Cyber-Physical Systems

Laura Nenzi

Universita degli Studi di Trieste
| Semestre 2024

Lecture 12: Automata and Temporal Logic

[Many Slides due to J. Deshmukh, USC, LA,USA]

Op1,31(x > 0) = 1.3 (¥ > 0) A 000y <0) = (x>1DV(x<-1)

Requirements

Requirements describe desirable properties of system behaviors

High assurance/safety-critical, or mission-critical systems must use formal requirements
Behavioral requirements: requirement can be evaluated on individual system behaviors
Requirements met by the whole system if all behaviors satisfy requirements

There needs to be a clear separation between requirements (what needs to be
implemented) and the design (how should it be implemented)

Unfortunately, this is not often obeyed

Rigor In Requirements

Informal requirements: implicit or stated in natural language
If an obstacle is sensed by the car, it should stop if it is safe to do so

Formal requirements: explicit and mathematically precise
If the vision system, with a probability > 0.8,

labels an object (x + d¢,5.) meters from the car as a stationary
obstacle,

then as long as the current velocity u of the car is less than \/be(u) ,
the vehicle should execute an emergency stop maneuver within 10 ms.

Here, the maximum braking deceleration that the car can produce at velocity
U is —byax(U), and dg,fe is a safe stopping distance between vehicles

Types of Specifications/Requirements

Hard Requirements: Violation leads to endangering safety-criticality or
mission-criticality
Safety Requirements: system never does something bad
Liveness Requirements: from any point of time, system eventually does
something good
Soft Requirements: Violations lead to inefficiency, but are not critical

(Absolute) Performance Requirements: system performance is not worst
than a certain level

(Average) Performance Requirements: average system performance is at a
certain level

Requirement Formalisms

Languages and Logics to describe mathematically precise requirements

Examples:
Automata, State Machines
Propositional Logic, Temporal Logic, Regular Expressions
Structured language/grammar-based requirements

Temporal Logic

Temporal Logic (literally logic of time) allows us to specify infinite sequences
of states using logical formulae

Amir Pnueli in 1977 used a form of temporal logic called Linear Temporal

Logic (LTL) for requirements of reactive systems: later selected for the 1996
Turing Award

Clarke, Emerson, Sifakis in 2007 received the Turing Award for the model
checking algorithm, originally designed for checking Computation Tree Logic
(CTL) properties of distributed programs

What is a logic in context of today’s lecture?

Syntax: A set of operators that allow us to construct formulas from specific
ground terms

Semantics: A set of rules that assign meanings to well-formed formulas
obtained by using above syntactic rules

Simplest form is Propositional Logic

Propositional Logic

Simplest form of logic with a set of:

atomic propositions:

AP ={p,q,r1, ...}

Boolean connectives:
/\JV) —II :) E

Syntax recursively gives how new
formulae are constructed from
smaller formulae

Syntax of Propositional Logic

Q = true || the true formula
p || pisapropinAP
—¢@ || Negation
@ N\ @ || Conjunction
@ V @ || Disjunction

@ = @ ||Implication

@ = @ || Equivalence

Semantics

o , Semantics of Prop. Logic
Semantics (i.e. meaning) of a formula
can be defined recursively v(true) |1
Semantics of an atomic proposition v(p) 1ifv(p) =1
defined by a valuation function v o 1ifv(p) = 0
Valuation function assigns each Vin® 0ifv(p) =1
proposition a value 1 (true) or O Lif (o) = _
. @1) =landv(g,) =1,
(false), always assigns the true V(P A @2) 0 otherwise
formula the value 1, and for other
formulae is defined recursively @1V @z |V(a(=91 A=93))
01> @ | V(@1 V@)
P1 =@ V((<P1 = @) Ay = @1))

Examples

p : There is an upright bicycle in the
middle of the road

r: the bicycle has a rider

p = 71: If there is an upright bicycle in
the middle of the road, the bicycle has
a rider

q : There is car in the field of vision
0;: Car i is in the intersection
(01 N _I02) \% (—|01 N 02)

Interpreting a formula of prop. logic

vipy = 1,p; » 0,p3 = 0. Whatis v((p; Apy) = p3)?
v((p1 Ap2) = p3) =1

vip; » 1,p, » 0,p3 = 0. Whatis v((p1= p3) A (2 = p3))
v((p1= p3) A (p2 = p3)) =0

s this true? v ((p1 Apy) = p3 = (py = p3) A(py, = p3)) =17
(For all valuations)?

