

Università degli studi di Trieste

LAUREA MAGISTRALE IN GEOSCIENZE

Classe Scienze e Tecnologie Geologiche

Curriculum: Esplorazione Geologica

Anno accademico 2024 - 2025

Analisi di Bacino e Stratigrafia Sequenziale (426SM)

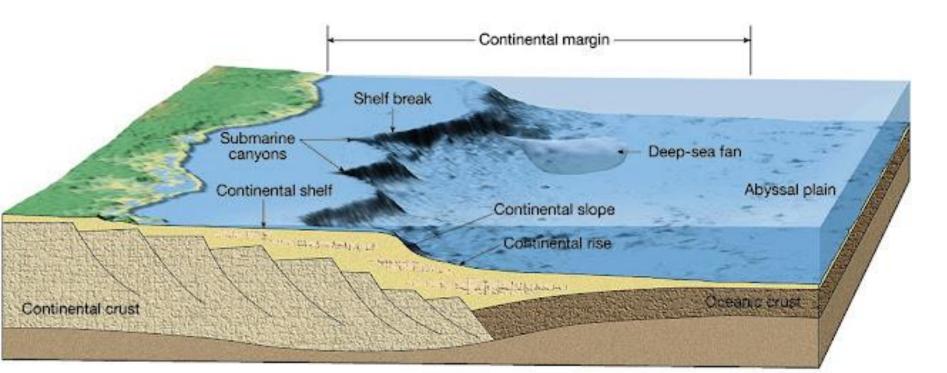
Docente: Michele Rebesco

Modulo 3.6 Abyssal plains and (hemi)pelagites

Outline:

- Basin physiography
- Deep sea interacting processes
- Pelagic sediments
- Hemipelagic facies model
- Echo and seismic facies

Physiographic provinces

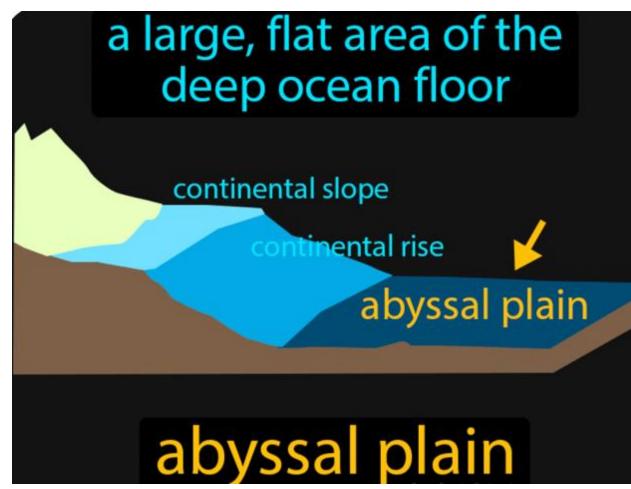

Continental shelf > November 24 Shelf break

Continental slope > November 16

Continental rise > November 17

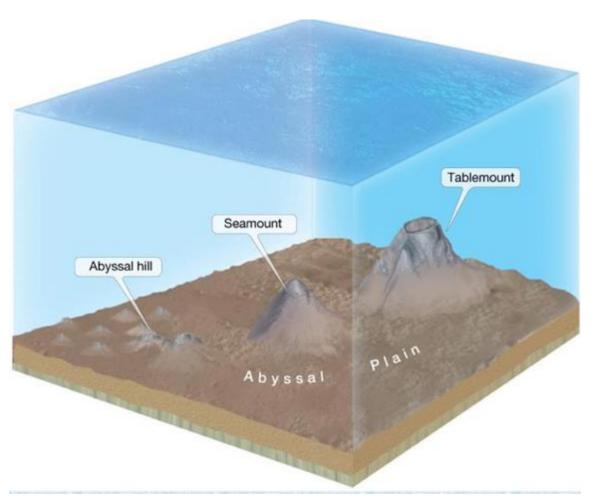
Abyssal plain > Today

Abyssal hill province Mid-ocean ridge Hydrothermal vents Polymetallic nodules Mud volcanoes



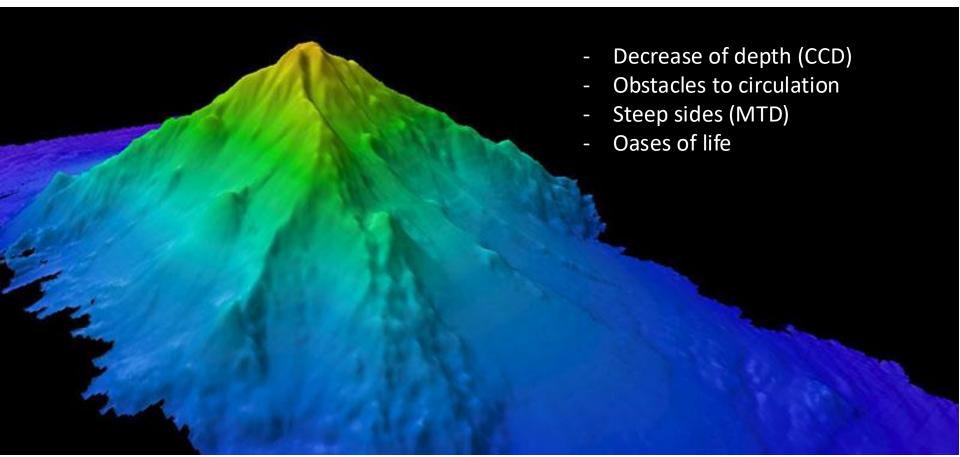
Abyssal Plain

The term 'abyssal plain' refers to a flat region of the ocean floor, usually at the base of a continental rise, where slope is less than 1:1000. It covers more than half of the Earth's surface and represents the deepest part of the ocean floor lying between 4000 and 6500 m deep.


A more general term 'basin plain' is commonly used in referring to ancient examples. Being adjacent to continental rises, they act frequently as the terminus of turbidity currents, which deposit thin turbidites with usually very fine grains interbedded with the most common pelagites and hemipelagites.

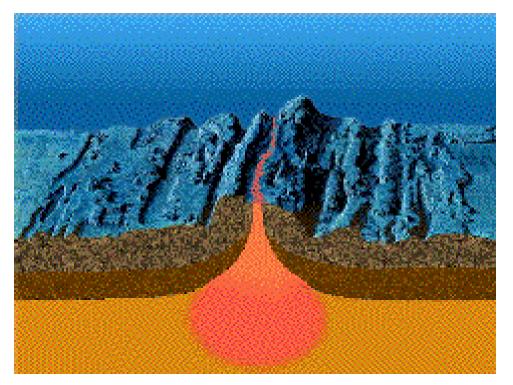
Abyssal hill

An abyssal hill is a small hill that rises from the floor of an abyssal plain. They are the most abundant geomorphic structures on the planet Earth, covering more than 30% of the ocean floors.


Abyssal hills have relatively sharply defined edges and climb to heights of no more than a few hundred meters. They can be from a few hundred meters to kilometers in width. A region of the abyssal plain that is covered in such hill structures is termed an "abyssal-hills province". However, abyssal hills can also appear in small groups or in isolation

Seamounts

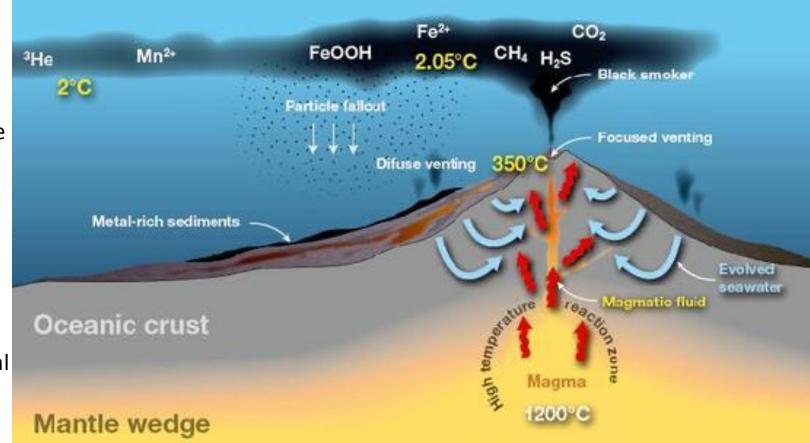
A seamount is an underwater mountain with steep sides rising from the seafloor.


