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Who are you?

->  Which is your background?
->  Who knows Machine Learning? Supervised, unsupervised learning?

->  Who knows Reinforcement Learning?



Lessons

- 5/11 14:15-16:00 (~15 min break) - Introduction to RL

- 7/11 11:15-14:00 (~15 min break)
4 11:15 - 12:30 - Model free RL
4 12:30 - 14:00 - Hands on session (plain Python - PyTorch)

-> ?? Reinforcement Learning and Temporal Logics
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Who am I?
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technology and domains useful for ESTECO
products
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-  Studied mathematics in Rome formal methods and
machine learning techniques
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W h O a re yo u ? Do you know Python? Numpy, Scipy?

13 responses
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| know Python and Numpy... I know only Python Yes Yes. (working/research ex...

| know Python. | have a go... No Yes, | used some time ago... pyhton and n...

During your studies have you participated in courses of Reinforcement Learning? If yes, which
topics have you covered?

13 responses

Will you follow the "Learning-based Controllers and the Reality Gap" course?

No 5 responses
Only partially @ Yes
® No

| did not partecipate to any course.
| have never participated in a course about Reinforcement Learning.

| have never participated at any course of bayesian optimization

no



Reference

A book from Sutton et al.

Reinforcement
Learning

An Introduction
second edition

Richard S. Sutton and Andrew G. Barto

Free available here!
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Introduction

What is Reinforcement Learning?



A map

|nte|||gence .................

Science

Formal Science

Computer

Science

Artificial
Intelligence

statistics & data -+

environment

Machine Learning

Supervised Unsupervised
Learning Learning

Reinforcement
Learning

the systematic study of physical and natural world through observation,
experimentation, and the testing of theories against the evidence obtained

uses formal systems to generate knowledge

is the study of computation, information and automation

enabling machines to perceive their environment and uses learning and

intelligence to take actions that maximize their chances of achieving defined
goals

development and study of statistical algorithms that can learn from data and
generalize to unseen data, and thus perform tasks without explicit instructions.

technique that trains software to make decisions to achieve the most optimal
results



A definition

Reinforcement

] X technique that trains software to make decisions to achieve the most optimal results
earning
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Reinforcement
Learning

technique that trains agents to map states into actions to maximize a cumulative reward

states




A definition

Reinforcement

L X technique that trains agents to map states into actions to maximize a cumulative reward
earning

states




A definition

Reinforcement

L X technique that trains agents to map states into actions to maximize a cumulative reward
earning




A definition

Reinforcement

L X technique that trains agents to map states into actions to maximize a cumulative reward
earning

reward




A definition
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Reinforcement technique that trains agents to map states into actions to maximize a cumulative reward
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A definition

Reinforcement
Learning

technique that trains agents to map states into actions to maximize a cumulative reward

Cumulative
Reward
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On reward

Goal and reward
coherence

we want the agent goes as fast as possible from A to B. We need to choose an appropriate
reward signal!

Cumulative
Reward

94




On reward

Goal and reward
coherence

we want the agent goes as fast as possible from A to B. We need to choose an appropriate
reward signal!

Cumulative
Reward

94

Why negative values?




A definition

Machine Learning

Supervised Unsupervised Reinforcement
Learning Learning Learning
trial-and-error
approach
Learning from labeled data Is not possible to have a trAwg
and trying to generalize to set in advance. RL interacts with
unseen data the environment.
Identifying structures in Does not aim to identify
unlabeled dataset structures but it

maximizes rewards



Elements of RL

Mathematical definition



List of the ingredients

Environment

Agent

Elements of
Reinforcement
Learning

Policy (of the
agent)

Reward signal

Model of the
environment

Value function
(of a policy)

usually exposes uncertainty

is a decision-maker and has a goal

defines the agent behaviour

defines the goal of the agent

exists model-free and model-based RL algorithms

quantifies how good is for an agent to be in a
specific state (if it follows that policy)



Observability

environment




Observability
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Observability

environment
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Observability

RL = learning + prediction + controlling

Building a model of
the environment

Knowing the
cumulative reward
I'll get following a

policy

Discovering the
best action



Knowledge of the environment

The two axes of knowledge

observability

knowledge of the model

Epistemic

Empirical
< 4 knowledge

knowledge




Knowledge of the environment

The two axes of knowledge

observability

A

Markovian process
only matter knowledge

of the actual state

Pure planning

Empirical
knowledge

knowledge of the model

problem
Markov
Decision
Process
(MDP)
Epistemic
knowledge



Markovian process
only matter knowledge
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The two axes of knowledge
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Observable uncertainty
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unknown
knowledge of the model
Empirical ¢ 3 Epistemic

knowledge knowledge



Knowledge of the environment

The two axes of knowledge

A

Model free

Trial-and-error
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Knowledge of the environment

