamic Programming

Bellman Equation

v« (8) = max q.(s,a)

Bellman equation a

g« (Ss (11)

@)

max q+(s, az)

Dynamic Programming

Bellman Equation

v.(s) = maxq.(s,a)
a

Bellman equation

V4 (8) = max E p(s',7|s,a)[r + yv.(s)]
a
s'.r

Pacs
=

o

max

i

Dynamic Programming

Bellman Equation

v« (8) = max g p(s',r|s,a)[r + yv.(s)]
a
s./ r

Bellman equation

q«(s,a) = Zp(s’, r|s,a)[r + ymax g.(s’,a’)]

Dynamic Programming
How to find the optimal policy?

Iterative procedure

Dynamic Programming
How to find the optimal policy?

Consistency relation of the
state-value function

" Policy evaluation

U

Dynamic Programming
How to find the optimal policy?

Bellman intuition

Consistency relation of the
state-value function

Policy evaluation Policy improvement /

U -

Dynamic Programming
How to find the optimal policy?

Bellman intuition

Consistency relation of the
state-value function

Policy evaluation Policy improvement /
Ut .
I

-~

Policy Iteration

Dynamic Programming
How to find the optimal policy?

Consistency relation of the
state-value function

Policy evaluation Policy improvement

Bellman intuition

. !

U

-~

Policy Iteration

s

E I E I E
To——¥Unp 201 ¥ Vs, =T —¥F o= ¢

Does it converge? Yes

Dynamic Programming i A
Policy evaluation

Consistency relation
of state-value Uala) = Z 7(als) Z p(s',r|s,a) [r + yvx(s')]
S_' r

function a

Dynamic Programming i A

Policy evaluation

Consistency relation
of state-value vr(s) = Z m(als) Z p(s',rls,a) [r + yvr(s')]
function a s',r

Iterative policy ve+1(8) = Z 7(als) Z p(s',r

evaluation

s,a)[r + yvg(s)]

a s',r

Dynamic Programming i A

Policy evaluation

Consistency relation
of state-value Ur(s) = Z Z p(s',r|s,a) [r + yva(s')]
function a
Iterative policy i e =) ‘ s
ovaluation k1(s) = D lals) 3 p(s'sris, a)lr +70u(s")]

2 ways of updating: in place Vs two
arrays version :

Faster, depends on ordering of
update

< propagation |

Policy Evaluation
Algorithm

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:
A+0
Loop for each s € 8:
v+ V(s)
V(s) S, mlals) Sy (s ,7]5,0) [r + W ()]
A +— max(A, |[v—V(s)])
until A < 6

Policy Evaluation
Algorithm

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:
A+0
Loop for each s € 8:
v+ V(s)
V(s) = X, m(als) Ty, (s, s,0) [r + V()]
A + max(A, |v — V(s)|)
until A < 6

Policy Evaluation
Algorithm

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V (s), for all s € 8T, arbitrarily except that V(terminal) = 0

Loop:
A+0
Loop for each s € 8:
v+ V(s)
V(s) e X m(als) Koo p(s',715,0) [+ V()]
A + max(A, |v— V(s)])

until A < 6 B T,

Policy Evaluation

Example

Uniform Policy

1 2 3
4 |5 6 |7 Ry = —1
on all transitions
8 9 10 |11
actions
12, 137 |14 X

s

non-terminal state

N\

terminal state

Policy Evaluation

Example - 1st iteration

0.0f 0.0] 0.0f 0.0 0.0
0.0 0.0] 0.0 0.0 |::>
0.0{ 0.0] 0.0 0.0

0.0{ 0.0] 0.0 0.0 0.0

’Uﬂ-(S) — Z 7r(a|8) ZP(S’, 7‘|3, a)[r + ’7’7)w(3/)]
a s'.r

Policy Evaluation

Example - 1st iteration

0.0/ 0.0} 0.0 0.0 0.0

0.0/ 0.0} 0.0 0.0 :>

0.0/ 0.0] 0.0} 0.0

0.0/ 0.0] 0.0} 0.0 0.0
Wel9) Zﬂ' a|9)2p 3.1t 5;. 1) —i—’yv (]