A ~4,200-meter high seamount mapped during the Mountains in the Deep: Exploring the Central Pacific Basin expedition (Image courtesy of the NOAA Office of Ocean Exploration and Research)

Mid-ocean ridges

A mid-ocean ridge (MOR) is a seafloor mountain system formed by plate tectonics.

Sediment on ridge flanks commonly thicken with distance from the spreading axes, reflecting the increasing age of the volcanic seafloor. Complications to this simple picture occur where there is substantial sediment transport or varied dissolution of carbonate.

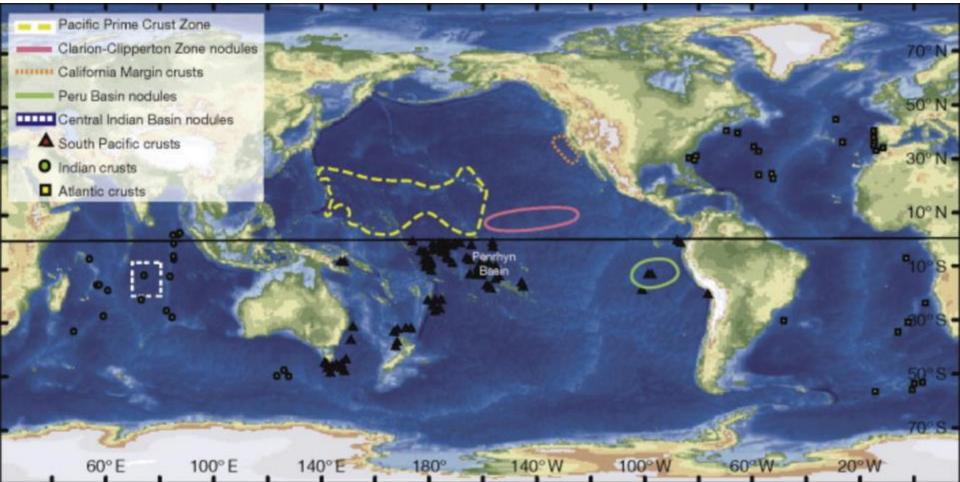


Commonly found near volcanically active places, areas where tectonic plates are moving apart, ocean basins, and hotspots, hydrothermal vents produce metal-rich chimneys, of interest in undersea prospecting, and provide an important environmental niche for life in the deep.

Hydrothermal vents

A hydrothermal vent is an underwater hot spring found on the ocean floor

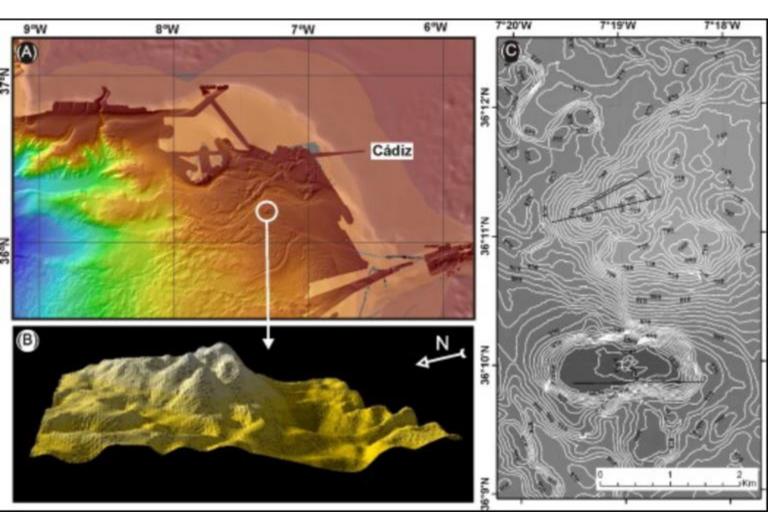
>100 vent fields documented along the 60,000-km global mid-ocean ridge system.



Nodules

Hein & Koschinsky, Geochemistry of Mineral Deposits, 2014

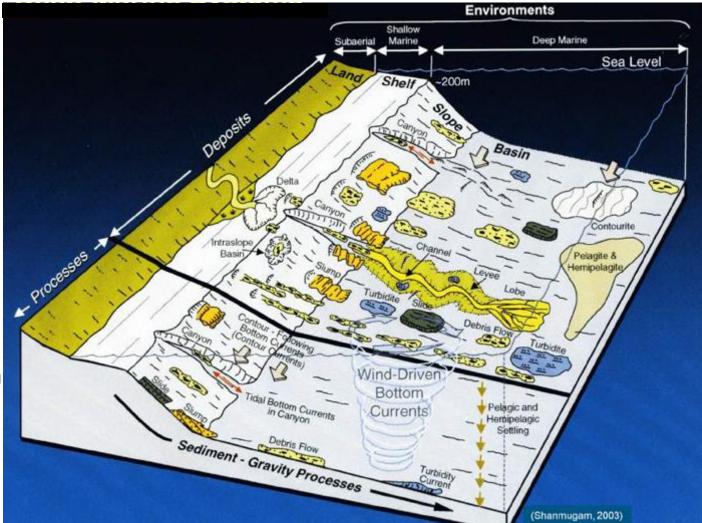
Fe–Mn nodules typically occur on sediment-covered abyssal plains where sediment accumulation rates are low (<10 mm/ky). Nodule coverage is more than 50% over large areas of the Pacific and Central Indian Ocean Basin. Although nodules are known to occur on abyssal plains in the Atlantic and polar oceans, their distribution is not well known.



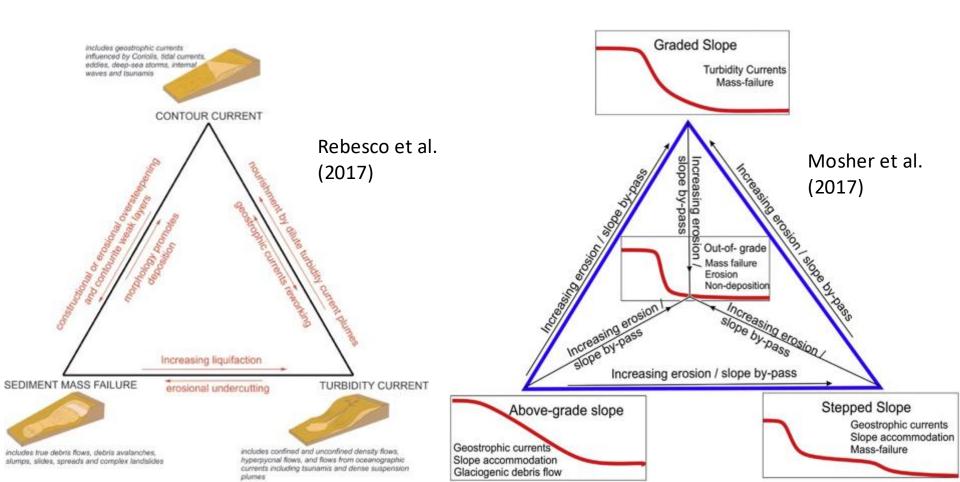
Mud volcanoes

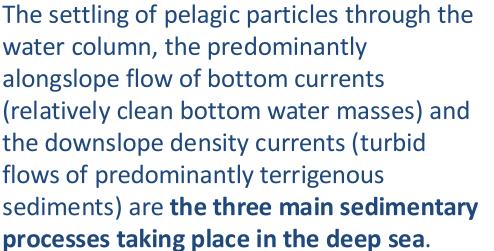
Mud volcanoes are conduits for fluid venting and consequent carbonate precipitation within the sediments or at the seafloor.