The two axes of knowledge

A

Model free ’

Trial-and-error

approaches
=
E
©
=
oy
2]
o)
o
Full RL

Markovian process
only matter knowledge

of the actual state

Pure planning

knowledge of the model

Empirical ¢
knowledge

problem
Markov
Decision
Process
(MDP)
inference
Partially ~ Planning with
Observable uncertainty
MDP We have model but
some params are
unknown
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(finite) Markov Decision Process

'J Agent |

state reward

)

action
S, | |R, A
L R1+I (
< Environment ]4—
trajectory S(): A(): Rl: Sl: Al: RQ: SQ: AQ: R37 o
dynamics p(s’,r|s,a) = Pr{S;=s',Ry=r|S;_1=8,A;-1=0a}

Perfect knowledge
of the model

Z Z p(s’,r|s,a) =1, for all s € 8,a € A(s)

s’eSreR



(finite) Markov Decision Process

Definition [edit]

A Markov decision process is a 4-tuple (S, 4, P,, R, ), where:

« Sis a set of states called the state space. The state space may be
discrete or continuous, like the set of real numbers.

« A is a set of actions called the action space (alternatively, A, is the
set of actions available from state s). As for state, this set may be
discrete or continuous.

« P,(s,s) is, on an intuitive level, the probability that action a in state
s at time ¢ will lead to state s’ attime £ + 1. In general, this
probability transition is defined to satisfy
Pr(si1 €5 | 8t =s,a, =a) = /, P,(s,s")ds', for every 1

S
s’ C S measurable. In case the state space is discrete, the integral

is intended with respect to the counting measure, so that the latter

. - Example of a simple MDP with three states (green circles) =
simplifies as P, (s, ') = Pr(s;11 = §' | st = s,a; = a); Incase . . (@ )

# and two actions (orange circles), with two rewards (orange
S C R?, the integral is usually intended with respect to the arrows)

Lebesgue measure.

« R, (s, s') is the immediate reward (or expected immediate reward) received after transitioning from state s to state s', due to
action a.

A policy function 7 is a (potentially probabilistic) mapping from state space (S) to action space (A).



(finite) Markov Decision Process

trajectory S()7 A(): Rl: Sl: Al: R27 SQ: AQ: R37 . e

dynamics p(s',r|s,a) = Pr{S; =" Ri=r | Spi=8, A4 =a}
state-transition (s'|8,8) = Pe{Si=4¢" | Se_1=8; 4 1=0} = Zp(s’,r|s,a)

probability reR

expected reward (I) r(s,a) = E[R: | St-1=s,At-1=a] = Z ZP r|s,a)

reR s'€8

p(s',r|s,a)

expected reward (II) r(s,a,8') = E[R; | St—1=8,4;_1=0a,S; =5] = Z p(s’,
reR

p(s']s,a)



Reward signal

| Reward

| Return

Discounted
Return

Reward hypothesis: that all of what we mean by goals and purposes can be

well thought of as the maximization of the expected value of the cumulative
sum of a received scalar signal (called reward).

Rt

Gi=Riy1 + Riyo+ Riys+ -+ Re

o0
Gt = Riy1 +YRis2 + Y Repz+ - = Z Y Ritkt1
k=0



Reward signal

Reward hypothesis: that all of what we mean by goals and purposes can be

well thought of as the maximization of the expected value of the cumulative
sum of a received scalar signal (called reward).

| Reward | Ry

Short-term view - |

Return | Gt = Rt+1 + Rt+2 4+ Rt+3 - st RT

Discounted . 2 _ k
Long-term view +iwr Rotur Gt = Rip1+YRi2+VRiss++ = > 7 Rirn

k=0




Reward signal

Reward hypothesis: that all of what we mean by goals and purposes can be

well thought of as the maximization of the expected value of the cumulative
sum of a received scalar signal (called reward).

| Reward | Riyq
Shortterm view :
| _Return | Gy=Riy1 +Riya+Riyzs+---+ Ry
Discounte ) . P o p
Long_term view RO Return Gt = Rt+l +’)'Rt+2 + ,7 Rt+3 + — Z’}/ Rt+k+l

k=0

l

Gi = Rip1 + 1G4

RECURSIVE
DEFINITION




Policy

Policy is a mapping from states to probabilities of selecting each possible action

T:SxA—[0,1]

