
Exercises Unit VIII:
Metropolis - Monte Carlo algorithm
for importance sampling integration

1. Sampling physical quantities with gaussian distribution:
direct sampling and Metropolis sampling
Consider the quantum harmonic oscillator and its ground state. The exact
solution and the expectation values of kinetic, potential and total energy
are know analytically, and can be used to compare the numerical results.

(a) Direct sampling. Estimate kinetic energy, potential energy, first mo-

ments ⟨xi⟩ of the wavefunction ψ(x) = Ae−x2/(4σ2) with a sample-
mean Monte Carlo calculation of the integral of the expectation val-
ues using a sequence of random points directly obtained for instance
from the gasdev subroutine (see previous Lectures). See for instance
the code direct sampling.f90. Study the numerical accuracy and
the convergence of the previous quantities as a function of the number
of sampling points.

(b) Is the normalization constant A of the wavefunction important for
our purposes?

(c) Metropolis sampling. Repeat the sampling using the Metropolis algo-
rithm. See for instance the code metropolis sampling.f90. Eval-
uate the numerical accuracy and convergence of the more relevant
quantities as a function of the number of sampling points.

2. Correlations

(a) Calculate the autocorrelation function C(j) =
⟨xixi+j⟩ − ⟨xi⟩2

⟨x2i ⟩ − ⟨xi⟩2
for a

sequence or random numbers with a gaussian distribution using the
Metropolis method, with different values of δ/σ: 1, 5, 10, 25, 50.
Comment the results.

(b) For a fixed value of σ compare the autocorrelation function for two
sequences of random numbers with a gaussian distribution (i) using
the Metropolis method and (ii) using some ad-hoc routine, like for
instance gasdev based on the Box-Muller algorithm. Discuss the
results.
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3. Verification of the Boltzmann distribution

We can verify directly that the Metropolis algorithm yields the Boltzmann
distribution. We consider a single classical particle in one dimension
in equilibrium with a heath bath (canonical ensemble). We fix therefore
the temperature T , which labels a macrostate. The energy E can vary
according to the particular microstate (in this particular case, it is enough
to label a microstate, a part from the sign of the velocity).

(a) Write a code (see e.g. boltzmann metropolis.f90) to determine
the form of the probability distribution P(E) that is generated by
the Metropolis algorithm. Let for instance T=1, the initial velocity
vinitial=0, the number of Monte Carlo steps nmcs=1000, and the
maximum variation of the velocity dvmax=2. Calculate the mean
energy, the mean velocity, and the probability density P(E).

(b) Consider ln P(E) as a function of E. Can you recognize the expected
behavior ? (see slides for the analytic derivation of P(E)) You should
recognise that the asymptotic behavior is a straight line whose slope
is −1/T .

(c) How many nmcs do you need to have a reasonable estimate of the
mean energy and mean velocity ?

(d) Verify that your results do not depend from the initial conditions by
changing vinitial. What does it change? What does it changes by
changing instead dvmax ?

(e) Modify the program to simulate an ideal gas of N particles in one
dimension. [Hint: modify the subroutine Metropolis inserting a loop
over the particles] Consider for instance N=20, T=100, nmcs=200.
Assume all particles to have the same initial velocity vinitial=10.
Determine the value of dvmax so that the acceptance ratio is about
50% ? What are the mean energy ⟨E⟩ (i.e., total energy of the system
⟨Etot⟩ divided by the number of particles) and the mean velocity?
[the symbol ⟨⟩ indicates temporal(statistical) averages]

(f) Calculate P(E) (E now indicates the mean energy per particle), make
a plot and describe its behaviour. Is it similar to the case N=1 ?
Comment on that.

(g) Calculate the total energy Etot for T=10, 20, 30, 90, 100, and 110,
and estimate the heat capacity as the numerical derivative of the
energy with respect to the temperature, C = ∂⟨Etot⟩/∂T . [C is the
heat capacity, i.e. referred to the whole system; you may consider,
alternatively, the specific heat, referred to a single particle...]

(h) Calculate the mean square energy fluctuation ⟨∆E2
tot⟩ = ⟨E2

tot⟩ −
⟨Etot⟩2 for T=10 and T=40. Compare the magnitude of the ratio
C = ⟨∆E2

tot⟩/T 2 numerically estimated from the mean square energy
fluctuation with that obtained in (f).
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4. MC simulation of a simple N-particles model
Consider an ideal gas of N non interacting, distinguishable particles, con-
fined in a box (fixed V) and isolated (fixed E), divided into left/right
with the possibility for one particle at a time to pass through the separa-
tion wall, with equal probability from the left to the right or viceversa.

