
Cyber-Physical Systems

Laura Nenzi
Università degli Studi di Trieste

I Semestre 2024

Lecture 12: Automata and Temporal Logic

[Many Slides due to J. Deshmukh, USC, LA,USA]

2

□ 1,3 𝑥 > 0 ⇒  1,3 (𝑦 > 0 ∧  0,0.001 𝑦 < 0 ⇒ 𝑥 > 1 ∨ (𝑥 < −1)

 Requirements describe desirable properties of system behaviors

 High assurance/safety-critical, or mission-critical systems must use formal requirements

 Behavioral requirements: requirement can be evaluated on individual system behaviors

 Requirements met by the whole system if all behaviors satisfy requirements

 There needs to be a clear separation between requirements (what needs to be
implemented) and the design (how should it be implemented)

 Unfortunately, this is not often obeyed

Requirements

3

 Informal requirements: implicit or stated in natural language
 If an obstacle is sensed by the car, it should stop if it is safe to do so

 Formal requirements: explicit and mathematically precise
 If the vision system, with a probability > 0.8,

labels an object (𝑥 + 𝑑safe) meters from the car as a stationary
obstacle,

 then as long as the current velocity 𝑢 of the car is less than 2𝑥𝑏 𝑢 ,
the vehicle should execute an emergency stop maneuver within 10 ms.

Here, the maximum braking deceleration that the car can produce at velocity
𝑢 is −𝑏max(𝑢), and 𝑑safe is a safe stopping distance between vehicles

Rigor in Requirements

4

 Hard Requirements: Violation leads to endangering safety-criticality or
mission-criticality

Safety Requirements: system never does something bad

Liveness Requirements: from any point of time, system eventually does
something good

 Soft Requirements: Violations lead to inefficiency, but are not critical

 (Absolute) Performance Requirements: system performance is not worst
than a certain level

 (Average) Performance Requirements: average system performance is at a
certain level

Types of Specifications/Requirements

6

 Languages and Logics to describe mathematically precise requirements

 Examples:

Automata, State Machines

Propositional Logic, Temporal Logic, Regular Expressions

Structured language/grammar-based requirements

Requirement Formalisms

8

 Temporal Logic (literally logic of time) allows us to specify infinite sequences
of states using logical formulae

 Amir Pnueli in 1977 used a form of temporal logic called Linear Temporal
Logic (LTL) for requirements of reactive systems: later selected for the 1996
Turing Award

 Clarke, Emerson, Sifakis in 2007 received the Turing Award for the model
checking algorithm, originally designed for checking Computation Tree Logic
(CTL) properties of distributed programs

Temporal Logic

10

 Syntax: A set of operators that allow us to construct formulas from specific
ground terms

 Semantics: A set of rules that assign meanings to well-formed formulas
obtained by using above syntactic rules

 Simplest form is Propositional Logic

What is a logic in context of today’s lecture?

11

 Simplest form of logic with a set of:

 atomic propositions:
𝐴𝑃 = 𝑝, 𝑞, 𝑟, …

Boolean connectives:
∧,∨, ¬, ⇒, ≡

 Syntax recursively gives how new
formulae are constructed from
smaller formulae

Propositional Logic

12

Syntax of Propositional Logic

𝜑 ∷= 𝑡𝑟𝑢𝑒 | the true formula

𝑝 | 𝑝 is a prop in AP

¬𝜑 | Negation

𝜑 ∧ 𝜑 | Conjunction

𝜑 ∨ 𝜑 | Disjunction

𝜑 ⇒ 𝜑 | Implication

𝜑 ≡ 𝜑 | Equivalence

 Semantics (i.e. meaning) of a formula
can be defined recursively

 Semantics of an atomic proposition
defined by a valuation function 𝜈

 Valuation function assigns each
proposition a value 1 (true) or 0
(false), always assigns the 𝑡𝑟𝑢𝑒
formula the value 1, and for other
formulae is defined recursively