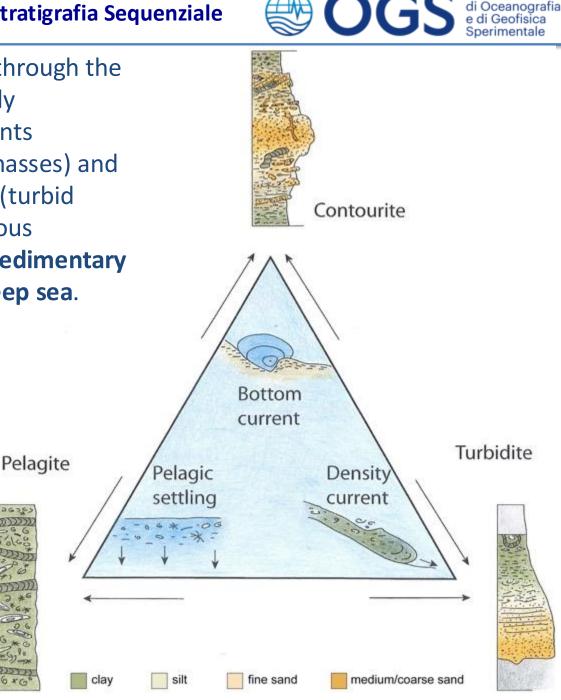
Around 1100 mud volcanoes have so far been found on land and in shallow water. It is believed that more than 10,000 mud volcanoes may exist on continental slopes and abyssal plains.


Rueda et al., 2012, in Seafloor Geomorphology as Benthic Habitat

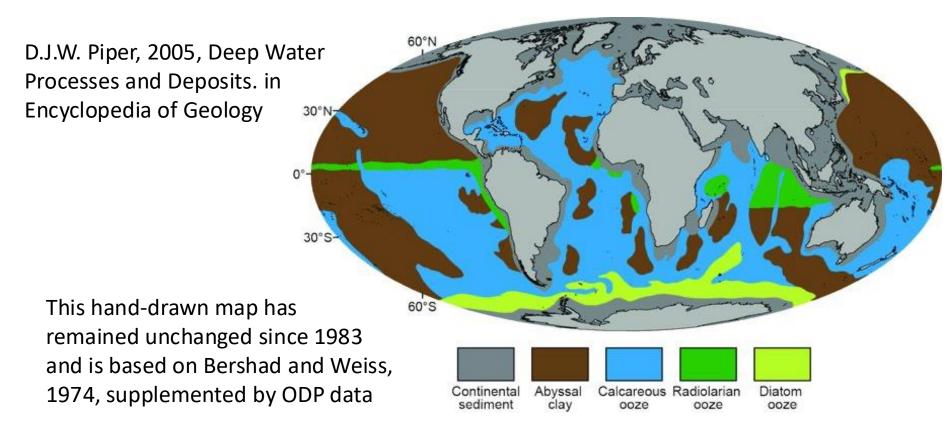
Deep sea depositional processes


- Sediment transport in deep-marine (slope and basin) environments is characterized by gravity-driven downslope
- processes,
- such as mass transport (i.e., slides, slumps, and debris flows), and turbidity currents.
- Bottom currents, composed of thermohaline contour-following currents, wind-driven currents and up and
- down tidal bottom currents in submarine canyons.



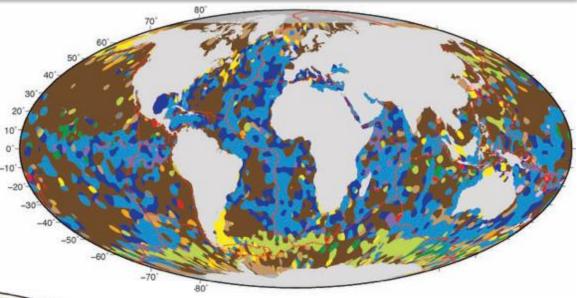

Clastic sedimentary processes on continental margins and morphotypes

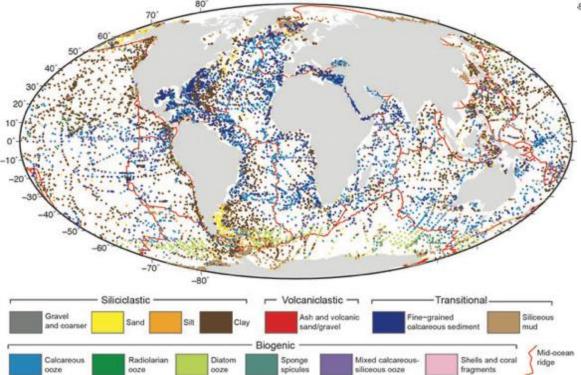
While the first two represent a "background" process that is dominant only in very remote abyssal areas, episodic, highenergy density flows are commonly superposed to the two other permanent processes on many continental margins.


lstituto Nazionale

Pelagic sediment

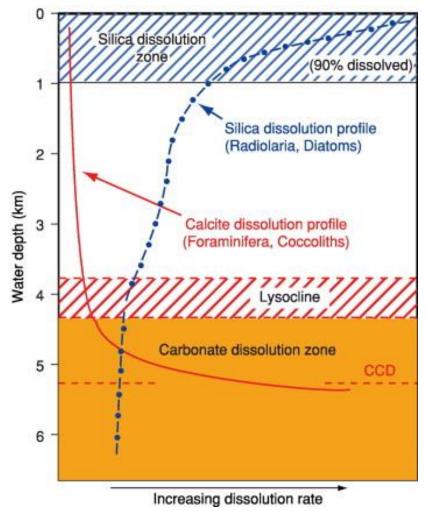
Half of the Earth's surface is covered by pelagic sediment, yet study of its sedimentology is challenging because of its slow sedimentation rates and intense bioturbation. Some 47% of the pelagic realm is floored by foraminiferal ooze, 15% by siliceous ooze (mostly diatom ooze around Antarctica), and 38% by abyssal brown clay, in areas where there is total dissolution of biogenic material.





Seafloor sediments

Dutkiewicz et al., 2015. Census of seafloor sediments in the world's ocean. Geology 43(9):795-798


digital map of seafloor lithologies based on descriptions of nearly 14,500 samples from original cruise reports, interpolated using a support vector machine algorithm

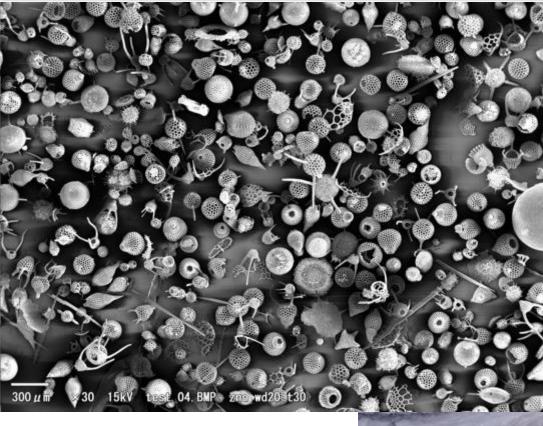
calcite compensation depth

It controls of the distribution of pelagic deposits Pelagic sediments are defined as those formed of settled material that has fallen through the water column; their distribution is controlled by three main factors, distance from major landmasses, water depth, and ocean fertility. Pelagic sediments are composed largely of the calcareous or siliceous remains of planktonic microorganisms or wind-derived material or mixtures of these. The distribution of pelagic sediment types is strongly controlled by the calcite compensation depth (CCD), which is that depth at which the rate of supply of biogenic calcite equals its rate of dissolution. Therefoe, below the CCD, only carbonatefree sediments accumulate. Thus the calcite compensation depth marks a major boundary defining the deposition of pelagic clays and calcareous sediments.