A macrostate is specified for instance by the number of particles on the
left side, say n, that can correspond to differentmicrostates depending on
the list of the specific particles there. A Monte Carlo approach consists in
generating a certain number of movements, randomly, and consider them
as representative of all the possible movements. The program box.f90 is
a possible implementation of the algorithm describing the time evolution
of the system in terms of macrostates, i.e. –given an initial number of
particles on the left, n– the approach to equilibrium and which is the
equilibrium macrostate.

(a) Choose N=4, 10, 20, 40, 80, and n=N initially. Make a plot of n
(or, better, of n/N) with respect to time. What is the equilibration
time τeq (=how many MC steps)?

(b) Modify the program so that at each time step t it calculates the
number of particles < n(t) > averaged over different runs (e.g. 5
runs). Make a plot to compare n(t) over the individual runs and
averaged < n(t) >.

(c) (Optional; do it at home!) Compare the numerical value of < n(t) >
with the exact analytic results for a simple case, for instance N=4.

(d) (Optional) Consider only one run. Modify the program to calculate
numerically the probability Pn of having at equilibrium a macrostate
with n particles on the left, by simply counting the number of occur-
ring microstates that correspond to the macrostate n and dividing
for the total number of microstates generated in the time evolution.
Plot the histogram Pn for N=20, 40, 80 and a “sufficiently” long run.
Comment.

(e) Modify the program to measure the statistical fluctuations at the
equilibrium, by calculating the variance σ2 =< n2 > − < n >2,
where the average is done over a time interval after reaching the
equilibrium.

(f) Determine < n > and σ/ < n > at equilibrium for N=20, 40, 80.
Which is the dependence of these quantities on N?
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!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

! metropolis.f90

!

! campionamento METROPOLIS di varie quantita’ (tra cui l’energia,

! hamiltoniana: h = -1/2 \nabla^2 + 1/2 x^2),

! confronto stime numeriche con valori analitici attesi,

! su psi^2(x), con psi(x) = exp(-\beta x^2)

! (beta = 1/4*sigma^2; con beta=.25 => psi^2(x) = costante * gaussiana normale

! P(x) = exp(-x**2/(2*sigma**2))/sqrt(2*pi*sigma**2)

!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

program metropolis

implicit none

integer, parameter :: dp=selected_real_kind(13)

integer :: i,n

integer, dimension(1) :: seed

real(kind=dp):: sigma,beta,etot,ekin,epot,rnd

real(kind=dp):: x,x1,x2,x3,x4,xp,delta,lnpsi,lnpsip,p,acc

character(len=13), save :: format1 = "(a7,2x,2f9.5)"

acc = 0.0_dp

x1 = 0.0_dp

x2 = 0.0_dp

x3 = 0.0_dp

x4 = 0.0_dp

ekin = 0.0_dp

epot = 0.0_dp

print*, "seed, n, beta, x0, delta"

read*, seed(1),n,beta,x,delta

call random_seed(put=seed)

sigma=1.0_dp/sqrt(4.0_dp*beta)

do i=1,n

ekin = ekin - 0.5_dp * ((2*beta*x)**2 - 2*beta)

epot = epot + 0.5_dp * x**2

etot = ekin + epot

x1 = x1 + x

x2 = x2 + x**2

x3 = x3 + x**3

x4 = x4 + x**4

!ccccccccccccccccccccccccccccccc

lnpsi = -beta * x**2 !

call random_number(rnd) !

xp = x + delta * (rnd-0.5_dp) !

lnpsip = -beta * xp**2 ! metropolis

p = exp ( 2 * (lnpsip-lnpsi) ) ! algorithm
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call random_number(rnd) !

if (p > rnd) then !

x = xp !

!ccccccccccccccccccccccccccccccc

acc=acc+1.0_dp

endif

enddo

write(unit=*,fmt=*)"acceptance ratio = ",acc/n

write(unit=*,fmt=*)"Risultati (simulazione vs.risultato esatto):"

write(unit=*,fmt=format1)"etot = ",etot/n,1.0_dp/(8.0_dp*sigma**2)&

+0.5_dp*sigma**2

write(unit=*,fmt=format1)"ekin = ",ekin/n,1.0_dp/(8.0_dp*sigma**2)

write(unit=*,fmt=format1)"epot = ",epot/n,0.5_dp*sigma**2

write(unit=*,fmt=format1)"<x> = ",x1/n,0.0_dp

write(unit=*,fmt=format1)"<x^2>= ",x2/n,sigma**2

write(unit=*,fmt=format1)"<x^3>= ",x3/n,0.0_dp

write(unit=*,fmt=format1)"<x^4>= ",x4/n,3.0_dp*sigma**4

end program metropolis
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!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

! diretto.f90

!

