qé&@/ Refactoring and Readability

Dario Campagna



Why refactoring?

— P M
% - Clean code No ugly code ) Sustain pace
We want code that’s easy We want to keep the code from We want to protect us
to understand, to evolve, becoming rigid, fragile, against the long-term erosion
to maintain. inseparable, opaque. of our capacity to deliver
features.

S



Refactoring

Safely improve the design of existing code.

Safely

Take baby steps, keep
test bar green.

Improve the design

Does not add new
functionalities.

Existing code

It is not rewriting from
scratch.




What to look for when refactoring?

Different ideas at different levels of abstraction.

Readability

Code Smells

Coupling and Cohesion
S.O.L.I.D. Principles
Simple Design




Some books about refactoring (and more)
Look for them on http:/www.biblio.units.it/

A
Yy

Technical
Practices

Tho Stidtlison- Wostoy Tignatire Tories
“Auy fool cam write code that a compuser caw wwderstand STINE
Good programmers write code that humens can ndorstand.” K 9,
M. Fowler (1999) ,.//] Z &
% &
o 3
0

R EFACTORING
TO PATTERNS

REFACTORING

Refactoring by Martin Agile Technical Practices Distilled Refactoring to Patterns by

Fowler by Pedro Moreira Santos, Marco Joshua Kerievsky
Consolaro, Alessandro Di Gioia
J«é&’



http://www.biblio.units.it/

N\

X

(=

Readablility

Small improvements in code readability can drastically improve code understandability




Ways to improve readability

Atomic refactors

Rename

Rename bad names,
variables, arguments,
instance variables,
methods, classes.

Make abbreviations explicit.

Extract

Constants from magic numbers and
strings.

Conditionals.
Extract a class (or methods or

variables...), creating a new
abstraction.

Inline

The inverse of extract -
inline a method (or
variable), deconstructing
an abstraction.

N



Ways to improve readability

Atomic refactors

Move

Move a class (or methods
or variables...) to some
other place in the
codebase.

Safe delete

Delete code and its usages in the
code base.

Delete unnecessary comments.

Delete dead code.

Format

Format consistently and
don’t force the reader to
waste time due to

Inconsistent formatting.

N



Rename

The method name is accurate-but-vague.

private void displayPrice(String barcode) {
String priceAsText = pricesByBarcode.get(barcode);
display.setText (priceAsText);




Rename

The method name is accurate-but-vague.

private void displayPrice(String barcode) {
& String priceAsText = pricesByBarcode.get(barcode);
display.setText(priceAsText);




Rename

The method name is accurate-but-vague.

private void displayPrice(String barcode) {
& String priceAsText = pricesByBarcode.get(barcode);
display.setText(priceAsText) ; g

Find Display




Rename

Now we have a precise name. Can we further improve readability?

private void findPriceAndDisplayAsText(String barcode) {
String priceAsText = pricesByBarcode.get (barcode);
display.setText (priceAsText);




Extract

Two methods. Each with an intention-revealing name.

private String findPrice(String barcode) {
return pricesByBarcode.get (barcode);

}

private void displayPrice(String priceAsText) {
display.setText (priceAsText);

}




Tennis Refactoring Kata

Clean-up the code to a point where someone can read it and
understand it with ease.

https:/github.com/emilybache/Tennis-Refactoring-Kata

= Work on the class “TennisGame1”

= The test suite provided is fairly comprehensive, and fast to run.
= You should not need to change the tests, only run them often as
you refactor.



https://github.com/emilybache/Tennis-Refactoring-Kata