Semantics

13

Semantics of Prop. Logic

𝜈(𝑡𝑟𝑢𝑒) 1

𝜈 𝑝 1 if 𝜈 𝑝 = 1

𝜈 ¬𝜑
1 if 𝜈 𝜑 = 0
0 if 𝜈 𝜑 = 1

𝜈(𝜑1 ∧ 𝜑2)
1 if 𝜈 𝜑1 = 1 and 𝜈 𝜑2 = 1,
0 otherwise

𝜑1 ∨ 𝜑2 𝜈 ¬(¬𝜑1 ∧ ¬𝜑2)

𝜑1 ⇒ 𝜑2 𝜈 ¬𝜑1 ∨ 𝜑2

𝜑1 ≡ 𝜑2 𝜈 𝜑1 ⇒ 𝜑2 ∧ 𝜑2 ⇒ 𝜑1

 𝑝 : There is an upright bicycle in the
middle of the road

 r: the bicycle has a rider

 𝑝 ⇒ 𝑟: If there is an upright bicycle in
the middle of the road, the bicycle has
a rider

 𝑞 : There is car in the field of vision

 𝑜𝑖: Car 𝑖 is in the intersection

 𝑜1 ∧ ¬𝑜2 ∨ (¬𝑜1 ∧ 𝑜2)

Examples

14

 𝜈: 𝑝1 ↦ 1, 𝑝2 ↦ 0, 𝑝3 ↦ 0. What is 𝜈 𝑝1 ∧ 𝑝2 ⇒ 𝑝3 ?

 𝜈 𝑝1 ∧ 𝑝2 ⇒ 𝑝3 =1

 𝜈: 𝑝1 ↦ 1, 𝑝2 ↦ 0, 𝑝3 ↦ 0. What is 𝜈 (𝑝1⇒ 𝑝3) ∧ 𝑝2 ⇒ 𝑝3

 𝜈 (𝑝1⇒ 𝑝3) ∧ 𝑝2 ⇒ 𝑝3 =0

 Is this true? 𝜈 𝑝1 ∧ 𝑝2 ⇒ 𝑝3 ≡ 𝑝1 ⇒ 𝑝3 ∧ 𝑝2 ⇒ 𝑝3 = 1?

(For all valuations)?

Interpreting a formula of prop. logic

15

 Propositional Logic is interpreted over valuations to atoms

 Temporal Logic is interpreted over traces/sequences/strings

 Trace is an infinite sequence of valuations

 𝜌:

Temporal Logic = Prop. Logic + Temporal Operators

17

0 1 2 3 4 42⋯ ⋯
𝑝,
𝑞

𝑝,
¬𝑞

¬𝑝,
¬𝑞

𝑝,
𝑞

¬𝑝,
𝑞

𝑝,
𝑞

 Can also write as: (0,1,1), (1,1,0), (2,0,0), (3,1,1),(4,0,1),… ,(42,1,1), …

LTL

18

 LTL is a logic interpreted over infinite traces

 Temporal logic with a view that time evolves in a linear fashion

Other logics where time is branching!

 Assumes that a trace is a discrete-time trace, with equal time intervals

 Actual interval between time-points does not matter : similar to rounds in
synchronous reactive components

 LTL can be used to express safety and liveness properties!

Linear Temporal Logic

19

 LTL formulas are built from
propositions using:

Boolean connectives

Temporal Operators

 Only shown ∧ and ¬, but can
define ∨, ⇒, ≡ for convenience

LTL Syntax

20

Syntax of LTL

𝜑 ∷= 𝑝 | 𝑝 is a prop in AP

¬𝜑 | Negation

𝜑 ∧ 𝜑 | Conjunction

𝐗𝜑 | NeXt Step

𝐅𝜑 | Some Future Step

𝐆𝜑 | Globally in all steps

𝜑 𝐔 𝜑 |
In all steps Until in
some step

 Semantics of LTL is defined by a valuation function that assigns to each
proposition at each time-point in the trace a truth value (0 or 1)