R.G. Rothwell, 2005. Deep Ocean Pelagic Oozes. in Encyclopedia of Geology

Foraminiferal ooze

Calcareous foram ooze of the ocean floor viewed from the submersible Alvin in the Oceanographer Fracture Zone, central North Atlantic (~35N, 35W).


Above is the outcrop of the "Yellow Calcareous Marls" at Cala Sant'Antonino from which the left samples were collected. The rock is very soft and powdery to the touch.

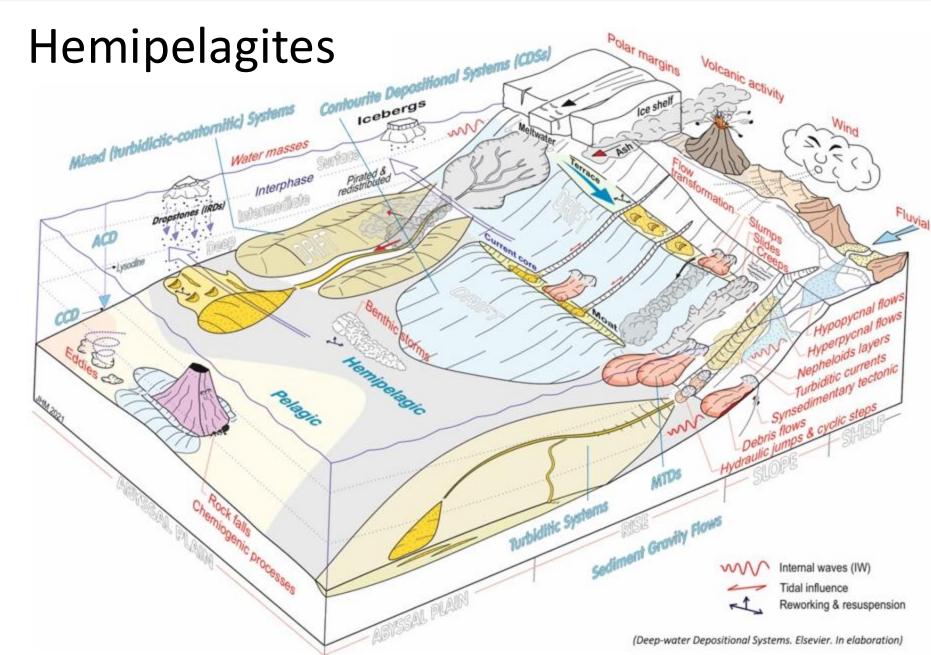
It consists almost entirely of tests (skeletons) of foraminiferans known as Globorotalia inflata.

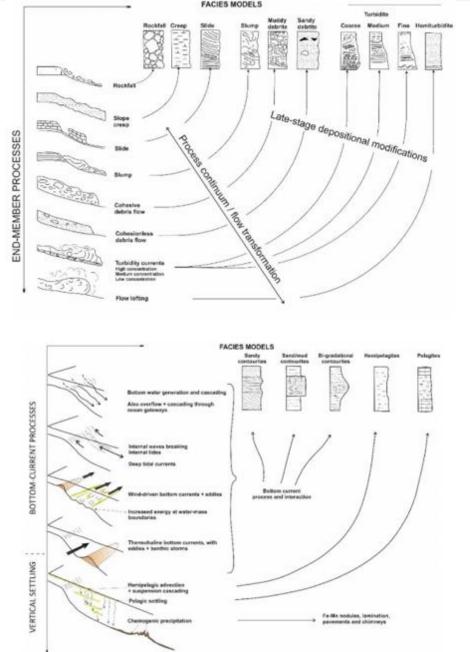
Nodules of chert (yellowish, in relief) within a crinoid-bearing limestone of the Buttle Lake Group, Vancouver, Canada. Photo courtesy MarkuMark.

Siliceous ooze

Eocene radiolarian ooze seen at the Scanning Electron Microscope. Credit: Yasuhiro Hata

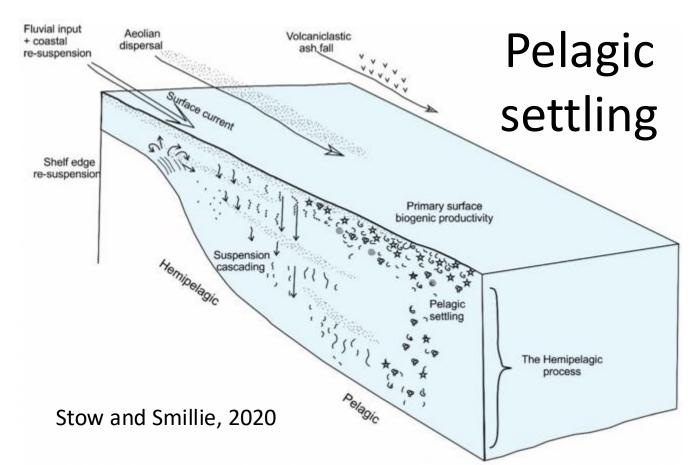
Pelagic red clays


For example Rosso ammonitico, deposits typical of pelagic highlands, in conditions of good oxygenation and therefore water exchange.



OGS Istituto Nazionale di Oceanografia e di Geofisica Sperimentale

Distinguishing between Deep-Water Sediment Facies


Pelagic or hemipelagic sedimentation dominates where other processes are absent or rare, but all trace of these deposits can be removed where turbidites dominate or where strong bottom currents have prevented deposition. It is in part for these reasons that the distinction between turbidites, contourites and hemipelagites has long been a matter of controversy. Anyone whose work involves deep-water systems and their sediments should be aware of these differences in opinion.

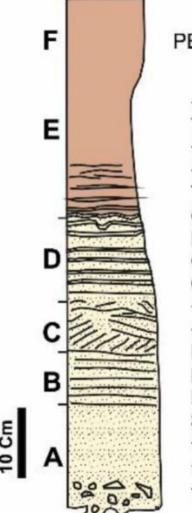
Hemiturbiditic sedimentation involves flow lofting and upward dispersion from a dilute turbidity current during its final stages of deposition. The fine-grained material carried by the turbidity current disperses beyond the final deposit of the normal turbidite, mixes with any background pelagic or hemipelagic material, and deposits slowly by vertical settling.

Stow and Smillie, 2020. Geosciences 10, 68

Pelagic settling is a process of vertical settling under the influence of gravity by which primary biogenic material and very fine-grained terrigenous or other detritus in the surface waters fall slowly to the seafloor. The rate of fall and hence of sediment accumulation is increased by both flocculation and by organic pelletisation, especially in high productive areas. In oligotrophic open-ocean systems, the process is quite continuous and accumulation is typically very slow, i.e., < 1 cm ka–1.

Hemipelagic deposition is a complex process involving both vertical settling and slow lateral advection through the water column. The driving forces behind this lateral advection include the inertia of river plumes, glacial meltwater diffusion, turbid layer plumes, internal tides and waves and other slowly moving midwater currents.