Policy Evaluation

Example - 1st iteration

0.0f 0.0] 0.0f 0.0 0.0(-1.0]-1.0{-1.0
0.0 0.0] 0.0 0.0 |::> -1.0]-1.0{-1.0]-1.0
0.0{ 0.0] 0.0 0.0 -1.0]-1.0{-1.0]-1.0
0.0{ 0.0] 0.0 0.0 -1.0]-1.0{-1.0] 0.0

s,a)[r + yvx(s)]

Bal8) = Z 7(als) Zp(s', r
a 8

Policy Evaluation

Example - 1st iteration

0.0]-1.0{-1.0{-1.0 0.0/ ?
-1.0]-1.0[-1.0[-1.0 ?
-1.0|-1.0|-1.0|-1.0 :> ?
-1.0|-1.0]-1.0] 0.0 210 0.0

vﬂ(s) — Z 7r(a|8) ZP(S’, 7‘|3, a)[r + ’7"‘Jw(3/)]
a s'.r

~— /3 & 0.0]-1.0[-1.0]-1.0 0.0[?

Policy Evaluation

Example - 2nd iteration

101 =1:0|-1:0]-1:0 :> ?
JE0| -E0l 0| L0 ?

-1.0[-1.0[-1.0] 0.0 ? 11 0.0

ve(8) = ;j 7(als) Sjp(.g’, r|s,a)lr + ’va(sf)]
a s’

1/3 ' 1 -1 0

~— /3 & 0.0]-1.0[-1.0]-1.0 0.0[?

Policy Evaluation

Example - 2nd iteration

2/3 & -1.0{-1.0|-1.0]-1.0 ?
JE0| 0| 20| L0 :> ~

-1.0[-1.0[-1.0] 0.0 ? 11 0.0

ve(8) = ;j 7(als) Sjp(.g’, r|s,a)lr + ’va(sf)]
a s’

1/3 ’ 1 -1 1

~— /3 & 0.0]-1.0[-1.0]-1.0 0.0[?

— -2[3 =

Policy Evaluation

Example - 2nd iteration

2/3 & -1.0{-1.0|-1.0]-1.0 ?
JE0| 0| 20| L0 :> ~

-1.0[-1.0[-1.0] 0.0 ? 11 0.0

-1.7

vﬂ(s) — Z 7r(a|8) ZP(S’, 7‘|3, a)[r + ’7"‘Jw(3/)]
a s'.r

~— -1/3 = 0.0]-1.0]-1.0]-1.0 0.0]-1.7

— -2[3 =

Policy Evaluation

Example - 2nd iteration

_2/3 dh -]0 -]0-]0 -]O |::> -l7
-1.01-1.0]-1.0(-1.0 -1.7

-1.0]-1.0{-1.0] 0.0 -1.71 0.0

-1.7

vﬂ(s) — Z 7r(a|8) ZP(S’, 7‘|3, a)[r + ’7"‘Jw(3/)]
a s'.r

Policy Evaluation

Example - 2nd iteration

0.0{-1.0]-1.0{-1.0 0.0]-1.7{-2.0{-2.0
-1.0{-1.0{-1.0]-1.0 -1.7]-2.0]-2.0]-2.0
-1.0]-1.0{-1.0]-1.0 I:‘> -2.01-2.0{-2.0|-1.7
-1.0]-1.0]-1.0] 0.0 -2.0]-2.0]-1.7] 0.0

s,a)[r + yvx(s)]

Bal8) = Z 7(als) Zp(s', i
a g

Policy Evaluation

Example - until the end

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-2.4

-2.9

-3.0

-2.4

-2.9

-3.0

-2.9

-2.9

-3.0

-2.9

-2.4

-3.0

-2.9

-2.4

0.0

0.0/-1.0]-1.0]-1.0] 5 0.0/-1.7-2.0[-2.0
-1.0-1.0[-1.0[-1.0 [17]2:01-2.012.0
-1.0|-1.0[-1.0[-1.0 -2.0|-2.0]-2.0{-1.7
-1.0]-1.0|-1.0] 0.0 -2.0/-2.0]-1.7} 0.0
0.0]-14.]-20.]-22.
-14.1-18.]-20.]-20. <
-20.{-20.{-18.]-14.
-22.1-20.]-14.1 0.0

