
Exercise set 2

AI

1 Clock model

The Hamiltonian for the M state (ZM) clock model reads

H = −J
∑
〈ij〉

cos[(ni − nj)2π/M ]; ni = 0, . . .M − 1, (1)

corresponding to N planar rotors that can point along M directions on a
plane. The case M = 2 corresponds to the Ising Hamiltonian.

1.1 M = 3

Consider the case M = 3 and use your favourite mean field approach to char-
acterize the phase transition of the system, i.e. find the critical temperature
and the order parameter at such a temperature. Is the transition first or
second order? Discuss the approximations introduced and their validity.

Hint: for this planar system you can introduce the complex order param-
eter

σeiψ =
1

N

∑
i

eini2π/M , (2)

where N is the total number of spins. Since all the ground states are equiv-
alent, in the previous equation you can choose ψ = 0 corresponding to con-
densation in the state with all ni = 0.

1.2 M = 4

Repeat the previous calculations with M = 4, and discuss the differences
with the previous point.
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2 Ising magnet in a fluctuating magnetic field

This exercise is characterized by a substantial higher level of difficulty. Give
it a try, we then discuss it in class.

Consider a one-dimensional Ising model with N spins in a fluctuating
magnetic field. The field h is Gaussian-distributed, with variance σ2/(Nβ)
and zero mean.

Show that the system exhibits an order-disorder phase transition at finite
temperature, and determine such a temperature.

Hints: Write first the partition function, keeping in mind that you know
its expression when h is fixed.
In the thermodynamic limit, the distribution of h is very narrow, so it is safe
to assume small values of h in your calculations.
As usual, for N large, integrals of the type eNf(x) can be solved with the
saddle point approximation.

You might find useful the following Taylor expansion in h

log

[√
e2βJ sinh2(βh) + e−2βJ + eβJ cosh(βh)

]
' ln(

√
x+ 1/

√
x) +

β2h2x

2
− 1

24
β4h4x

(
3x2 − 1

)
; with x = e2βJ

3 Detailed balance

A system has two energy levels with energy difference ε. Write the master
equation for the continuous time Markov chain, in terms of the transition
rates between the two energy levels. Find the eigenvalues and the eigenvec-
tors of the corresponding matrix. Assume that the rates satisfy the detailed
balance condition, and identify the physically relevant eigenvector. You can
express the frequencies in units of ω0, a microscopic attempt rate.

4 Chemical reactions

Consider the chemical reaction

A
 B,
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described by the kinetic equations

d [A]

dt
= kAB [B]− kBA [A] ,

d [B]

dt
= −kAB [B] + kBA [A] ,

where [A] and [B] are the concentration of the two species. Show that the
equilibrium concentrations 〈[A]〉 and 〈[B]〉 satisfy the detailed-balance con-
dition

kBA 〈[A]〉 = kAB 〈[B]〉 .

Show that the solutions to the kinetic equation yield

∆cA(t) = [A] (t)− 〈[A]〉 = ∆cA(0)e−t/τ ,

with
1

τ
= kAB + kBA.

5 Clock model: dynamics

Consider again the clock model with M = 3, now with a single (N = 1) rotor
but in an external field, with Hamiltonian

H = −~h · ~s (3)

with ~h = (hx, hy), ~s = (cosnα, sinnα), α = 2π/M , n = 0, 1, 2.
a) Consider first the case where the jumps between the states n = 0 and

n = 2 are forbidden. This corresponds to a stochastic process on a linear
network with 3 states: 0 � 1 � 2.

Choose the external field so as the system exhibits equispaced energy
levels, and write the master equation in terms of the clockwise p and coun-
terclockwise q transition rates, after fixing their ratio p/q according to the
detailed balance condition.

Find the eigenvalues and the eigenvectors of the corresponding stochastic
matrix and identify the eigenvector corresponding to the leading eigenvalue.

b) Consider now the case where the rotor is allowed to ”jump” between
the states n = 0 and n = 2 in both directions with the corresponding rates
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p and q: 0 � 1 � 2 � 0, i.e. a three-state network with a loop structure.
Write the new stochastic matrix, find its eigenvalues and the eigenvectors.
Identify the eigenvector corresponding to the leading eigenvalue. Discuss the
difference with the point a).

Can you use the same stochastic matrix to describe a non-thermally ac-
tivated stochastic system?

6 Three-state loop

Consider a three-state network with a loop structure, and generic transition
rates knn′ , n, n′ = 0, 1, 2.

Show that the steady state solution to the master equation satisfies the
detailed balance condition if the following condition holds

kn0n2kn2n1kn1n0 = kn0n1kn1n2kn2n0 (4)
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