If we are at time t, 7r(a|s) is the probability of having A =ahSi=3s

can be deterministic



Value function

Value Function is a function that quantify how good is to be on a state and follows a specific policy
v S =R
oo
state-value v:(8) = EiGi|.Sir=8] = Ex ZW’th+k+l Si=s|, forall s €8
function S

Si=8 A;=0a

action-value gr(s,a) = E[G; | Si=s,A;=a] = Ewlz V¥ Retk+1

function k=0




Solving a RL problem

find a policy that achieves the maximum reward over the long run

optimal policy Ty =~ ™ Vm € policies




Solving a RL problem

find a policy that achieves the maximum reward over the long run

optimal policy Ty =~ ™ Vm € policies

7! o = Y8 E S, vu(s) > v:(s)



Solving a RL problem

find a policy that achieves the maximum reward over the long run

optimal policy

optimal state-value
function

optimal action-value
function

T« = T Vm € policies

n o =% Yees, wu(s) = v:(s)

Uy (8) = max vy (s)
™

G+ (s, a) = max qr(s, a)
T



Solving a RL problem

find a policy that achieves the maximum reward over the long run

optimal policy Ty =~ ™ Vm € policies

n o =% Yees, wu(s) = v:(s)

optimal state-value
function

Uy (8) = max vy (s)
™

q«(s,a) = lE:[Rtﬂ + Y0 (Se41) | Se=s,As 2(1-]

optimal action-value
function

g+ (8, a) = maxq,(s,a)
T




Dynamic Programming

How to solve MDP problems



Dynamic Programming

Mr. Richard Ernest Bellman

Algorithm paradigm useful to solve a specific class of problems
that can be decomposed in sub-problems in recursive way

A

AL e A
ellm

!

an, 19505 |




Dynamic Programming
In the RL context

Collection of algorithms that can be used to compute
optimal policies given a perfect model of the environment as
a MDP.

|'}'\ k. i y A
ellman, 1950s

L

Key idea: use value function to organize and structure the
search of optimal policies

U (8) = EL[G: | St=3]
= Ex[Rey1 + YGiy1 | Se=5]

Consistency relation - wlals (s, 7|8, a {r +AE.[G g :S/]
of state-value ; (al )Zs;z; (s's7|s,a) YE[Gt41]|St41 ]
function

- Zw(a|s) Zp(s’, r|s,a) [r + 'yfu,,(s')], for all s € 8.



Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value Uala) = Z 7(als) Z p(s',r|s,a) [r + yvx(s')]
S_' r

function a




Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value vr(s) = Z m(als) Zp(slr r|s,a) [r + yvz(s")]
function a s',r
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Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value vr(s) = Z m(als) Zp(slr r|s,a) [r + yvz(s")]
function a s',r

AN
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Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value vr(s) = Z m(als) Z p(s',rls,a) [r + yvr(s')]
function a s',r
qﬁ(ssal)

qﬁ(saaQ)



Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value vr(s) = Z m(als)gx(s,a)
function a
=(s,a

\%\\ qr( 1)

\i\,\,

(o))

)/\/2)4

)

qﬂ‘(sa (12)



Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value
function

QW(5~ (1.1)

qﬁ(sa (12)

What about the optimal policy
and the optimal state-value
function?




Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value
function

QW(5~ (1.1)

qﬁ(sa (12)

What about the optimal policy
and the optimal state-value
function?

It’s an average




Dyn am iC Progra mm i N g What about the optimal policy

and the optimal state-value

Towards the Bellman Equation function?
Consistency relation
Pt = m(a|s 5.a) ...
ol s ZRF D ... —

The optimal policy is a policy so
it should satisfy the consistency
qr(s,a1) relation

qt(sa a‘z)

l



Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value
function

q«(s,a1)

q*(s, (12)

What about the optimal policy
and the optimal state-value
function?

It’s an average

The optimal policy is a policy so
it should satisfy the consistency
relation




Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value
function

q«(s,a1)

q*(s, (12)

What about the optimal policy
and the optimal state-value
function?

It’s an average

The optimal policy is a policy so
it should satisfy the consistency
relation

The optimal policy is optimal




Dynamic Programming

Towards the Bellman Equation

Consistency relation
of state-value
function

q«(s,a1)

q*(s, (12)

What about the optimal policy
and the optimal state-value
function?