Policy Evaluation

Example - until the end

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-2.4

-2.9

-3.0

-2.4

-2.9

-3.0

-2.9

-2.9

-3.0

-2.9

-2.4

-3.0

-2.9

-2.4

0.0

0.0/-1.0]-1.0]-1.0] 5 0.0/-1.7-2.0[-2.0
-1.0-1.0[-1.0[-1.0 [17]2:01-2.012.0
-1.0|-1.0[-1.0[-1.0 -2.0|-2.0]-2.0{-1.7
-1.0]-1.0|-1.0] 0.0 -2.0/-2.0]-1.7} 0.0
0.0]-14.]-20.]-22.
-14.1-18.]-20.]-20. <
-20.]-20.]-18.|-14.
-22.1-20.]-14.1 0.0

Policy Evaluation

Example - until the end

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-2.4

-2.9

-3.0

-2.4

-2.9

-3.0

-2.9

-2.9

-3.0

-2.9

-2.4

-3.0

-2.9

-2.4

0.0

0.0[-1.0]-10-1.0) 5 0.0]-1.7]-2.0[-2.0
-1.0{-1.0]-1.0[-1.0 s [17]20-201-2.0
-1.0|-1.0]-1.0[-1.0 -2.0|-2.0]-2.0{-1.7
-1.0|-1.0]-1.0{ 0.0 -2.0/-2.0]-1.7} 0.0
0.0]-14.]-20.]-22.
-14.1-18.]-20.]-20.
—I—
-20.1-20.1-18.|-14. <
-22.1-20.|-14.1 0.0

Policy Improvement Q).-Folcy mprovement

A8
How to find better policies

Policy improvement theorem

0.0(-14.]-20.[-22.
-14.{-18.(-20.]-20.

-20.{-20.{-18.]-14.
-22.1-20.]-14.1 0.0

qr (8,7 (8)) > vr(s), Vs € S = v/ (8) > vr(s), Vs €S

Greedy policy approach

n'(s) = argmaxgq,(s,a)

a

= argmaxE[R;y 1 + Yv,(St+1) | St=s, Ar=dq]

= argmax s'.rls,a [r-i— v s'].
g1 ;p(,l,) yr(s')|,

v

Policy Iteration

Example

0.0] 0.0] 0.0] 0.0 0.0]-1.0{-1.0]-1.0 0.0]-1.7{-2.0]-2.0 0.0]-2.4{-2.9]-3.0 0.0]-6.1|-8.4
0.0 0.0(0.0 0.0 -1.0]-1.0{-1.0{-1.0 <7120 -6.11-7.7|-8.4
0.0] 0.0] 0.0] 0.0 -1.0(-1.0]-1.0(-1.0 -2.0(-2.0 -8.4|-8.4|-7.7
0.0] 0.0] 0.0] 0.0 -1.0{-1.0]-1.0{ 0.0 -2.0{-2.0 -9.0]-8.4]-6.1

< I < I

el — |l o i i

R R RN R t t

¢ r J i
ol | | sl P N fL,r,
A 4 I 3 = “ = L) - =

Policy Iteration

Example

propagation effect

0.0

0.0

0.0

0.0

0.0

-1.0[-1.0

-1.0

0.0

0.0

0.0

0.0

-1.0

-1.0[-1.0

-1.0

0.0

-1.7

-2.0

-2.0

0.0

-2.4(-2.9]-3.0 0.0]-6.1

0.0

0.0

0.0

0.0

-1.0

-1.0[-1.0

-1.0

-1.7

-2.0

-8.4

9.0

-6.1|-7.7

0.0

0.0

0.0

0.0

-1.0

-1.0[-1.0

0.0

-2.0

-2.0

-8.4

-8.4

-8.4|-8.4

1.7

-6.1

W

~

£ 2

"~

v

-2.0

-2.0

-9.0]-8.4

-6.1

0.0

N
W

"~

A

~

W

~

W

”~

W

W

W

W

~

]