! campionamento DIRETTO di varie quantita’ (tra cui l’energia,

! hamiltoniana: h = -1/2 \nabla^2 + 1/2 x^2),

! confronto stime numeriche con valori analitici attesi,

! su psi^2(x), con psi(x) = exp(-\beta x^2)

! (beta = 1/4*sigma^2; con beta=.25 => psi^2(x) = costante * gaussiana normale

! P(x) = exp(-x**2/(2*sigma**2))/sqrt(2*pi*sigma**2)

!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

Module gaussian

implicit none

public :: gasdev

contains

SUBROUTINE gasdev(x)

REAL, INTENT(OUT) :: x

REAL :: rsq, v1, v2

REAL, SAVE :: g

LOGICAL, SAVE :: gaus_stored=.false.

if (gaus_stored) then

x=g

gaus_stored=.false.

else

do

call random_number(v1)

call random_number(v2)

v1 = 2.0*v1 - 1.0

v2 = 2.0*v2 - 1.0

rsq = v1**2 + v2**2

if (rsq > 0.0 .and. rsq < 1.0) exit

end do

rsq = sqrt(- 2.0*log(rsq)/rsq)

x = v1*rsq

g = v2*rsq

gaus_stored = .true.

end if

END SUBROUTINE gasdev

end module gaussian
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program diretto

use gaussian

implicit none

integer, parameter :: dp=selected_real_kind(13)

integer :: i,n

integer, dimension(1) :: seed

real :: rnd

real(kind=dp):: sigma,beta,etot,ekin,epot

real(kind=dp):: x,x1,x2,x3,x4

character(len=13), save :: format1 = "(a7,2x,2f9.5)"

x1 = 0.0_dp

x2 = 0.0_dp

x3 = 0.0_dp

x4 = 0.0_dp

ekin = 0.0_dp

epot = 0.0_dp

print*, "seed, n, beta ="

read*, seed(1),n,beta

call random_seed(put=seed)

sigma=1.0_dp/sqrt(4.0_dp*beta)

do i=1,n

!cccccccccccccccccccccccccc

call gasdev(rnd) !

x=rnd*sigma ! campionamento diretto

!ccccccccccccccccccccccccc!

ekin = ekin - 0.5_dp * ((2*beta*x)**2 - 2*beta)

epot = epot + 0.5_dp * x**2

etot = ekin + epot

x1 = x1 + x

x2 = x2 + x**2

x3 = x3 + x**3

x4 = x4 + x**4

end do

write(unit=*,fmt=*)"Risultati (simulazione verso risultato esatto):"

write(unit=*,fmt=format1)"etot = ",etot/n,1.0_dp/(8.0_dp*sigma**2)&

+0.5_dp*sigma**2

write(unit=*,fmt=format1)"ekin = ",ekin/n,1.0_dp/(8.0_dp*sigma**2)

write(unit=*,fmt=format1)"epot = ",epot/n,0.5_dp*sigma**2

write(unit=*,fmt=format1)"<x> = ",x1/n,0.0_dp

write(unit=*,fmt=format1)"<x^2>= ",x2/n,sigma**2

write(unit=*,fmt=format1)"<x^3>= ",x3/n,0.0_dp

write(unit=*,fmt=format1)"<x^4>= ",x4/n,3.0_dp*sigma**4

end program diretto
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!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

! boltzmann_metropolis.f90

!

! Metropolis algorithm used as importance-sampling:

! generation of microstates with Boltzmann distribution,

! here for a classical particle in 1D.

! The interesting quantity is the probability P(E)dE for a particle

! to have energy between E and E+dE (here E can label a microstate,

! a part from the sign +/- of the velocity)

!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

module common

implicit none

public :: initial, Metropolis, data, probability, averages

real, public :: E,T,del_E,beta,dvmax,vel,accept

integer, public, dimension(:), allocatable :: seed

integer, public :: nbin,nmcs,sizer

real, public, dimension(:), allocatable :: P

contains

subroutine initial(nequil,vcum,ecum,e2cum)

real, intent(out) :: vcum,ecum,e2cum

integer, intent(out) :: nequil

print*," number of MC steps >"

read *, nmcs

print*," absolute temperature >"

read *, T

print*," initial velocity >"

read *, vel

print*," maximum variation of the velocity (hint: 4*sqrt(T)=",4*sqrt(T),") >"

read *, dvmax

call random_seed(sizer)

allocate(seed(sizer))

print *,’Here the seed has ’,sizer,’ components; insert them (or print "/") >’

read *, seed

call random_seed(put=seed)

beta = 1/T

nequil = 0.1 * nmcs ! WARNING : VERIFY this choice !