It’s an average

The optimal policy is a policy so
it should satisfy the consistency
relation

The optimal policy is optimal




Dynamic Programming

Bellman Equation

v« (8) = max q.(s,a)

Bellman equation a

g« (Ss (11)

@)

max q+(s, az)



Dynamic Programming

Bellman Equation

v.(s) = maxq.(s,a)
a

Bellman equation

V4 (8) = max E p(s',7|s,a)[r + yv.(s)]
a
s'.r

Pacs
=

o

max

i



Dynamic Programming

Bellman Equation

v« (8) = max g p(s',r|s,a)[r + yv.(s)]
a
s./ r

Bellman equation

q«(s,a) = Zp(s’, r|s,a)[r + ymax g.(s’,a’)]



Dynamic Programming
How to find the optimal policy?

Iterative procedure
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How to find the optimal policy?

Consistency relation of the
state-value function

" Policy evaluation
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Dynamic Programming
How to find the optimal policy?

Bellman intuition

Consistency relation of the
state-value function

Policy evaluation Policy improvement /
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Dynamic Programming
How to find the optimal policy?

Bellman intuition

Consistency relation of the
state-value function

Policy evaluation Policy improvement /
Ut .
I
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Policy Iteration




Dynamic Programming
How to find the optimal policy?

Consistency relation of the
state-value function

Policy evaluation Policy improvement

Bellman intuition

. !

U

-~

Policy Iteration

s

E I E I E
To——¥Unp 201 ¥ Vs, =T —¥F o= ¢

Does it converge? Yes



Dynamic Programming i A
Policy evaluation

Consistency relation
of state-value Uala) = Z 7(als) Z p(s',r|s,a) [r + yvx(s')]
S_' r

function a




Dynamic Programming i A

Policy evaluation

Consistency relation
of state-value vr(s) = Z m(als) Z p(s',rls,a) [r + yvr(s')]
function a s',r

Iterative policy ve+1(8) = Z 7(als) Z p(s',r

evaluation

s,a)[r + yvg(s)]

a s',r




Dynamic Programming i A

Policy evaluation

Consistency relation
of state-value Ur(s) = Z Z p(s',r|s,a) [r + yva(s')]
function a
Iterative policy i e = ) ‘ s
ovaluation k1(s) = D lals) 3 p(s'sris, a)lr +70u(s")]

2 ways of updating: in place Vs two
arrays version :

Faster, depends on ordering of
update

< propagation |



Policy Evaluation
Algorithm

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:
A+0
Loop for each s € 8:
v+ V(s)
V(s) S, mlals) Sy (s ,7]5,0) [r + W ()]
A +— max(A, |[v—V(s)])
until A < 6




Policy Evaluation
Algorithm

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V' (s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop:
A+0
Loop for each s € 8:
v+ V(s)
V(s) = X, m(als) Ty, (s, s,0) [r + V()]
A + max(A, |v — V(s)|)
until A < 6




Policy Evaluation
Algorithm

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V (s), for all s € 8T, arbitrarily except that V(terminal) = 0

Loop:
A+0
Loop for each s € 8:
v+ V(s)
V(s) e X m(als) Koo p(s',715,0) [ + V()]
A + max(A, |v— V(s)])

until A < 6 B T,




Policy Evaluation

Example

Uniform Policy

1 2 3
4 |5 6 |7 Ry = —1
on all transitions
8 9 10 |11
actions
12, 137 |14 X

s

non-terminal state

N\

terminal state



Policy Evaluation

Example - 1st iteration

0.0f 0.0] 0.0f 0.0 0.0
0.0 0.0] 0.0 0.0 |::>
0.0{ 0.0] 0.0 0.0

0.0{ 0.0] 0.0 0.0 0.0

’Uﬂ-(S) — Z 7r(a|8) ZP(S’, 7‘|3, a)[r + ’7’7)w(3/)]
a s'.r



Policy Evaluation

Example - 1st iteration

0.0/ 0.0} 0.0 0.0 0.0

0.0/ 0.0} 0.0 0.0 :>

0.0/ 0.0] 0.0} 0.0

0.0/ 0.0] 0.0} 0.0 0.0
Wel9) Zﬂ' a|9)2p 3.1t 5;. 1) —i—’yv ( ]




Policy Evaluation

Example - 1st iteration

0.0f 0.0] 0.0f 0.0 0.0(-1.0]-1.0{-1.0
0.0 0.0] 0.0 0.0 |::> -1.0]-1.0{-1.0]-1.0
0.0{ 0.0] 0.0 0.0 -1.0]-1.0{-1.0]-1.0
0.0{ 0.0] 0.0 0.0 -1.0]-1.0{-1.0] 0.0

s,a)[r + yvx(s)]

Bal8) = Z 7(als) Zp(s', r
a 8



Policy Evaluation

Example - 1st iteration

0.0]-1.0{-1.0{-1.0 0.0/ ?
-1.0]-1.0[-1.0[-1.0 ?
-1.0|-1.0|-1.0|-1.0 :> ?
-1.0|-1.0]-1.0] 0.0 210 0.0

vﬂ(s) — Z 7r(a|8) ZP(S’, 7‘|3, a)[r + ’7"‘Jw(3/)]
a s'.r



~— /3 & 0.0]-1.0[-1.0]-1.0 0.0[?

