
Maria Peressi

Università degli Studi di Trieste - Dipartimento di Fisica

Sede di Miramare (Strada Costiera 11, Trieste)

e-mail: peressi@units.it

tel.: +39 040 2240242

1

993SM - Laboratory of
Computational Physics

week 7
November 8, 2024

mailto:peressi@units.it

2

3

-18

-16

-14

-12

-10

-8

-6

-4

-2

 6 7 8 9 10 11 12 13 14 15 16 17

’pigr.dat’ u (log($1)):(log($2))
’pigr.db.dat’ u (log($1)):(log($2))

error(MC)~1/√N => see log(error) vs. log(N)

4

different seeds

slope -0.33
slope -0.54

5

average over 20 different seeds

slope -0.52

6

Figura 2: Andamento dell’errore,
differenza tra il valore stimato
ed il valore vero, in funzione dei
punti generati per i 100 seed.
Si fa notare la presenza delle
fluttuazioni casuali che rendono
necessaria una media sui seed.
Da fit sulla media:

Campionamento medio e campionamento d’importanza

2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Er
r(N

)

N:punti generati

Errore tra pigreco vero e calcolato per 100 seed

2 V.2. Monte Carlo method: generic sample mean and importance sampling

V.2. Monte Carlo method: generic sample mean
and importance sampling

-11

-10

-9

-8

-7

-6

-5

-4

-3

	4 	6 	8 	10 	12 	14 	16 	18 	20

lo
g
	|
I e

s
a
tt

o
	-

	I
M

C
	|

NMC	step

andamento	errori	per	MC	sample	mean

fit:	pendenza	-0.55	+/-	0.03

Figura 6: Punto V.2.a Si è implementato il programma per il metodo del sample mean e

si è osservata la di↵erenza tra valore esatto e calcolato in funzione del numero di punti

usati, qui indicati con NMCstep.

8

)log(

Figura 3: Si è implementato il programma
per il metodo del sample mean e si è
osservata la differenza tra valore esatto e
calcolato in funzione del numero di punti
usati, qui indicati con . NMCstep

2 V.2. Monte Carlo method: generic sample mean and importance sampling

-12

-11

-10

-9

-8

-7

-6

-5

-4

	4 	6 	8 	10 	12 	14 	16 	18 	20

lo
g
	|
I e

s
a
tt

o
	-

	I
M

C
	|

NMC	step

andamento	errori	per	MC	importance	sampling

fit:	pendenza	-0.51	+/-	0.08

Figura 7: Punto V.2.b Si è implementato ora il programma per il metodo dell’ importance
sampling e di nuovo si grafica la di↵erenza tra valore esatto e calcolato in funzione del

numero di punti usati, NMCstep.

9

log()

Figura 4: Si è implementato il programma
per il metodo dell’ importance sampling e
di nuovo si grafica la differenza tra
valore esatto e calcolato in funzione del
numero di punti usati, . NMCstep

m q

-0.474778 ± 0.04678 -4.12822 ± 0.3321

2 V.2. Monte Carlo method: generic sample mean and importance sampling

-12

-10

-8

-6

-4

-2

	0

	2 	4 	6 	8 	10 	12 	14 	16 	18

lo
g
(
)

log(NMC	step)

Sample	mean

|Iesatto -IMC|
σ																	
σ/N1/2MC	step

(a) sample mean

-12

-10

-8

-6

-4

-2

	0

	2 	4 	6 	8 	10 	12 	14 	16 	18

lo
g
(
)

log(NMC	step)

Importance	sampling

|Iesatto -IMC|
σ																	
σ/N1/2MC	step

(b) importance sample

Figura 8: Punto V.2.c Si sono implementate le stime numeriche richieste. Qui riporto

in scala log-log separatamente tutti i risultati ottenuti per i due metodi: per entrambi si

nota come l’andamento della di↵erenza tra integrale esatto e calcolato non sia costante

come lo è �, ma abbia lo stesso andamento di �/
p
NMCstep.