Istituto Nazionale


di Oceanografia e di Geofisica Sperimentale

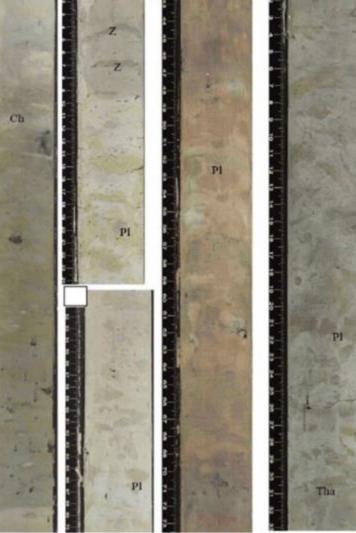
Process Interaction

SAND-MUD TURBIDITE

PELAGITE

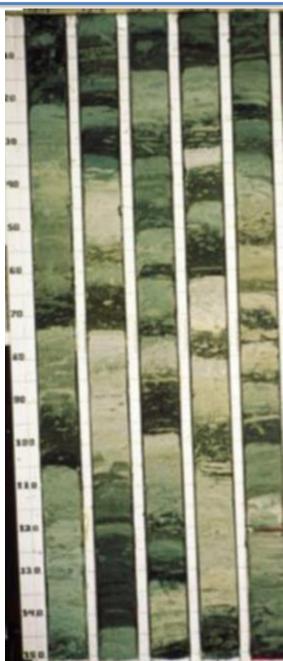
+/- Bioturbation TURBIDITE MUD +/- Graded +/- Laminated TURBIDITE SILT-SAND Graded, fine-medium Parallel-laminated Graded, medium Cross-laminated +/- Convolute lamination +/- Graded, medium-coarse Parallel-Laminated Massive, medium-very coarse, Poor or no grading Sharp scoured base +/- Shale clasts +/- Pebbles +/- Scoured/loaded base

Close interaction between different processes is also common. Both turbidity currents and bottom currents will directly affect the slow settling of hemipelagic material, incorporating this fine-grained, often biogenic, material into their deposits. Bottom currents will similarly pirate the fine suspended load of distal turbidity currents and of the upper parts of flows that have over-spilled channel levees. The sudden introduction of turbidity current material into bottom currents will affect the nature and concentration of the flow as well as the composition of the deposit. Both interbedded and hybrid facies will result.


Stow and Smillie, 2020

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale

Bedding



Stow and Smillie, 2020

Typical bioturbated and colour-varied hemipelagites, IODP Site 1385 (Expedition 339), offshore SW Portugal.

There is an absence or indistinctness of beds in thick successions of modern hemipelagites, where the subtle, often cyclic, variation in composition can lead to a cyclic colour bedding.

Bioturbated hemipelagites– pelagites (whitish) interbedded with graded mud turbidites (dark brown), Plio-Pleistocene, DSDP Site 530, SE Angola Basin, S Atlantic

Structures

Bornale di Oceanografia e di Geofisica Sperimentale

Stow and Smillie, 2020

Primary sedimentary structures are completely absent in those hemipelagites deposited in oxygenated water. There is no current activity and a complete bioturbational overturn has served to homogenise the sediment. Where bottom waters are low in oxygen, then parallel lamination may be preserved, with low to absent bioturbation. This is most typically a fissile lamination with laminae showing a sub-parallel, wavy, anastomosing pattern.

Pelagite (micritic limestone), Eocene, Petra tou Romiou, southern Cyprus. Some evidence for interbedding with fine calcareous contourites, i.e., small bi-gradational sequence from calcilutite to calcisiltite and back to calcilutite (marked with a black line).

Bioturbation

Bioturbation. Pervasive, high-intensity and diverse bioturbation is typical for hemipelagites deposited under normal oxygenated conditions.

Trace fossil zonation, with multiple tiering, is most evident in more rapidly deposited hemipelagites, especially where they are interbedded with turbidites. Complete bioturbational mottling is more common under slow rates of deposition.

Detail from the bioturbated hemipelagites– pelagites interbedded with graded mud turbidites of DSDP Site 530 in SE Angola Basin: hemipelagite over turbidite with intense bioturbation. K-HOS

Stow and Smillie, 2020

Texture and fabric

Grain size characteristics of hemipelagites are strongly influenced by their composition as well as by distance from source. They are mostly fine-grained (mean 5–35 μ m) and poorly sorted. Coarser grains are introduced, in particular, by ice rafting at high latitudes and by volcaniclastic activity.

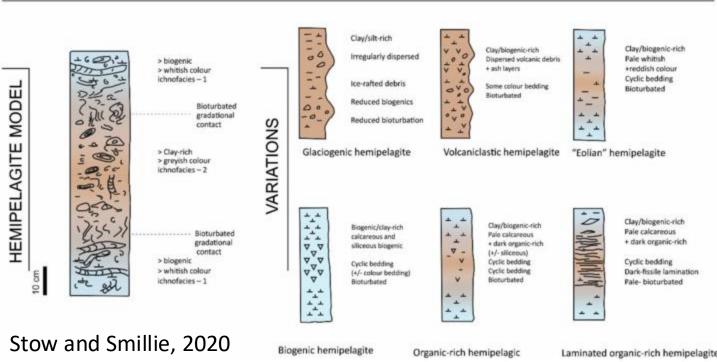
Hemipelagite (pale) interbedded and interbioturbated with volcaniclastic ash layers (dark). Miocene Misaki Formation, Miura, Japan. Hemipelagites are characterised by random to semi-random silt and clay fabrics further accentuated by the presence of isolated large grains as well as by intense bioturbation.

Composition

Hemipelagites, by definition, have a mixed composition, with biogenic components dominated by open ocean planktonic microfossils and terrigenous components depending on the source area and supply. Total organic carbon content, although generally very low, may be significantly higher (1–10%) in upwelling zones and areas of low bottom-water oxygenation.

Pelagites: interbedded limestone (white) and organic-rich chert (black) beds, Cretaceous, central Umbria, Italy

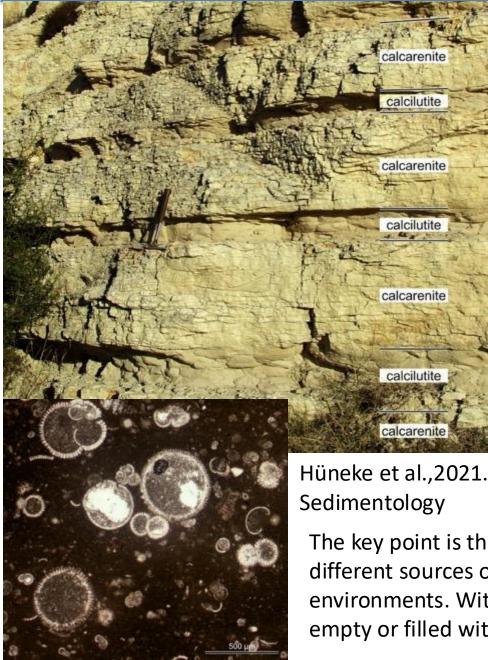
Stow and Smillie, 2020



Hemipelagic Facies Models

Hemipelagite is often considered to be a rather elusive sediment facies and almost a bucketterm for a wide range of sediment types that form background deposits in many basins.

An estimated 15–20% of the present-day seafloor is composed of hemipelagites. Limestone-marl cyclic sedimentation is commonly reported from ancient successions in which the marlstone units are hemipelagic and the limestones pelagic in nature.

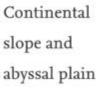

HEMIPELAGITE FACIES MODELS: Fine-grained, mixed-composition hemipelagites

The standard facies model shows indistinct bedding. Compaction, burial and diagenesis commonly yield a more well-bedded succession. There are no primary sedimentary structures but a pervasive bioturbation. The mean size is fine (5–35 μ m) and the sediment poorly sorted. The microfabric is random. Composition is mixed biogenic and terrigenous.

Diagnostic criteria using microfacies for calcareous contourites, turbidites and pelagites

The distinction of pelagic oozes from muddy calcareous contourites is difficult, since all of these fine-grained sediments form relatively uniform records showing indistinct bedding based on subtle compositional variation. In pelagic environments, this longer-duration compositional variation typically results from biogenic productivity fluctuations and alternating seafloor redox conditions

The key point is that sediment re-location and mixing from different sources occurs only in bottom-current controlled environments. Within pelagic sediments, by contrast, shells are empty or filled with mud that is identical to the overall matrix.