 We use the symbol ⊨ (read models) to show that a trace-point satisfies a
formula

 𝜌, 𝑛 ⊨ 𝜑 : Read as trace 𝜌 at time 𝑛 satisfies formula 𝜑

 If we omit 𝑛, then the meaning is time 0. I.e. 𝜌 ⊨ 𝜑 is the same as 𝜌, 0 ⊨ 𝜑

 Semantics is defined recursively over the formula

 Base case: Propositional formulas, Recursion over structure of formula

LTL Semantics

21

 𝜌, 𝑛 ⊨ 𝑝 if 𝜈𝑛 𝑝 = 1,

 i.e. if 𝑝 is true at time 𝑛

 𝜌, 𝑛 ⊨ ¬𝜑 if 𝜌, 𝑛 ⊭ 𝜑,

 i.e. if 𝜑 is not true for the trace starting time 𝑛

 𝜌, 𝑛 ⊨ 𝜑1 ∧ 𝜑2 if 𝜌, 𝑛 ⊨ 𝜑1 and 𝜌, 𝑛 ⊨ 𝜑2

 i.e. if 𝜑1 and 𝜑2 both hold starting time 𝑛

Recursive semantics of LTL: I

22

 𝜌, 𝑛 ⊨ 𝐗𝜑 if 𝜌, 𝑛 + 1 ⊨ 𝜑

 i.e. if 𝜑 holds starting at the next time point

 𝜌, 𝑛 ⊨ 𝐅 𝜑 if ∃𝑚 ≥ 𝑛 such that 𝜌, 𝑚 ⊨ 𝜑

 i.e. 𝜑 is true starting now, or there is some future time-point 𝑚 from
where 𝜑 is true

Recursive semantics of LTL: II

23

 𝐗𝑝 : NeXt Step

Visualizing the temporal operators

24

0 1 2 3 4 42

¬𝑝 𝒑 ¬𝑝 ¬𝑝 ¬𝑝 𝑝

 𝐅𝑝 : Some Future step

0 1 2 3 4 42⋯ ⋯
¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 𝒑

0 1 2 3 4 42⋯ ⋯
𝒑 ¬𝑝 𝑝 ¬𝑝 ¬𝑝 𝑝

 𝜌, 𝑛 ⊨ 𝐆 𝜑 if ∀𝑚 ≥ 𝑛 : 𝜌, 𝑚 ⊨ 𝜑

 i.e. 𝜑 is true starting now, and for all future time-points 𝑚, 𝜑 is true
starting at 𝑚

 𝜌, 𝑛 ⊨ 𝜑1𝐔𝜑2 if ∃𝑚 ≥ 𝑛 s.t. 𝜌, 𝑚 ⊨ 𝜑2 and ∀ℓ s.t. 𝑛 ≤ ℓ < 𝑚, 𝜌, ℓ ⊨ 𝜑1

 i.e. 𝜑2 eventually holds, and for all positions till 𝜑2 holds, 𝜑1 holds

Recursive semantics of LTL: II

25

 𝐆𝑝: Globally 𝑝 holds

Visualizing the temporal operators

26

0 1 2 3 4 42⋯ ⋯
𝒑 𝒑 𝒑 𝒑 𝒑 𝒑

 𝑝 𝐔 𝑞: 𝑝 holds Until 𝑞 holds

0 1 2 3 4 42⋯ ⋯
𝒑

¬𝑞
𝒑

¬𝑞
𝒑

¬𝑞
𝒑

¬𝑞

𝑝
𝒒

 What does 𝐗𝐅 𝑝 mean?

Trace satisfies 𝐗𝐅𝑝 (at time 0) if at time 1, 𝐅𝑝 holds. I.e. 𝑝 holds at some
point strictly in the future

You can nest operators!

27

⋯ ⋯0 1 2 3 4 42

¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 𝒑

 What does 𝐆𝐅 𝑝 mean?
Trace satisfies 𝐆𝐅𝑝 (at time 0) if at 𝑛, there is always a 𝒑 in the future

0 1 2

¬𝑝 ¬𝑝 𝒑

⋯ 14 ⋯15

𝒑¬𝑝

65

𝒑

⋯

 What does 𝐅𝐆𝑝 mean?

More operator fun

28

10 11 12 13 14 42⋯ ⋯
𝒑 𝒑 𝒑 𝒑 𝒑 𝒑

0

¬𝑝

⋯

 What does 𝐆 𝑝 ⇒ 𝐅𝑞 mean?