t

Fid
B

t,

policy convergence

Policy Iteration

Example

propagation effect

0.0

0.0

0.0

0.0

0.0

-1.0[-1.0

-1.0

0.0

0.0

0.0

0.0

-1.0

-1.0[-1.0

-1.0

0.0

-1.7

0.0]-6.1

0.0

0.0

0.0

0.0

-1.0

-1.0[-1.0

-1.0

-1.7

-2.0

-8.4

9.0

-6.1|-7.7

0.0

0.0

0.0

0.0

-1.0

-1.0[-1.0

0.0

-2.0

-2.0

-8.4

-8.4

-8.4|-8.4

1.7

-6.1

-2.0

-2.0

-9.0]-8.4

-6.1

0.0

W

~

£ 2
'y

v

"~

A

~

w

~

W

~

W

W

W

W

4
W

~

]

t

Fid
B

t,

policy convergence

Policy Iteration

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Loop:
A+ 0
Loop for each s € 8:
v+ V(s)
V(s) Yo, o5 7] 8,7(8)) [+ AV ()]
A + max(A,|v—V(s)|)
until A < 6 (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable < true
For each s € &:
old-action < m(s)
m(s) < argmax, >, p(s’,r|s,a)[r + 7V (s')]
If old-action # w(s), then policy-stable + false
If policy-stable, then stop and return V =~ v, and 7 = 7,; else go to 2

Policy Iteration

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Loop:
A+ 0
Loop for each s € 8:
v+ V(s)
V(s) Yo, o5 7] 8,7(8)) [+ AV ()]
A + max(A,|v—V(s)|)
until A < 6 (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable < true
For each s € &:
old-action < m(s)
m(s) < argmax, >, p(s’,r|s,a)[r + 7V (s')]
If old-action # w(s), then policy-stable + false
If policy-stable, then stop and return V =~ v, and 7 = 7,; else go to 2

Value Iteration
Solving efficiently the Policy Iteration

Value Iteration, for estimating 7= ~ 7,

Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V (s), for all s € 8T, arbitrarily except that V(terminal) = 0

Loop:

| A«0

| Loop for each s € 8:

| v+ V(s)

| V(s) ¢ maxq Y, . p(s',r|s,a)[r + YV (s')]
| A + max(A, |v— V(s)])

until A < 6

Output a deterministic policy, m =~ m,, such that
n(s) = argmax, Y., p(s',r|s,a)[r + 7V (5")

Recap

Introduction

Elements of RL

State-value
function

Optimal Policy

Dynamic

Programming

Bellman Equation

Policy Iteration

Value iteration

Monte Carlo Methods

We are ignorant, we need to learn

Monte Carlo Methods

It's time to learn
Pure planning

I problem
DP Markov

Trial-and-error Decision
Process

approaches (MDP)

inference

observability

Partially ~ Planning with
Pl Observable uncertainty

MDP

knowledge of the model

Empirical ¢ > Epistemic
knowledge knowledge

Monte Carlo Methods

It’s time to learn
Pure planning
problem
MC DP Markov
Trial-and-error [F))?g(':se'gg
approaches (MDP)
Requires only '
experience inference
Averages

sample returns
A\

Partially ~ Planning with
Pl Observable uncertainty

MDP

knowledge of the model

Epistemic

Empirical
< 4 knowledge

knowledge

Monte Carlo Methods

First-visit MC prediction idea

| EpisodeO | S():A()aRl’SlyAlaRQ:-'°1ST'()—13A7})—11R:F()
EpiSOdel *90:A07R1a513A13R2:'"7ST1—11AT1—13RT1
EpiSOdez 509A03R17513A13R2:'"7ST2—17AT2—11RT2
|_Episode3 | Sy, A, Ry, Si, A, Ro,...,S1, 1, Ar,_1, R,
First-visit MC Identify the first time a state is visited and average

prediction algorithm the following returns

Monte Carlo Methods

First-visit MC prediction idea

v(s) = mean of

| EpiSOde | S a I’ S a r S a I’ S a I' S a I' S (terminal state)

v(s) = mean of

Monte Carlo Methods

First-visit MC prediction algorithm
s,a,rns,ars,ar,s, ars,a,rsS temnsae)