Policy Evaluation

Example - 2nd iteration

101 =1:0|-1:0]-1:0 :> ?
JE0| -E0l 0| L0 ?

-1.0[-1.0[-1.0] 0.0 ? 11 0.0

ve(8) = ;j 7(als) Sjp(.g’, r|s,a)lr + ’va(sf)]
a s’

1/3 ' 1 -1 0



~— /3 & 0.0]-1.0[-1.0]-1.0 0.0[?

Policy Evaluation

Example - 2nd iteration

2/3 & -1.0{-1.0|-1.0]-1.0 ?
JE0| 0| 20| L0 :> ~

-1.0[-1.0[-1.0] 0.0 ? 11 0.0

ve(8) = ;j 7(als) Sjp(.g’, r|s,a)lr + ’va(sf)]
a s’

1/3 ’ 1 -1 1



~— /3 & 0.0]-1.0[-1.0]-1.0 0.0[?

— -2[3 =

Policy Evaluation

Example - 2nd iteration

2/3 & -1.0{-1.0|-1.0]-1.0 ?
JE0| 0| 20| L0 :> ~

-1.0[-1.0[-1.0] 0.0 ? 11 0.0

-1.7

vﬂ(s) — Z 7r(a|8) ZP(S’, 7‘|3, a)[r + ’7"‘Jw(3/)]
a s'.r



~—  -1/3 = 0.0]-1.0]-1.0]-1.0 0.0]-1.7

— -2[3 =

Policy Evaluation

Example - 2nd iteration

_2/3 dh -]0 -]0-]0 -]O |::> -l7
-1.01-1.0]-1.0(-1.0 -1.7

-1.0]-1.0{-1.0] 0.0 -1.71 0.0

-1.7

vﬂ(s) — Z 7r(a|8) ZP(S’, 7‘|3, a)[r + ’7"‘Jw(3/)]
a s'.r



Policy Evaluation

Example - 2nd iteration

0.0{-1.0]-1.0{-1.0 0.0]-1.7{-2.0{-2.0
-1.0{-1.0{-1.0]-1.0 -1.7]-2.0]-2.0]-2.0
-1.0]-1.0{-1.0]-1.0 I:‘> -2.01-2.0{-2.0|-1.7
-1.0]-1.0]-1.0] 0.0 -2.0]-2.0]-1.7] 0.0

s,a)[r + yvx(s)]

Bal8) = Z 7(als) Zp(s', i
a g



Policy Evaluation

Example - until the end

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-2.4

-2.9

-3.0

-2.4

-2.9

-3.0

-2.9

-2.9

-3.0

-2.9

-2.4

-3.0

-2.9

-2.4

0.0

0.0/-1.0]-1.0]-1.0] 5 0.0/-1.7-2.0[-2.0
-1.0-1.0[-1.0[-1.0  [17]2:01-2.012.0
-1.0|-1.0[-1.0[-1.0 -2.0|-2.0]-2.0{-1.7
-1.0]-1.0|-1.0] 0.0 -2.0/-2.0]-1.7} 0.0
0.0]-14.]-20.]-22.
-14.1-18.]-20.]-20. <
-20.{-20.{-18.]-14.
-22.1-20.]-14.1 0.0




Policy Evaluation

Example - until the end

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-2.4

-2.9

-3.0

-2.4

-2.9

-3.0

-2.9

-2.9

-3.0

-2.9

-2.4

-3.0

-2.9

-2.4

0.0

0.0/-1.0]-1.0]-1.0] 5 0.0/-1.7-2.0[-2.0
-1.0-1.0[-1.0[-1.0  [17]2:01-2.012.0
-1.0|-1.0[-1.0[-1.0 -2.0|-2.0]-2.0{-1.7
-1.0]-1.0|-1.0] 0.0 -2.0/-2.0]-1.7} 0.0
0.0]-14.]-20.]-22.
-14.1-18.]-20.]-20. <
-20.]-20.]-18.|-14.
-22.1-20.]-14.1 0.0