0 1 2

𝒑 𝒒

14 15

𝒒

65

𝒒𝒑

54

𝒑

⋯ ⋯⋯

 What does the following formula mean: 𝑝1 ∧ 𝐗 𝑝2 ∧ 𝐗 𝑝3 ∧ 𝐗(𝑝4∧ 𝐗𝑝5 ?

More, more operator fun

29

0 1 2 3 4 5

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

 Is this true? 𝐅(𝑝 ∧ 𝑞) is the same as 𝐅𝑝 ∧ 𝐅𝑞?

0 1 2 3 4 42⋯ ⋯
𝑝,
¬𝑞

¬𝑝,
𝑞

𝑝,
¬𝑞

¬𝑝,
𝑞

𝑝,
¬𝑞

𝑝,
¬𝑞

Linear Temporal Logic (LTL) specification

30

It is a logic interpreted over infinite discrete-time traces

E.g. It is always true that the highest temperature will be below 75 degree and the lowest
temperature will be above 60 degree

𝐆(p ∧ q) p = T<75, q=T>60

E.g. For the next 3 days the highest temperature will be below 75 degree and the lowest
temperature will be above 60 degree

X (p ∧ q) ∧ X X (p ∧ q) ∧ X X X (p ∧ q) with p = T<75, q=T>60

Linear Temporal Logic (LTL) specification

31

It is a logic interpreted over infinite discrete-time traces

 𝐅𝜑 ≡ ¬𝐆¬𝜑

 𝐆𝐅𝜑 ≡ ¬𝐅𝐆¬𝜑

 𝐅 𝜑 ∨ 𝜓 ≡ 𝐅𝜑 ∨ 𝐅𝜓

 𝐆 𝜑 ∧ 𝜓 ≡ 𝐆𝜑 ∧ 𝐆𝜓

 𝐅𝐅𝜑 ≡ 𝐅𝜑

 𝐆𝐆𝜑 ≡ 𝐆𝜑

 𝐅𝐆𝐅𝜑 ≡ 𝐆𝐅𝜑

 𝐆𝐅𝐆𝜑 ≡ 𝐅𝐆𝜑

Operator duality and identities

32

 Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL

34

Kitchen
(𝑘)

Bedroom (𝑑)

Living Room (ℓ)

Bathroom (𝑏)

Study (𝑠)

 Whenever the robot visits the
kitchen, it should visit the
bedroom after.

𝐆(𝑘𝑟 ⇒ 𝐅 𝑑𝑟)

 Robot should never go to the
bathroom.

𝐆¬𝑏𝑟

 The robot should keep working
until its battery becomes low

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝐔 𝑙𝑜𝑤_𝑏𝑎𝑡𝑡𝑒𝑟𝑦

TV

 Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL

35

Kitchen
(𝑘)

Bedroom (𝑑)

Living Room (ℓ)

Bathroom (𝑏)

Study (𝑠)

 The robot should repeatedly visit
the living room

𝐆𝐅 ℓ

 Whenever the TV is on and the
living room has no person in it,
then within three steps, the robot
should turn off the TV

𝑜(𝑟): room occupied by a person

𝐆 ¬𝑜 ℓ ∧ 𝑇𝑉𝑜𝑛 ⇒ 𝐅≤3(𝑇𝑉𝑜𝑓𝑓)

𝐅≤3𝜑 ≡ 𝜑 ∨ 𝐗𝜑 ∨ 𝐗𝐗𝜑 ∨ 𝐗𝐗𝐗𝜑TV

 Safety and liveness requirements require fundamentally different classes of model
checking algorithms

 safety requirement: “system never does something bad”

“if something bad happens on an infinite run, then it happens already on some
finite prefix”

Counterexamples no reachable ERROR state

 liveness requirement: “system eventually does something good “

“no matter what happens along a finite run, something good could still happen
later”

Infinite-length counterexamples, loop

(Hard) Requirements

36

 It cannot happen that both processes are in their critical sections simultaneously

 Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most
once before process P1 gets to enter.

 Whenever process P1 wants to enter the critical section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.