Istituto Nazionale di Oceanografia

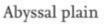
echo-character types

Llave et al., 2018, Geomorphological and sedimentary processes of the glacially influenced northwestern Iberian continental margin and abyssal plains, Geomorphology 312, 60-85

Irregular hyperbolae overlapping with varying vertex elevations

Abyssal plain

outcrop


Erosive gravitational process or basement outcrop

- Continuous echo with transparent fill
- - Continuous echo and no sub-bottom reflectors in the first few meters followed by zones of
 - parallel sub-bottom
 - reflectors and intermittent
 - transparent layers

- Erosive bottom surface with parallel and truncated sub-bottom reflectors
- Wavy echo with no parallel Abyssal plain sub-bottom reflectors

Debrite

Depositional mass flow process

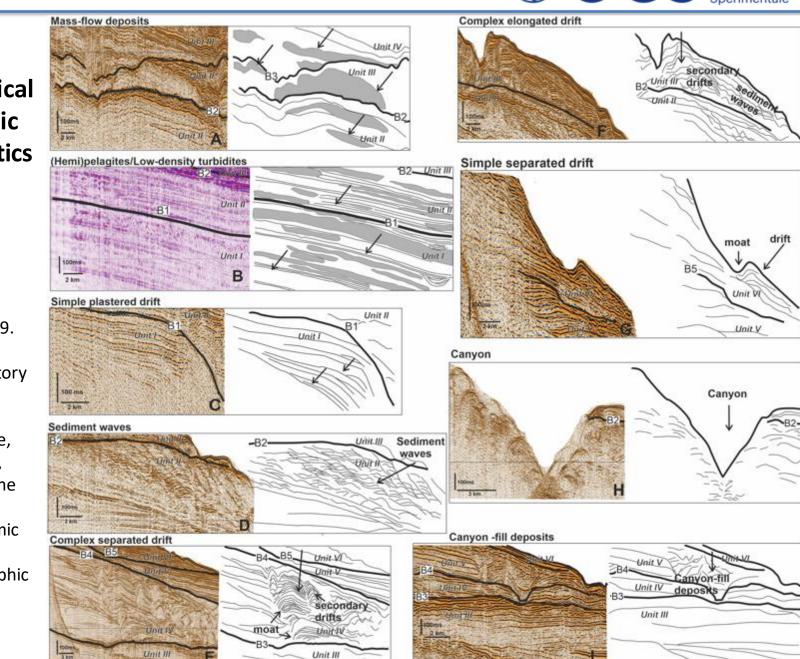
Channel Infill

Depositional pelagic/hemipelagic process

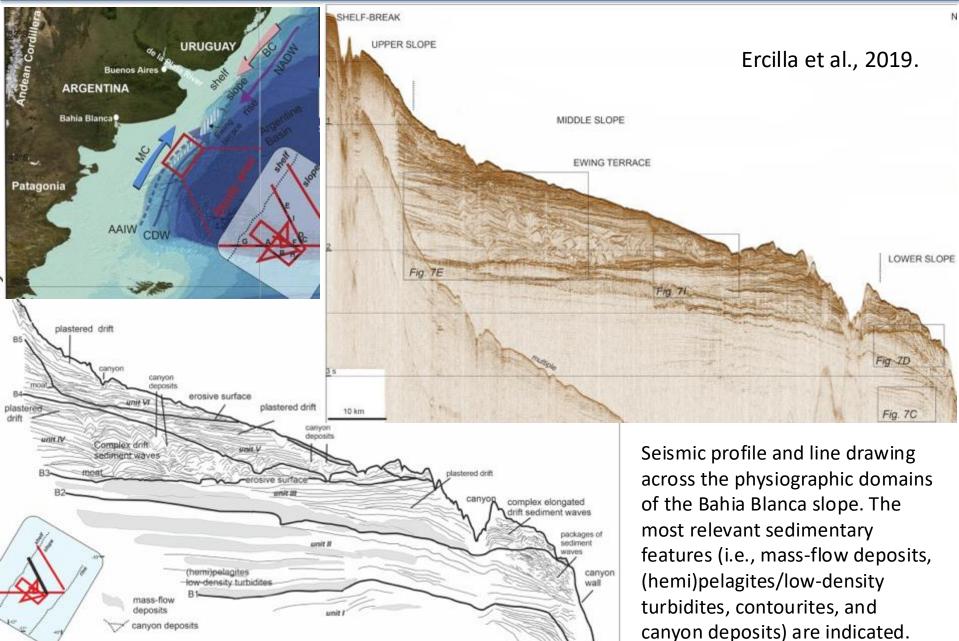
Channel

Erosive turbiditic process

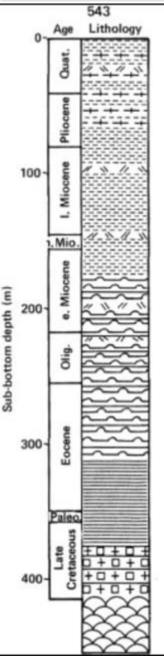
Sediment waves

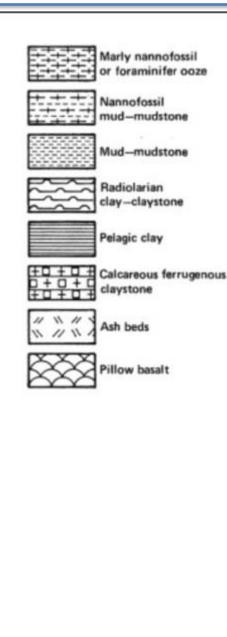

Depositional turbiditic process

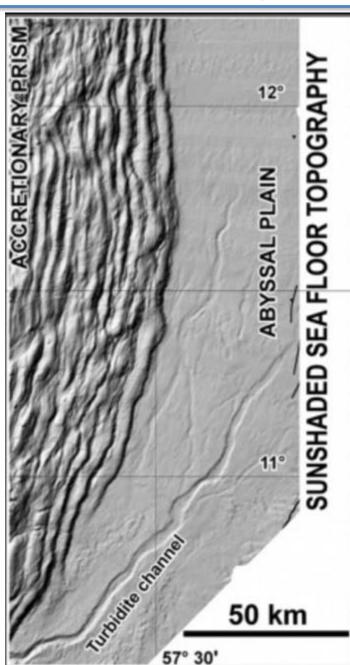
b COGS Istituto Nazionale di Oceanografia e di Geofisica Sperimentale


Main morphological and seismic characteristics

Ercilla et al., 2019. Cenozoic sedimentary history of the northern Argentine continental slope, off Bahia Blanca, the location of the Ewing Terrace: Palaeogeodynamic and palaeoceanographic implications. Marine Geology 417, 106028







Istituto Nazionale di Oceanografia e di Geofisica Sperimentale

Deville & Mascle, 2012, The Atlantic abyssal plain: The **Barbados** ridge. in Regional Geology and **Tectonics: Principles of** Geologic Analysis