Policy Evaluation

Example - until the end

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-2.4

-2.9

-3.0

-2.4

-2.9

-3.0

-2.9

-2.9

-3.0

-2.9

-2.4

-3.0

-2.9

-2.4

0.0

0.0[-1.0]-10-1.0) 5 0.0]-1.7]-2.0[-2.0
-1.0{-1.0]-1.0[-1.0 s [17]20-201-2.0
-1.0|-1.0]-1.0[-1.0 -2.0|-2.0]-2.0{-1.7
-1.0|-1.0]-1.0{ 0.0 -2.0/-2.0]-1.7} 0.0
0.0]-14.]-20.]-22.
-14.1-18.]-20.]-20.
—I—
-20.1-20.1-18.|-14. <
-22.1-20.|-14.1 0.0




Policy Improvement Q).-Folcy mprovement

A8
How to find better policies

Policy improvement theorem

0.0(-14.]-20.[-22.
-14.{-18.(-20.]-20.

-20.{-20.{-18.]-14.
-22.1-20.]-14.1 0.0

qr (8,7 (8)) > vr(s), Vs € S = v/ (8) > vr(s), Vs €S

Greedy policy approach

n'(s) = argmaxgq,(s,a)

a

= argmaxE[R;y 1 + Yv,(St+1) | St=s, Ar=dq]

= argmax s'.rls,a [r-i— v s'].
g1 ;p(,l,) yr(s')|,

v



Policy Iteration

Example

0.0] 0.0] 0.0] 0.0 0.0]-1.0{-1.0]-1.0 0.0]-1.7{-2.0]-2.0 0.0]-2.4{-2.9]-3.0 0.0]-6.1|-8.4
0.0 0.0( 0.0 0.0 -1.0]-1.0{-1.0{-1.0 <7120 -6.11-7.7|-8.4
0.0] 0.0] 0.0] 0.0 -1.0(-1.0]-1.0(-1.0 -2.0(-2.0 -8.4|-8.4|-7.7
0.0] 0.0] 0.0] 0.0 -1.0{-1.0]-1.0{ 0.0 -2.0{-2.0 -9.0]-8.4]-6.1

< I < I

el — |l o i i

R R RN R t t
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ol | | sl P N fL,r,
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Policy Iteration

Example

propagation effect
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Policy Iteration

Example

propagation effect
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Policy Iteration

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Loop:
A+ 0
Loop for each s € 8:
v+ V(s)
V(s) Yo, o5 7] 8,7(8)) [+ AV ()]
A + max(A,|v—V(s)|)
until A < 6 (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable < true
For each s € &:
old-action < m(s)
m(s) < argmax, >, p(s’,r|s,a)[r + 7V (s')]
If old-action # w(s), then policy-stable + false
If policy-stable, then stop and return V =~ v, and 7 = 7,; else go to 2




Policy Iteration

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Loop:
A+ 0
Loop for each s € 8:
v+ V(s)
V(s) Yo, o5 7] 8,7(8)) [+ AV ()]
A + max(A,|v—V(s)|)
until A < 6 (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable < true
For each s € &:
old-action < m(s)
m(s) < argmax, >, p(s’,r|s,a)[r + 7V (s')]
If old-action # w(s), then policy-stable + false
If policy-stable, then stop and return V =~ v, and 7 = 7,; else go to 2




Value Iteration
Solving efficiently the Policy Iteration

Value Iteration, for estimating 7= ~ 7,

Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V (s), for all s € 8T, arbitrarily except that V(terminal) = 0

Loop:

| A«0

| Loop for each s € 8:

| v+ V(s)

| V(s) ¢ maxq Y, . p(s',r|s,a)[r + YV (s')]
| A + max(A, |v— V(s)])

until A < 6

Output a deterministic policy, m =~ m,, such that
n(s) = argmax, Y., p(s',r|s,a)[r + 7V (5")




Recap

Introduction

Elements of RL

State-value
function

Optimal Policy

Dynamic

Programming

Bellman Equation

Policy Iteration

Value iteration




Monte Carlo Methods

We are ignorant, we need to learn



Monte Carlo Methods

It's time to learn
Pure planning

I problem
DP Markov

Trial-and-error Decision
Process

approaches (MDP)

inference

observability

Partially ~ Planning with
Pl Observable uncertainty

MDP

knowledge of the model

Empirical ¢ > Epistemic
knowledge knowledge



Monte Carlo Methods

It’s time to learn
Pure planning
problem
MC DP Markov
Trial-and-error [F))?g(':se'gg
approaches (MDP)
Requires only '
experience inference
Averages