Temporal Logic = Prop. Logic + Temporal Operators

Propositional Logic is interpreted over valuations to atoms
Temporal Logic is interpreted over traces/sequences/strings

Trace is an infinite sequence of valuations

J ; _|p; _|p; p;
q —1q —1q CI q q

Can also write as: (0,1,1), (1,1,0), (2,0,0), (3,1,1),(4,0,1),... ,(42,1,1), ...

LTL

Linear Temporal Logic

LTL is a logic interpreted over infinite traces

Temporal logic with a view that time evolves in a linear fashion
Other logics where time is branching!

Assumes that a trace is a discrete-time trace, with equal time intervals

Actual interval between time-points does not matter : similar to rounds in
synchronous reactive components

LTL can be used to express safety and liveness properties!

LTL Syntax Syntax of LTL

LTL formulas are built from P = D p is a prop in AP

propositions using:
Boolean connectives
Temporal Operators

Only shown A and —, but can X NeXt Step
define V, =, = for convenience <} Fo Some Future Step

1 Negation

NP Conjunction

im; Go Globally in all steps

In all steps Until in
some step

pUeqp |

LTL Semantics

Semantics of LTL is defined by a valuation function that assigns to each
proposition at each time-point in the trace a truth value (0 or 1)

We use the symbo@read models) to show that a trace-point satisfies a
formula

m: Read as trace p at time n satisfies formula @

If we omit n, then the meaning is time 0. I.e/fp = ﬂs thesameas p,0 E @

Semantics is defined recursively over the formula
Base case: Propositional formulas, Recursion over structure of formula

Recursive semantics of LTL: |

p,n Epifv(p) =1,
l.e. if pistrue at timen

p,nE—@ifp,nt e,
i.e. if @ is not true for the trace starting time n

p,neE i AN, ifp,n E@;andp,n E @,
i.e. if @1 and @, both hold starting time n

Recursive semantics of LTL: I

pnEXpifpn+lEq@
i.e. if @ holds starting at the next time point

p,n =EF@ifdm =nsuchthatp,mE @

l.e. @ is true starting now, or there is some future time-point m from
where @ is true

V|sua||zmg the temporal operators
NeXt Step

O 2OnO020
TEB-0a- -0

_I _I

p —p p -p p p

Recursive semantics of LTL: I

poneEGeifvm=n:pmeEq@
l.e. @ is true starting now, and for all future time-points m, @ is true
starting atm

p,nE @ Up,ifdim=nst.ppmeE@,andVlst.n<¥<m,p,{E @,
i.e. @, eventually holds, and for all positions till ¢, holds, ¢, holds

Visualizing the temporal operators
Gp Globally p holds

-0-0-0-0- -0

p U g: p holds Until g holds

P

—q —q —q —q

C I _> L)
p
q

You can nest operators!

What does XF p/ mean?

Trace satisfies XFp (at time 0) if at time 1, Fp holds. l.e. p holds at some
point strictly in the future

What doe mean?
Trace satlsfles GFp (at time 0) if at n, there is always a p in the future

More operator fun

What does FGp mean?

p p p
What does G(p = Fg) mean?

More, more operator fun

What does the following formula mean: p; A X(pz AX(p3; A X(pgA Xp5))?

Is this true?/F(p A C[?IS the same asL 1A Fqlp

) _|p) _lp; p;
—q q _'q q _'q —1q

Linear Temporal Logic (LTL) specification

It is a logic interpreted over infinite discrete-time traces

E.g. It is always true that the highest temperature will be below 75 degree and the lowest
temperature will be above 60 degree

{E(p/\cﬂ (p:T%kq:T%O]

Linear Temporal Logic (LTL) specification

It is a logic interpreted over infinite discrete-time traces

E.g. For the next 3 days the highest temperature will be below 75 degree and the lowest
temperature will be above 60 degree

X(pAgQ)AXX(pAg)AXXX(pAQ) with p = T<75, q=T>60

Operator duality and identities

Fo = G-

GFp = -FG—op
Flovy)=FpVFy
G AY) =Go AGY

FFp = Fop
GGy = Gy
FGFp = GFop

GFGp = FGo

Example specifications in LTL

Suppose you are designing a robot that has to do a number of missions

(™

Kitchen

(k)

Bathroom (b)

Y

-

Living Room (¥)

= 1

TV

{

Study (s)

(OO
\L:',J

{

Bedroom (d)

Whenevek the robot visits the
kitchen, 1t should visit the
bedroom after.