CORE

Ь

TOP

FROM

CENTIMETERS

Z

LENGTH

Corso di Analisi di Bacino e Stratigrafia Sequenziale

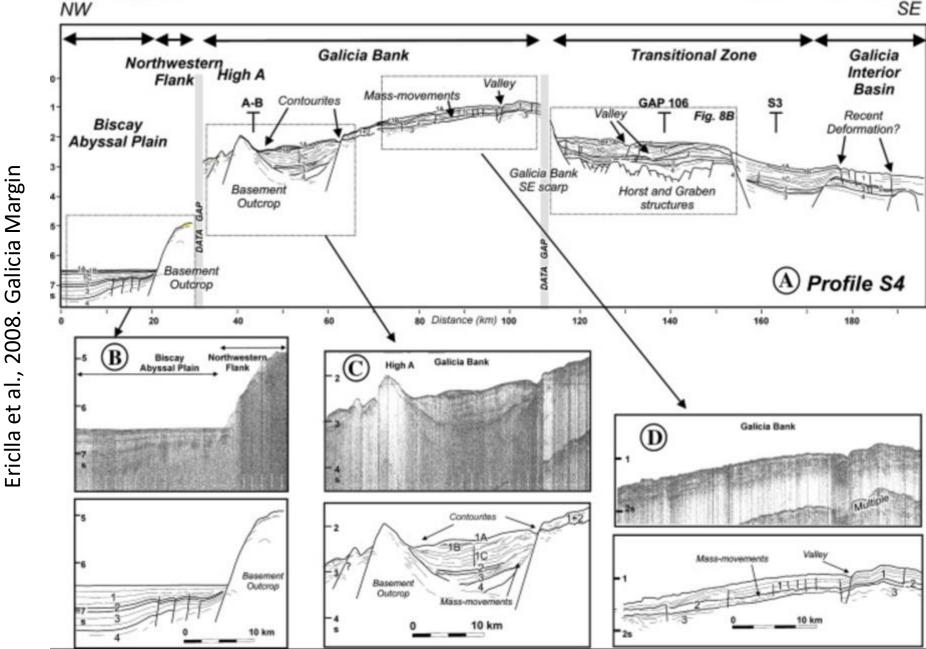
BALENCE CONSTRUCTION OF CONSTRUCTUON OF CONSTR

Late Cenozoic sedimentary facies and processes in the Iberian Abyssal Plain.

Comas and Maldonado, 1988. ODP, Leg 103

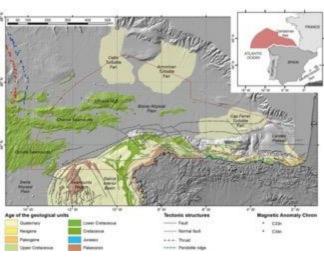
0 0 ۲ 0 Te 80 S £ ш CENTIME Te Pelag hemi settlin Z Turbi curren ENGT Te Td Conte curren T_d) Tc

The pelagic and hemipelagic facies type encompasses a wide spectrum of calcareous oozes and marls.


The more pelagic end-member of this facies consists of white calcareous, foraminifer-rich, nannofossil ooze. The mixed terrigenous-biogenic hemipelagic end-member includes light-colored, clayey, calcareous nannofossil ooze and marl. The primary source for these deposits is pelagic biogenic material; sedimentation represents a complex balance between primary productivity, terrigenous input, and dissolution.

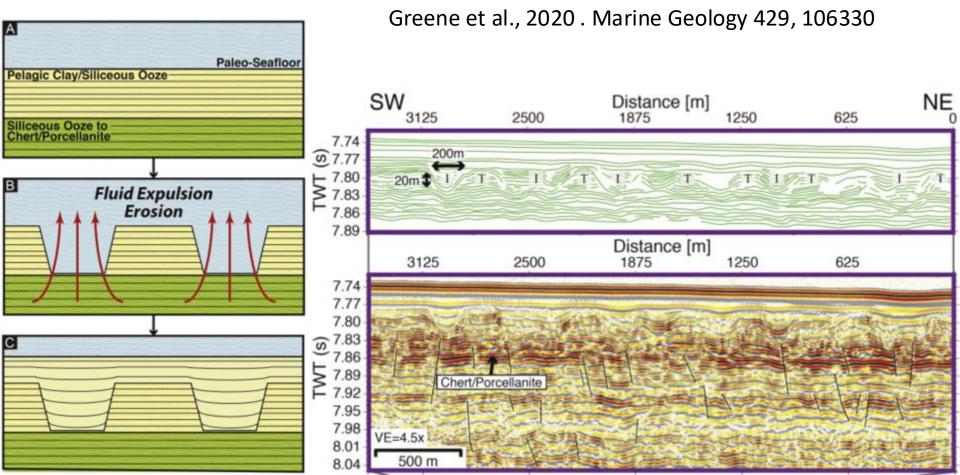
Process		Facies type symbol	Lithologic description
Pelagic- hemipelagic settling	Transition	P F	Pelagic calcareous biogenic to transitional sediments: white (5Y 8/2) nannofossil-foraminifer oozes to light gray (5Y 7/1, 5Y 7/2) clayey nannofossil oozes and light gray (5Y 6/1), grayish green (5Y 5/2), and light olive gray (5Y 6/1) nannofossil marls Transitional calcareous biogenic to terrigenous sediments: light olive
			gray to gray (5Y 6/2, 5Y 5/1), grayish green (5Y 5/2), and pale olive (5Y 6/3) nannofossil marls and grayish brown (2.5Y 5/2) and yellowish brown (10YR 5/4) calcareous clays
Turbidity currents	Transition	T _{e3}	Terrigenous sediments: gray (5Y 5/2), brown (10YR 5/3), and olive
		T _{e2}	gray (5GY 5/2) clays to silty clays (some calcareous) Terrigenous sediments: olive to gray (5Y 5/1, 5Y 5/2, 5GY 5/2) and
		T _{e1}	gravish brown (2.5Y 5/2) silty clays (some calcareous) Terrigenous sediments: dark gray to gray (5Y 4/1, 5Y 5/1) and olive
		T _d	gray (5Y 5/2) silty clays to clayey silts (some calcareous) Terrigenous sediments: dark gray to gray (5Y 4/1, 5Y 5/1) and olive
		T _c	gray (5Y 5/2) clayey silt to sandy-clayey silts (some calcareous) Terrigenous sediments: dark gray to gray (5Y 4/1, 5Y 5/1) and dark olive gray (5Y 3/2) calcareous silty sand to sandy-clayey silts
Contour currents		FC	Calcareous biogenic sediments: white (5Y 8/1, 5Y 7/1) foraminif- eral sands to foraminifer-nannofossil oozes
		SC	Terrigenous sediments: variegated yellowish brown (10YR 5/4, 10YR 6/4), dark grayish brown to grayish brown (2.5Y 4/2, 2.5Y 5/2) and pale brown (10YR 6/3) sand-rich clayey silts to sand-rich silty clays (some nannofossil rich)
		MC	Terrigenous sediments: variegated dark grayish brown (10YR 4/2) and brown (10YR 6/3, 2.5Y 5/4) silty clays to clays (some nanno- fossil rich)
		CC	Terrigenous sediments: light yellowish brown (10YR 6/4, 2.5Y 6/4) and pale brown (10YR 6/3, 10YR 5/4) clays

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale I OGS



Istituto Nazionale di Oceanografia e di Geofisica Sperimentale

Maestro et al., 2021. Echo-character distribution in the Cantabrian Margin and the Biscay Abyssal Plain