First-visit MC prediction, for estimating V ~ v,

Input: a policy m to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € §
Returns(s) < an empty list, for all s € §

Loop forever (for each episode):
Generate an episode following m: Sp, Ao, R1, 51, A1, Ro, ..., S7—1,Ar_1, Ry
G+ 0
Loop for each step of episode, t =T—1,T—-2,...,0:
G + YG + Ri+1
Unless S; appears in So, S1,...,St—1:
Append G to Returns(St)
V(S:) < average(Returns(St))

Monte Carlo Methods

How to identify the optimal policy?

Greedy policy approach
0.0]-14.1-20.]-22. n'(s) = argmaxgq,(s,a)

-14.]-18.1-20.] -20. = argmaxE[Ri41 +Yvx(Sev1) | St=s, At =q]
. a
-20./-20.]-18.|-14. = argmapr(s',r|s,a) [r+7v,r(s’)],

-22.(-20.{-14.1 0.0 s’

Monte Carlo Methods

How to identify the optimal policy?

We do not have
a mode!

Greedy policy approach

0.0{-14.|-20.-22. s =

= argmax,(s,a)
a

14 (-18,1:20.120. = argmaxE[Res +y0p(Binn) | Si=3, A=

.
-20.{-20.]-18.|-14. _ argmaxzp(%a) 4+ 70a(s))].

Monte Carlo Methods

How to identify the optimal policy?

We need to use
the Q-value!

Greedy policy approach

0.0{-14.|-20.-22. s =

= [argmax . (s,a)] "
a

-14.]-18.1-20.] -20. = argmaxE[Riy1 + yva(Se41) | St=s5, At =q]

.
-20.{-20.]-18.|-14. _ argmaxzp(%a) 4+ 70a(s))].

Monte Carlo Methods

How to identify the optimal policy?

We need to use
the Q-value!

Greedy policy approach
0.0]-14.(-20.]-22. 7'(s) = [argmax ¢ (s,a)

-14.]-18.1-20.] -20. = argmaxE[Ri41 +Yvx(Sev1) | St=s, At =q]

. a
-20.{-20.]-18.|-14. _ argmaxzp(%a) 4+ 70a(s))].

-22.(-20.{-14.1 0.0

evaluation The same idea of
. policy iteration of DP
@~ 4n " butwith Q +
estimation
We need to estimate the T Q

action-value function!
7~ greedy(Q)

improvement

Monte Carlo Methods

How to identify the optimal policy?

evaluation | Episode | S,a,r, s, a, r s,a,r,s, a 1,8,a, 1, S eminalstae)

L R
m e
n Q

7~ greedy(Q)

| EpiSOde | S, a, r, S, d, rz S, a, r,s, d, r, S ,a, r, S (terminal state)

improvement 4(s.a) = mean of

Monte Carlo Methods

How to identify the optimal policy?

evaluation | Episode | S,a,r, s, a, r s,a,r,s, a 1,8,a, 1, S eminalstae)

s R
m v(s) = mean vof

0 Q

| EpiSOde | S, a, r, S, d, rz S, a, r,s, d, r, S ,a, r, S (terminal state)

CI(S,a) = mean Of

A policy might not generate all the pairs!
How can we guarantee exploration?

Monte Carlo Methods

How to identify the optimal policy?

evaluation | Episode | S,a,r, s, a, r s,a,r.s, a 1,8,a, 1, S eminalstae)

m o= mea.n o
" Q

| EpiSOde | S, a, r, S, a, r~,. S, a, r ,S, a, r, S ,a, r, S (terminal state)

7~ greedy(Q)

improvement q(s.a) = mean i

A policy might not generate all the pairs!
How can we guarantee exploration?

Exploring start approach or g-soft policy

evaluation

Monte Carlo Methods ﬁ\
T Q@

Control: how to find the optimal policy?