sample returns
A\

Partially ~ Planning with
Pl Observable uncertainty

MDP

knowledge of the model

Epistemic

Empirical
< 4 knowledge

knowledge




Monte Carlo Methods

First-visit MC prediction idea

| EpisodeO | S():A()aRl’SlyAlaRQ:-'°1ST'()—13A7})—11R:F()
EpiSOdel *90:A07R1a513A13R2:'"7ST1—11AT1—13RT1
EpiSOdez 509A03R17513A13R2:'"7ST2—17AT2—11RT2
|_Episode3 | Sy, A, Ry, Si, A, Ro,...,S1, 1, Ar,_1, R,
First-visit MC Identify the first time a state is visited and average

prediction algorithm the following returns




Monte Carlo Methods

First-visit MC prediction idea

v(s) = mean of

| EpiSOde | S a I’ S a r S a I’ S a I' S a I' S (terminal state)

v(s) = mean of



Monte Carlo Methods

First-visit MC prediction algorithm
s,a,rns,ars,ar,s, ars,a,rsS temnsae)

First-visit MC prediction, for estimating V ~ v,

Input: a policy m to be evaluated

Initialize:
V(s) € R, arbitrarily, for all s € §
Returns(s) < an empty list, for all s € §

Loop forever (for each episode):
Generate an episode following m: Sp, Ao, R1, 51, A1, Ro, ..., S7—1,Ar_1, Ry
G+ 0
Loop for each step of episode, t =T—1,T—-2,...,0:
G + YG + Ri+1
Unless S; appears in So, S1,...,St—1:
Append G to Returns(St)
V(S:) < average(Returns(St))




Monte Carlo Methods

How to identify the optimal policy?

Greedy policy approach
0.0]-14.1-20.]-22. n'(s) = argmaxgq,(s,a)

-14.]-18.1-20.] -20. = argmaxE[Ri41 +Yvx(Sev1) | St=s, At =q]
. a
-20./-20.]-18.|-14. = argmapr(s',r|s,a) [r+7v,r(s’)],

-22.(-20.{-14.1 0.0 s’




Monte Carlo Methods

How to identify the optimal policy?

We do not have
a mode!

Greedy policy approach

0.0{-14.|-20.-22. s =

= argmax,(s,a)
a

14 (-18,1:20.120. = argmaxE[Res +y0p(Binn) | Si=3, A=

.
-20.{-20.]-18.|-14. _ argmaxzp(%a) 4+ 70a(s))].




Monte Carlo Methods

How to identify the optimal policy?

We need to use
the Q-value!

Greedy policy approach

0.0{-14.|-20.-22. s =

= [argmax . (s,a)] "
a

-14.]-18.1-20.] -20. = argmaxE[Riy1 + yva(Se41) | St=s5, At =q]

.
-20.{-20.]-18.|-14. _ argmaxzp(%a) 4+ 70a(s))].




Monte Carlo Methods

How to identify the optimal policy?

We need to use
the Q-value!

Greedy policy approach
0.0]-14.(-20.]-22. 7'(s) = [argmax ¢ (s,a)

-14.]-18.1-20.] -20. = argmaxE[Ri41 +Yvx(Sev1) | St=s, At =q]

. a
-20.{-20.]-18.|-14. _ argmaxzp(%a) 4+ 70a(s))].

-22.(-20.{-14.1 0.0

evaluation The same idea of
. policy iteration of DP
@~ 4n " butwith Q +
estimation
We need to estimate the T Q

action-value function!
7~ greedy(Q)

improvement



Monte Carlo Methods

How to identify the optimal policy?

evaluation | Episode | S,a,r, s, a, r s,a,r,s, a 1,8,a, 1, S eminalstae)

L R
m e
n Q

7~ greedy(Q)

| EpiSOde | S, a, r, S, d, rz S, a, r,s, d, r, S ,a, r, S (terminal state)

improvement 4(s.a) = mean of



Monte Carlo Methods

How to identify the optimal policy?

evaluation | Episode | S,a,r, s, a, r s,a,r,s, a 1,8,a, 1, S eminalstae)

s R
m v(s) = mean vof

0 Q

| EpiSOde | S, a, r, S, d, rz S, a, r,s, d, r, S ,a, r, S (terminal state)

CI(S,a) = mean Of

A policy might not generate all the pairs!
How can we guarantee exploration?




Monte Carlo Methods

How to identify the optimal policy?

evaluation | Episode | S,a,r, s, a, r s,a,r.s, a 1,8,a, 1, S eminalstae)

m o= mea.n o
" Q

| EpiSOde | S, a, r, S, a, r~,. S, a, r ,S, a, r, S ,a, r, S (terminal state)

7~ greedy(Q)

improvement q(s.a) = mean i

A policy might not generate all the pairs!
How can we guarantee exploration?