E = 0.5 * vel * vel

del_E = T/20 ! a reasonable width of the bin for the histogram of P(E)

nbin = int(4*T / del_E) ! max. number of bins

print *,"# T :",T

print *,"# <E0> :",E

print *,"# <v0> :",vel

print *,"# dvmax :",dvmax

print *,"# nMCsteps:",nmcs

8



print *,"# deltaE :",del_E

print *,"# nbin :",nbin

open(unit=9,file="boltzmann.dat",status="replace",action="write")

write(unit=9,fmt=*)"# T :",T

write(unit=9,fmt=*)"# <E0> :",E

write(unit=9,fmt=*)"# <v0> :",vel

write(unit=9,fmt=*)"# dvmax :",dvmax

write(unit=9,fmt=*)"# nMCsteps:",nmcs

write(unit=9,fmt=*)"# deltaE :",del_E

write(unit=9,fmt=*)"# nbin :",nbin

allocate (P(0:nbin))

ecum = 0.0

e2cum = 0.0

vcum = 0.0

P = 0.0

accept= 0.0

end subroutine initial

subroutine Metropolis()

real :: dv,vtrial,de,rnd

call random_number(rnd)

dv = (2*rnd - 1) * dvmax ! trial variation for v

vtrial = vel + dv ! trial velocity v

de = 0.5 * (vtrial*vtrial - vel*vel) ! corresponding variation of E

call random_number(rnd)

if (de >= 0.0) then

if ( exp(-beta*de) < rnd ) return ! trial step not accepted

end if

vel = vtrial

accept = accept + 1

E = E + de

end subroutine Metropolis

subroutine data(vcum,ecum,e2cum)

real, intent(inout) :: vcum,ecum,e2cum

Ecum = Ecum + E

E2cum = E2cum + E*E

vcum = vcum + vel

call probability()

end subroutine data

subroutine probability()

integer :: ibin

ibin = int(E/del_E)

if ( ibin <= nbin ) P(ibin) = P(ibin) + 1

end subroutine probability
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subroutine averages(nequil,vcum,Ecum,E2cum)

integer, intent(in) :: nequil

real, intent(in) :: vcum,Ecum,E2cum

real :: znorm, Eave, E2ave, vave, sigma2

integer :: ibin

znorm = 1.0/nmcs

accept = accept / (nmcs+nequil) ! acceptance ratio

Eave = Ecum * znorm ! average energy

E2ave = E2cum * znorm !

vave = vcum * znorm ! average velocity

sigma2 = E2ave - Eave*Eave

print *,"# <E2>num.:",E2ave

print *,"# <E> num.:",Eave

print *,"# <E> th. :",T/2

print *,"# <v> :",vave

print *,"# accept. :",accept

print *,"# sigma :",sqrt(sigma2)

write(unit=9,fmt=*)"# <E2>num:",E2ave

write(unit=9,fmt=*)"# <E> num.:",Eave

write(unit=9,fmt=*)"# <E> th. :",T/2

write(unit=9,fmt=*)"# <v> :",vave

write(unit=9,fmt=*)"# accept. :",accept

write(unit=9,fmt=*)"# sigmaE :",sqrt(sigma2)

write(unit=9,fmt=*)"# ibin*del_E, P(E)"

do ibin = 0,nbin

write(unit=9,fmt=*) ibin*del_E, P(ibin) * znorm

end do

close(unit=9)

end subroutine averages

end module common

program Boltzmann

use common

real :: vcum, ecum, e2cum

integer :: imcs,nequil

! parameters and variable initialization

call initial(nequil,vcum,ecum,e2cum)

do imcs = 1 , nmcs + nequil

call Metropolis()

! data accumulation after each Metropolis step

if ( imcs > nequil ) call data(vcum,ecum,e2cum)

end do

call averages(nequil,vcum,Ecum,E2cum)

deallocate(P)

end program Boltzmann
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!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

! box.f90

!

! simulation of the evolution of a physical system towards equilibrium:

! non interacting particles in a box divided into two parts;

! at each time step, one and only one particle (randomly choosen)

! goes from one side to the other one

!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

module moduli_box

implicit none

public :: initial, move

integer, public :: N,tmax

contains

subroutine initial()

integer , dimension(8) :: seed !!! change according to the seed dimension

print*," total number of particles N >"

read*,N

tmax = 10*N ! we choose the evolution time proportional to N

print*," seed (1:8) >"

read *, seed

call random_seed(put=seed)

end subroutine initial

subroutine move()

integer :: nl,itime

real :: r, prob

nl = N ! we start with all the particles on the left side

open(unit=2,file="box.out",action="write",status="replace")

do itime = 1,tmax

prob = real(nl)/N ! fraction of particles on the left

call random_number(r)

if (r <= prob) then

nl = nl - 1

else

nl = nl + 1

end if

write(unit=2,fmt=*)nl

end do

close(unit=2)

end subroutine move

end module moduli_box

program box

use moduli_box

! compare a random number with the fraction of particles on the left, nl/N:

! if r.le.nl/N we move one particle from tyhe left to the right;
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! elsewhere from the right to the left

call initial()

call move()

end program box
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