 The elevator will arrive within 30 seconds of being called

 Patient’s blood glucose never drops below 80 mg/dL

37

Requirements example

 It cannot happen that both processes are in their critical sections simultaneously S

 Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most
once before process P1 gets to enter. S

 Whenever process P1 wants to enter the critical section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually. L

 The elevator will arrive within 30 seconds of being called S (observe the finite prefix of all
computation steps until 30 seconds have passed, and decide the property, therefore safety)

 Patient’s blood glucose never drops below 80 mg/dL S

38

Requirements example

 Most programmers have used regular expressions

 Regular Expressions (RE) are sequences of characters that specify
(acceptable) pattern of finite length

 Example:

 [a-z][a-z 0-9] : strings starting with a lowercase letter (a-z) followed by one
lowercase letter or number

 [a-z][0-9]*[a-z] : strings starting with a lowercase letter, followed by finitely
many numbers followed by a lowercase letter

Detour to automata and formal languages

44

Famous equivalence between FSA and regular expressions:
 For every regular expression 𝑅𝑖 , there is a corresponding FSA 𝐴𝑖 that accepts the set of

strings generated by 𝑅𝑖 .
 For every FSA 𝐴𝑖 there is a corresponding regular expression that generates the set of

strings accepted by 𝐴𝑖 .

Finite State Automata (FSA)

45

𝑞0
𝑞𝑓

a-z
𝑞1

a-z,0-9
[a-z][a-z 0-9]

𝐴1

State

Accepting
state

How does a Finite State Automaton work?

46

 Starts at the initial state 𝑞0

 In 𝑞0, if it receives a letter in a-z, goes to 𝑞1

 else, it goes to 𝑞𝑟

 In 𝑞1, if it receives a number in 0-9, it stays in 𝑞1

 else, it goes to 𝑞𝑓 (as it received a-z)

 In 𝑞𝑟, no matter what it gets, it stays in 𝑞𝑟

 𝑞𝑓 is an accepting state where computation halts

 Any string that takes the automaton from 𝑞0 to 𝑞𝑓 is
accepted by the automaton

𝑞0
𝑞𝑓a-z

𝑞1

a-z

0-9

𝐴2

𝑞𝑟

*

0-9

[a-z][0-9]*[a-z]

 What strings are accepted by 𝐴2?
ab, zy, s2r, q123s, u3123123v, etc.

 What strings are not accepted by 𝐴2?

2b, 334a, etc.

 The set of all strings accepted by 𝐴2 is
called its language

 The language of a finite state automaton
consists of strings, each of which can be
arbitrarily long, but finite

Language of a finite state automaton

47

𝑞0
𝑞𝑓a-z

𝑞1

a-z

0-9

𝐴2

𝑞𝑟

*

0-9

 A safety monitor classifies system behaviors into good and bad

 Can we use a monitor to classify infinite behaviors into good or bad?

 Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi
in 1960

LTL Monitors

51

Büchi Automata

52

 Extension of finite state automata to accept infinite strings

Büchi automaton Example 1

53

𝑞0 𝑞𝑓

𝐴1
𝑥 = 0

𝑥 = 1

 States 𝑄: {𝑞0, 𝑞𝑓}

 Input variable 𝑥 with domain Σ: 0,1

 Final state: {𝑞𝑓}

 Transitions: (as shown)

 Given trace 𝜌 (infinite sequence of symbols from
Σ), 𝜌 is accepted by 𝐴1, if 𝑞𝑓 appears inf. often

 What is the language of 𝐴1?

LTL formula 𝐆𝐅(𝑥 = 1)

𝑥 = 1

𝑥 = 0

Büchi automaton Example 2

54

𝑞0 𝑞𝑓

𝐴2
𝑥 = 0|1

𝑥 = 0|1

𝑥 = 1

 𝑄: 𝑞0, 𝑞𝑓 , Σ: 0,1 , 𝐹: {𝑞𝑓}

 Transitions: (as shown)

 Note that this is a nondeterministic
Büchi automaton

 𝐴2 accepts 𝜌 if there exists a path
along which a state in 𝐹 appears
infinitely often

 What is the language of 𝐴2?