10

2 V.2. Monte Carlo method: generic sample mean and importance sampling

-12

-10

-8

-6

-4

-2

	0

	2 	4 	6 	8 	10 	12 	14 	16 	18

lo
g
(
)

log(NMC	step)

Sample	mean

|Iesatto -IMC|
σ																	
σ/N1/2MC	step

(a) sample mean

-12

-10

-8

-6

-4

-2

	0

	2 	4 	6 	8 	10 	12 	14 	16 	18

lo
g
(
)

log(NMC	step)

Importance	sampling

|Iesatto -IMC|
σ																	
σ/N1/2MC	step

(b) importance sample

Figura 8: Punto V.2.c Si sono implementate le stime numeriche richieste. Qui riporto

in scala log-log separatamente tutti i risultati ottenuti per i due metodi: per entrambi si

nota come l’andamento della di↵erenza tra integrale esatto e calcolato non sia costante

come lo è �, ma abbia lo stesso andamento di �/
p

NMCstep.

10

Figure 5-6: Si sono implementate le stime numeriche richieste. Qui si riportano in scala log-
log separatamente tutti i risultati ottenuti per i due metodi: per entrambi si nota come
l’andamento della differenza tra integrale esatto e calcolato non sia costante come invece è
, ma abbia lo stesso andamento di . σ σ / NMCstep

Ex. 2: error(MC)~1/√N : “true” error and statistical error

ΔΝ=

(credits: G. Lautizi, a.y. 2019-20)

7

Extension to the hypersphere

8

9

 100000 punti - runs non correlati con diversi n
 volume sfera numerico e esatto: 3.14256001 3.14159274

10

11

 100000 punti - runs non correlati con diversi n
 volume sfera numerico e esatto: 4.19895983 4.18879080

12

dim V calc V vero

10 2.82624006 2.55016422

12 1.43359995 1.33526301

15 0.327679992 0.381443381

16 0.655359983 0.235330686

 100000 punti - runs non correlati con diversi n
 volume sfera numerico e esatto per diverse dimensioni

 perché il risultato peggiora con il crescere della dimensione?

13

 100000 punti - runs non correlati con diversi n
 volume sfera numerico e esatto: 0.00000000 2.58068983E-02

?

14

crescendo con la dimensione, gli “spigoli vuoti” dell’ipercubo
dov’è iscritta l’ipersfera pesano molto!

quindi di fatto si rifiutano molti dei punti generati
e il metodo accettazione-rifiuto diventa molto inefficiente!

0

1

2

3

4

5

5 10 15 20 25

xdim

Volume ipersfera di raggio unitario

il volume dell’ipersfera ha un andamento non monotonous
con la dimensione

15

16

exponential variate 0 ≤ rnd < 1 ⇒ x = − ln(rnd) results in x > 0

but since 0 ≤ rnd < 1 = > rnd′ =
1
e

+ (1 −
1
e) * rnd results in

1
e

≤ rnd′ < 1

hence 0 < x < 1 ⇒
1
e

< rnd < 1

Punto di attenzione:
servono punti con distribuzione esponenziale tra 0 e 1 :
è possibile limitare il numero random
con distribuzione uniiforme in ingresso
alla subroutine expdev(rnd)

17

The Metropolis algorithm

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

The algorithm from 1) to 6) has to be repeated until
the distribution of the points is reached.

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

is given.

else

18

Some issues:
• how to choose ?

Convenient to start from a maximum

• how to choose ?
(if too small, most trial steps accepted, but
the walker moves too slowly; if too large,
only a few trial steps are accepted...)
A good compromise is a choice accepting
from ~ 1/3 to ~1/2 of the trial steps

• equilibration is necessary (how many steps?)
A possible criterion based on error estimate

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 395

11.8 Metropolis Algorithm

Another way of generating an arbitrary nonuniform probability distribution was introduced by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953. The Metropolis algorithm is a
special case of an importance sampling procedure in which certain possible sampling attempts are
rejected (see Appendix 11C). The Metropolis method is useful for computing averages of the form

⟨f⟩ =
∫

p(x)f(x) dx
∫

p(x) dx
, (11.54)

where p(x) is an arbitrary probability distribution that need not be normalized. In Chapter ?? we
will discuss the application of the Metropolis algorithm to problems in statistical mechanics.