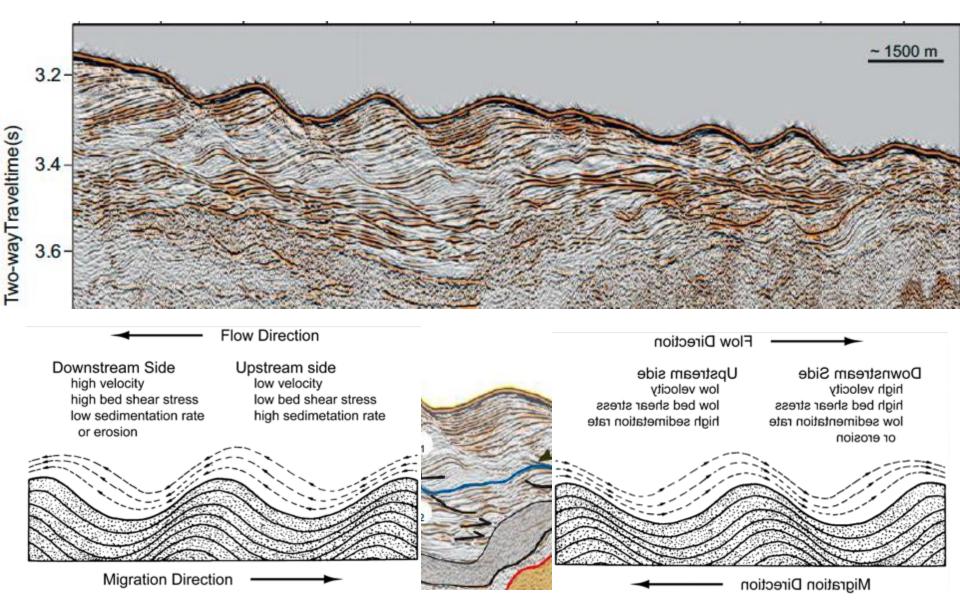


Buildype	TOPAS essengie	Line them	Lagend Challed Exhoe	Characteristics	Datribution	Buttype	TOPAS example	Une dise	Legend	Characteristics	Detrouture
1A	0.15	 I		Abuence of sub-scattori reflectors understaatt a dastrict continuous bodium actio	Contractal Draft and Dige	2C	1	1	_	Detroit and imagine bottom action and task-bottom accurate banking with high otherbeer and subparated to the bottom reflectors in the base	Contraction States
1B	Internet		_	Paralal and statified sub-bottom reflectors understatified a definal continuous tottom table	Controlental Brope and Altyreal Photo	2D	and the second	WITE .	_	Detroit and megular tailour echo and sub-totion accurate barriers with charther inflations in the base designed by vertical transparent	Alysed Part
1C	-		_	Truncate sub-tration attentors underwath a dedinit continious botten schu	Continentia Stops and Aligned Plan		- Sour	Rea .	Ganton Tab	pines est. Botton etho with dreputp	
1D				Dadent and unliver bottom who and autorition accords blanking	Continential Shape and Rhyseel Plan	ЗA		1		Nucerbalas overlagging in a single figuration with variable elevations of the vertex with respect to The bodym	Continents Silves and Aliyonal Plan
0.00	1	1		with established softwares in the basis		38	-	-		Battern actor with response hypothesise with restablish measurement of the content with respond to the factors and auto-softening and with reflectors	Contravental Mingan anti Aliyanak Phare
1E	and a			and sub-bottom proprieting suffectives	Continental Bops and Reysold Plant	30	head	\sim		Suburi auto with what and require typertoise overlagong with tangent certes to the bullow	Continuente Notas anti Advoca Padr
1F		Am		Detroi and unlark lotter ente and sub-botter accords thering with a debrid teffector in the base	Atyme Pen		R. 111 111 11	A CONCE		Bolon acto adl maguar hondona adl variate assuratore	Contracted Visco
1G		1		Defect and uniters totton exhi- and isd-bottom stratified reflectors with accusit, tourising in the base	Contractal State	30	Accession	I.m.		of the series with respect to the potton and sub-soltant without refeators	and Adjunct Plate
1H	-	<u> </u>		Desired and undere tradeet acts and sub-bolice attenuation of tight wheches parallel inflocions to bolicer and accustic blancing texats	Continental Blaze and Royssel Plan	3E	1	3	-	Bottom actio with inequile overlapping trajenticities and sub-software with consistent sub-software sub-software	Contraints Name
11		1		Depression and uniform testers poly- and eut-botters attemption of prographing and continuous estimation and accounts Specing layers	Continential Dispe and Royakat Plan	ЗF		N	_	Bottom active with regular overlapping hyperbinas with the vertex storger? to the bottom	Anyone Pran
1J	回調	- And		Destroit and uniform lostom echa and existentiate accurate thereing with attenuation of high reflection effective and account hiering. Nexels in the base	Algorid Pare	4A		Ì	Industrial Echo	Unificialitied Scillone active and sub-hothere alternations of high selective selections and accordin biantizing studies parallel	Continential Dages
1K				Debut and witten toton echo and two-batton strigge reflectors	Converte Stars	48		P		to the boltom Undotated boltom actio and subicoblem parallel to each other	Alyssa Par-
1L	-	с	-	Detroit and uniform todays achies and such bottom high streature undurate desugner wheatom, parallels a seaf-achies had not to the bottom wheatom, with weltow	Comwine Steps		ALC: NO			Unit for to the bottom without one	
1M	1		_	Detroit and uniform futures and aut routure tugs reflective unifolder, humality inflations unifolder, humality and usuality reflectives	Comunity Stage and Advect Pan	4C		<u>(</u>		auto-bootume accusatio bioanning with a studiest reflector in the base	Continuentar Steam
1N				These fusion echo and sub-bolism parallel and fusicale reflectors	Continential Stope and Royakal Plan	4D	Cr	C#	-	Undulated tottom actio with semi-paratema,o bobber affectors which thin or weight out	Alysse Pain
2A	1223		1000 F2000	Codence and transplar bottom auto- and quit-bottom account; transmig- anth-bigh reflective and processing setticity of the board	Continuental Shape	4E	0	0	_	Unduder totten alte ani sen-pasiel functer alte Dotten selectos	Allyssee Plain
2B		2	_	Debrid and implain before actor and automotion without wilectors	Commits Rope	4F		2		Unducted bolton roles with parallel and option tellection decaded to service transparent pores	Comment State

Deep-ocean paleo-seafloor erosion in the northwestern Pacific identified by high-resolution seismic images

Istituto Nazionale di Oceanografia e di Geofisica Sperimentale

seafloor	Seismic Facies Description	Seismic Facies Interpretation	Seismic Unit	
G Horizon H5	High-amplitude parallel, continu- ous (onlapping onto underlying units)	Hemipelagic to pelagic sediments (including ice-rafted debris)	Unit 5	
F	Moderate- to high- amplitude, concor- dant, semi-continu- ous (mounded geometries common)	Sediment wave-dominated muddy drift	Unit 4	
E Horizon H4	Moderate- to low-amplitude and concordant (wavy geometries common)	deposits (and minor moat levee features)		
D	Very low- amplitude (transparent)	Muddy drift deposits	Unit 3	
Horizon H3	Moderate- to high-amplitude, semi-continuous to discontinuous	Interbedded pelagic sediments	Unit 2	
B Horizon H1	Moderate- to high-amplitude, semi-continuous to continuous	Interbedded pelagic sediments (rare shallow-ma- rine carbonate)	Unit 1	
A	Moderate- to high-amplitude, discontinuous to chaotic (acoustic basement)	Volcanic basement (possibly rare shallow-ma- rine carbonate)		


Exercises

Examples	Seismic character	Seismic facies	Interpretation
2 km	Concave bottom, lenticular configuration,moderate to high amplitude, moderate continuity, lens shape	Lenticular (LF)	Lobes formed by deposition from unconfined concentrated turbidity currents
2.5 km ^{gg} _R	Channel-like external boundary, subparallel configuration, moderate to high amplitude, high to low continuity	Channel-fill (CF)	Deposition within channels from confined turbidity currents
2.5 km	Wedge to mound shape, flat bottom, convergent configuration, moderate amplitude, moderate to high continuity	Wedge-to- mound-shaped (WSF)	Overbank deposits formed by dilute turbidity currents that spilled out of channels
sm 32 2/km 32	Continuous wavy configuration, moderate amplitude, high continuity, upslope migration	Wavy (WF)	Sediment waves formed by unconfined supercritical turbidity currents
	Transparent to chaotic configuration, low amplitude, low continuity, irregular shape	Transparent to chaotic (WF)	Mass transport deposits
ទី ទួ <u>2-5.km</u>	Parallel to subparallel configuration, moderate to high amplitude, high continuity, sheeted shape	Parallel to subparallel (PF)	Mixed pelagic and unconfined dilute turbidity current deposition

Rebesco et al., 2021. Malta Escarpment. Marine Geology 441, 106596