Exploring start approach or g-soft policy




evaluation

Monte Carlo Methods ﬁ\
T Q@

Control: how to find the optimal policy?

7~ greedy(Q)

Monte Carlo ES (Exploring Starts), for estimating 7 ~ .,

improvement
Initialize:
m(s) € A(s) (arbitrarily), for all s € §
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s, a) + empty list, for all s € 8, a € A(s)

Loop forever (for each episode):
Choose Sy € 8, Ap € A(Sp) randomly such that all pairs have probability > 0 | Exploring start approach

Generate an episode from Sy, Ay, following 7: Sy, Ag, R1,...,S7_1,Ar_1, Ry
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:

G« ’)’G S Rt+1

Unless the pair S;, A; appears in Sp, Ag, S1, A1 ...,5:_1,At_1:

Append G to Returns(Si, At) e
Q(St,At) — average(Returns(S’t,At)) .............................
W(St) — argmaXaQ(St, a) .......................................................................................




Monte Carlo Methods

Control: how to find the optimal policy?

On-policy first-visit MC control (for e-soft policies), estimates 7

Algorithm parameter: small € > 0

Initialize:
7 < an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € 8, a € A(s)
Returns(s, a) < empty list, for all s € 8, a € A(s)

Repeat forever (for each episode):
Generate an episode following m: Sy, Ao, R1,...,57_1,Ar_1, Rp
G0
Loop for each step of episode, t =T—-1,T—-2,...,0:

G +—YG+ Riyq

Unless the pair S;, A; appears in Sy, Ag, S1, A1...,8:_1, Ai_1:

Append G to Returns(Si. A, R

Q(St;At) i average(Returns(St,At)) ...........................

A ¢ wmman, Q(Soa) (vt tis broen abirrly) |
1—e+¢/|A(S)| ifa=A*

-soft licy EEEIrrs
e-soft policy m(alSt) <—{ e /|A(S,)] if @ £ A*




Monte Carlo Methods

On-policy vs off-policy algorithms

Learning control methods dilemma
learning action-value of an optimal policy means
also exploring ...




Monte Carlo Methods

On-policy vs off-policy algorithms

Learning control methods dilemma
learning action-value of an optimal policy means
also exploring ...

On-policy algorithm Off-policy algorithm
learning action-value for Use two policies. One for exploring and
suboptimal policy one for searching the optimal policy

SARSA Q-learning



Temporal-Difference Learning

Combining Monte Carlo and Dynamic Programming



Temporal Difference Learning

Combining two ideas for prediction
Wait until the end of
the episod.e

Monte Carlo V(St) « V(St) + Q[th - V(St)]

.- Wait until the next step

Temporal Difference Learning | V(S:) < V(S;) + [Rm + YV (St4+1) — V(St)]

One step Estimating (as DP)
sampling



Temporal Difference Learning
TD(0) for prediction

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size o € (0, 1]
Initialize V (s), for all s € 87, arbitrarily except that V(terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
A ¢ action given by 7 for S
Take action A, observe R, S’
V(S)«< V(S)+ a[R + V(S — V(S)]
S« 5

until S is terminal




Temporal Difference Learning
SARSA: on-policy TD control

Q(St, Ar) ¢ Q(St, Ar) + o[ Rist +1Q(St41, Av1) — Q(Si, A4r)|

Sarsa (on-policy TD control) for estimating Q =~ ¢,

Algorithm parameters: step size a € (0,1], small € > 0
Initialize Q(s, a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S . ) ) Q is updated using the
Choose A from S using policy derived from @ (e.g., e-greedy) action A’ derived from
Loop for each step of episode: the actual policy

Take action A, observe R, S’
Choose A" from S’ using policy derived from @ (e.g., e-greedy)
S 8L A A

until S’ is terminal On-policy update |




Temporal Difference Learning
Q-learning: off-policy TD control

Q(StaAt) — Q(Su At) - Q[Rt+1 =+ 'YmcleQ(St-i—l: a) = Q(St:At)]

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size a € (0,1], small € > 0
Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,4) + a[R + ymax, Q(Y,a) — Q(S, A)]

Q is updated using the
greedy action a

until S is terminal Off-policy update |



Recap

MDP & DP
(model-based)

Monte Carlo Methods
(model-free)

Temporal Difference
Learning - TD(0)

Control RL Problem

On-policy

SARSA

Off-policy

Q-learning