LTL formula 𝐅𝐆(𝑥 = 1)

Fun fact: there is no deterministic Büchi
automaton that accepts this language

𝑞𝑟𝑥 = 0|1
𝑥 = 0

 What is the language of 𝐴3?
LTL formula:

𝐆 𝑥 = 1 ⇒ 𝐅(𝑦 = 1)

 I.e. always when 𝑥 = 1 , in some
future step, (𝑦 = 1)

 In other words, (𝑥 = 1) must be
followed by (𝑦 = 1)

Büchi automaton Example 3

55

𝑞1

𝐴3
𝑥 = 0

 𝑦 = 1

𝑥 = 1 & 𝑦 = 0

𝑦 = 0

𝑦 = 1

 𝑄: 𝑞0, 𝑞1 , Σ: 0,1 , 𝐹: {𝑞𝑓}

 Transitions: (as shown)

𝑞0

 Theoretical result: Every LTL formula 𝜑 can be converted to a Büchi
monitor/automaton 𝐴𝜑

 Size of 𝐴𝜑 is generally exponential in the size of 𝜑; blow-up unavoidable in
general

Using Büchi monitors

56

 Runtime monitoring: return a verdict based on only a finite portion of the
trace

 Some kinds of formulas can be monitored on finite traces

𝐅 𝑝 ∨ 𝑞

𝐆 (¬p)

 Finitely satisfiable: 𝐅 𝑝 ∨ 𝑞

 Finitely refutable: 𝐆(¬𝑝)

 Some formulas can never return a verdict on finite traces

𝐆𝐅 𝑝, 𝐅𝐆 𝑞, 𝐆(𝑝 ⇒ 𝐅𝑞)

Büchi monitors for runtime monitoring

58

 Monitoring: computing 𝛽 for a single trace 𝐱 ∈ 𝑡𝑟𝑎𝑐𝑒 𝑀

 Model checking (MC) is an algorithmic method for determining if a system
satisfies a formal specification expressed in temporal logic

𝑀 ⊨𝜙 ⟺ ∀𝐱 ∈𝑡𝑟𝑎𝑐𝑒 (𝑀) 𝛽(𝜑,𝐱,0)=1
Type equation here.

 Statistical Model Checking (SMC): “doing statistics” on 𝛽 (𝜑, 𝐱, 0) for a finite-
subset of 𝑡𝑟𝑎𝑐𝑒 (𝑀)

 Reachability analysis is the process of computing the set of reachable states for a
system

Reachability, MC, Monitoring and SMC

59

	Slide 1: Cyber-Physical Systems
	Slide 2
	Slide 3: Requirements
	Slide 4: Rigor in Requirements
	Slide 6: Types of Specifications/Requirements
	Slide 8: Requirement Formalisms
	Slide 10: Temporal Logic
	Slide 11: What is a logic in context of today’s lecture?
	Slide 12: Propositional Logic
	Slide 13: Semantics
	Slide 14: Examples
	Slide 15: Interpreting a formula of prop. logic
	Slide 17: Temporal Logic = Prop. Logic + Temporal Operators
	Slide 18
	Slide 19: Linear Temporal Logic
	Slide 20: LTL Syntax
	Slide 21: LTL Semantics
	Slide 22: Recursive semantics of LTL: I
	Slide 23: Recursive semantics of LTL: II
	Slide 24: Visualizing the temporal operators
	Slide 25: Recursive semantics of LTL: II
	Slide 26: Visualizing the temporal operators
	Slide 27: You can nest operators!
	Slide 28: More operator fun
	Slide 29: More, more operator fun
	Slide 30: Linear Temporal Logic (LTL) specification
	Slide 31: Linear Temporal Logic (LTL) specification
	Slide 32: Operator duality and identities
	Slide 34: Example specifications in LTL
	Slide 35: Example specifications in LTL
	Slide 36: (Hard) Requirements
	Slide 37: Requirements example
	Slide 38: Requirements example
	Slide 44: Detour to automata and formal languages
	Slide 45: Finite State Automata (FSA)
	Slide 46: How does a Finite State Automaton work?
	Slide 47: Language of a finite state automaton
	Slide 51: LTL Monitors
	Slide 52
	Slide 53: Büchi automaton Example 1
	Slide 54: Büchi automaton Example 2
	Slide 55: Büchi automaton Example 3
	Slide 56: Using Büchi monitors
	Slide 58: Büchi monitors for runtime monitoring
	Slide 59: Reachability, MC, Monitoring and SMC