7~ greedy(Q)

Monte Carlo ES (Exploring Starts), for estimating 7 ~ .,

improvement
Initialize:
m(s) € A(s) (arbitrarily), for all s € §
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s, a) + empty list, for all s € 8, a € A(s)

Loop forever (for each episode):
Choose Sy € 8, Ap € A(Sp) randomly such that all pairs have probability > 0 | Exploring start approach

Generate an episode from Sy, Ay, following 7: Sy, Ag, R1,...,S7_1,Ar_1, Ry
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:

G« ’)’G S Rt+1

Unless the pair S;, A; appears in Sp, Ag, S1, A1 ...,5:_1,At_1:

Append G to Returns(Si, At) e
Q(St,At) — average(Returns(S’t,At))
W(St) — argmaXaQ(St, a) ...

Monte Carlo Methods

Control: how to find the optimal policy?

On-policy first-visit MC control (for e-soft policies), estimates 7

Algorithm parameter: small € > 0

Initialize:
7 < an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s, a) < empty list, for all s € 8, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ao, R1,...,57_1,Ar_1, Rp
G0
Loop for each step of episode, t =T—-1,T—-2,...,0:

G +—YG+ Riyq

Unless the pair S;, A; appears in Sy, Ag, S1, A1...,8:_1, Ai_1:

Append G to Returns(Si. A, R

Q(St;At) i average(Returns(St,At))

A ¢ wmman, Q(Soa) (vt tis broen abirrly) |
1—e+¢/|A(S)| ifa=A*

-soft licy EEEIrrs
e-soft policy m(alSt) <—{ e /|A(S,)] if @ £ A*

Monte Carlo Methods

On-policy vs off-policy algorithms

Learning control methods dilemma
learning action-value of an optimal policy means
also exploring ...

Monte Carlo Methods

On-policy vs off-policy algorithms

Learning control methods dilemma
learning action-value of an optimal policy means
also exploring ...

On-policy algorithm Off-policy algorithm
learning action-value for Use two policies. One for exploring and
suboptimal policy one for searching the optimal policy

SARSA Q-learning

Temporal-Difference Learning

Combining Monte Carlo and Dynamic Programming

Temporal Difference Learning

Combining two ideas for prediction
Wait until the end of
the episod.e

Monte Carlo V(St) « V(St) + Q[th - V(St)]

.- Wait until the next step

Temporal Difference Learning | V(S:) < V(S;) + [Rm + YV (St4+1) — V(St)]

One step Estimating (as DP)
sampling

Temporal Difference Learning
TD(0) for prediction

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size o € (0, 1]
Initialize V (s), for all s € 87, arbitrarily except that V(terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
A ¢ action given by 7 for S
Take action A, observe R, S’
V(S)«< V(S)+ a[R + V(S — V(S)]
S« 5

until S is terminal

Temporal Difference Learning
SARSA: on-policy TD control

Q(St, Ar) ¢ Q(St, Ar) + o[Rist +1Q(St41, Av1) — Q(Si, A4r)|

Sarsa (on-policy TD control) for estimating Q =~ ¢,

Algorithm parameters: step size a € (0,1], small € > 0
Initialize Q(s, a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S .)) Q is updated using the
Choose A from S using policy derived from @ (e.g., e-greedy) action A’ derived from
Loop for each step of episode: the actual policy

Take action A, observe R, S’
Choose A" from S’ using policy derived from @ (e.g., e-greedy)
S 8L A A

until S’ is terminal On-policy update |

Temporal Difference Learning
Q-learning: off-policy TD control

Q(StaAt) — Q(Su At) - Q[Rt+1 =+ 'YmcleQ(St-i—l: a) = Q(St:At)]

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size a € (0,1], small € > 0
Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,4) + a[R + ymax, Q(Y,a) — Q(S, A)]

Q is updated using the
greedy action a

until S is terminal Off-policy update |

Recap

MDP & DP
(model-based)

Monte Carlo Methods
(model-free)

Temporal Difference
Learning - TD(0)

Control RL Problem

On-policy

SARSA

Off-policy

Q-learning