For simplicity, we introduce the Metropolis algorithm in the context of estimating one-dimensional
definite integrals. Suppose that we wish to use importance sampling to generate random variables
according to an arbitrary probability density p(x). The Metropolis algorithm produces a random
walk of points {xi} whose asymptotic probability distribution approaches p(x) after a large number
of steps. The random walk is defined by specifying a transition probability T (xi → xj) from one
value xi to another value xj such that the distribution of points x0, x1, x2, . . . converges to p(x).
It can be shown that it is sufficient (but not necessary) to satisfy the “detailed balance” condition

p(xi)T (xi → xj) = p(xj)T (xj → xi). (11.55)

The relation (11.55) does not specify T (xi → xj) uniquely. A simple choice of T (xi → xj) that
is consistent with (11.55) is

T (xi → xj) = min
[

1,
p(xj)
p(xi)

]

. (11.56)

If the “walker” is at position xi and we wish to generate xi+1, we can implement this choice of
T (xi → xj) by the following steps:

1. Choose a trial position xtrial = xi + δi, where δi is a random number in the interval [−δ, δ].

2. Calculate w = p(xtrial)/p(xi).

3. If w ≥ 1, accept the change and let xi+1 = xtrial.

4. If w < 1, generate a random number r.

5. If r ≤ w, accept the change and let xi+1 = xtrial.

6. If the trial change is not accepted, then let xi+1 = xi.

It is necessary to sample many points of the random walk before the asymptotic probability
distribution p(x) is attained. How do we choose the maximum “step size” δ? If δ is too large, only
a small percentage of trial steps will be accepted and the sampling of p(x) will be inefficient. On
the other hand, if δ is too small, a large percentage of trial steps will be accepted, but again the
sampling of p(x) will be inefficient. A rough criterion for the magnitude of δ is that approximately

CHAPTER 11. NUMERICAL INTEGRATION AND MONTE CARLO METHODS 396

one third to one half of the trial steps should be accepted. We also wish to choose the value of x0

such that the distribution {xi} will approach the asymptotic distribution as quickly as possible.
An obvious choice is to begin the random walk at a value of x at which p(x) is a maximum.

Pseudocode that implements the Metropolis algorithm is given below.

double xtrial = x + (2*rnd.nextDouble() - 1.0)*delta;
double w = p(xtrial)/p(x);
if (rnd <= w)
{

x = xtrial
naccept++; // number of acceptances

}

Problem 11.15. The Gaussian distribution

a. Write a program using the Metropolis algorithm to generate the Gaussian distribution, p(x) =
Ae−x2/2. Is the value of the normalization constant A relevant? Determine the qualitative
dependence of the acceptance ratio and the equilibration time on the maximum step size δ.
One possible criterion for equilibrium is that ⟨x2⟩ ≈ 1. What is a reasonable choice for δ? How
many trials are needed to reach equilibrium for your choice of δ?

b. Modify your program so that it plots the asymptotic probability distribution generated by the
Metropolis algorithm.

c. Calculate the autocorrelation function C(j) defined by

C(j) =
⟨xi+jxi⟩ − ⟨xi⟩2

⟨x2
i ⟩ − ⟨xi⟩2

, (11.57)

where ⟨. . .⟩ indicates an average over the random walk. What is the value of C(j = 0)? What
would be the value of C(j ̸= 0) if xi were completely random? Calculate C(j) for different
values of j and determine the value of j for which C(j) is essentially zero.

Problem 11.16. Application of the Metropolis algorithm

a. Although the Metropolis algorithm is not the most efficient method in this case, write a program
to estimate the average

⟨x⟩ =
∫ ∞
0 xe−x dx
∫ ∞
0 e−x dx

, (11.58)

with p(x) = Ae−x for x ≥ 0 and p(x) = 0 for x < 0. Incorporate into the program a computation
of the histogram H(x) showing the fraction of points in the random walk in the region x to
x +∆x, with ∆x = 0.2. Begin with n = 1000 and maximum step size δ = 1. Allow the system
to equilibrate for 200 steps before computing averages. Is the integrand sampled uniformly? If
not, what is the approximate region of x where the integrand is sampled more often?

b. Calculate analytically the exact value of ⟨x⟩. How do your Monte Carlo results compare with
the exact value for n = 100 and n = 1000 with δ = 0.1, 1, and 10? Estimate the standard error
of the mean. Does this error give a reasonable estimate of the error? If not, why?

19

20

21

22

23