G(k,=>Fd,)

Robot should never go to the
bathroom.

G—b,

The robot should ke king
until its batterybecomes low
working U low_battery

Example specifications in LTL

Suppose you are designing a robot that has to do a number of missions
N

The robot should repeatedly visit
s the living room)

1] GF ¢
/ { Study (s)

Whenever the TV is on and the
Kitchen - living room has no person in it,

(k) then within three steps, the robot
Living Room (£) should turn off the TV

o(r): room occupied by a person

 —| / Bedroom (d) G| (—o(&) ATV = F3(TV,1p)
N —

E— F<3¢p = ¢ v Xp vV XXp V XXX¢

Bathroom (b)

—

(Hard) Requirements

Safety and liveness requirements require fundamentally different classes of model
checking algorithms

safety requirement: “system never does something bad”

“if something bad happens on an infinite run, then it happens already on some
finite prefix”

Counterexamples no reachable ERROR state

liveness requirement: “system eventually does something good “

I”no matter what happens along a finite run, something good could still happen
ater”

Infinite-length counterexamples, loop

Requirements example

It cannot happen that both processes are in their critical sections simultaneously

Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most
once before process P1 gets to enter.

Whenever process P1 wants to enter the critical section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.

The elevator will arrive within 30 seconds of being called

Patient’s blood glucose never drops below 80 mg/dL

Requirements example

It cannot happen that both processes are in their critical sections simultaneously S

Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most
once before process P1 gets to enter. S

Whenever process P1 wants to enter the critical section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually. L

The elevator will arrive within 30 seconds of being called S (observe the finite prefix of all
computation steps until 30 seconds have passed, and decide the property, therefore safety)

Patient’s blood glucose never drops below 80 mg/dL S

Detour to automata and formal languages

Most programmers have used regular expressions

Regular Expressions (RE) are sequences of characters that specify
(acceptable) pattern of finite length
Example:

a-z][a-z 0-9] : strings starting with a lowercase letter (a-z) followed by one
owercase letter or number

a-z][0-9]*[a-z] : strings starting with a lowercase letter, followed by finitely
many numbers followed by a lowercase letter

Finite State Automata (FSA)

Famous equivalence between FSA and regular expressions:

For every regular expression R; , there is a corresponding FSA A; that accepts the set of
strings generated by R; .

For every FSA A; there is a corresponding regular expression that generates the set of
strings accepted by A; .

Ay

1o 1 [a-z][a-2 0-9]

a-z a-z,0-9
State d1

Accepting
state

How does a Finite State Automaton work?

Starts at the initial state g,

In q,, if it receives a letter in a-z, goes to ¢
else, it goes to g,

In q4, if it receives a number in 0-9, it staysin g,
else, it goes to g (as it received a-z)

In q,,, N0 matter what it gets, it staysin g,

qr is an accepting state where computation halts

Any string that takes the automaton from g, to gy is
accepted by the automaton

[a-z][0-9]*[a-Z]

Language of a finite state automaton

What strings are accepted by A,7?

A, ab, zv, s2r. q123s, u3123123y, etc.
do /57 i What strings are not accepted by 4,7
0-9 3-7 2b, 33443, etc.
d1

The set of all strings accepted by A, is

dr called its language

0-S The language of a finite state automaton
consists of strings, each of which can be
arbitrarily long, but finite

LTL Monitors

A safety monitor classifies system behaviors into good and bad
Can we use a monitor to classify infinite behaviors into good or bad?

Yes, using theoretical model of Blichi automata proposed by J. Richard Biichi
in 1960

Bluchi Automata

BUchi automaton Example 1

Extension of finite state automata to accept infinite strings

Al States Q: {qo, qr}
x=0 x =1 Input variable x with domain X: {0,1}
x=1 Final state: {q}

Transitions: (as shown)

o x =0 ar Given trace p (infinite sequence of symbols from
X), p is accepted by A;, if gf appears inf. often

What is the language of 447?
LTL formula GF(x = 1)

BUchi automaton Example 2

A
x = 0|1 : x=1 Note that this is a nondeterministic

Blichi automaton

x = 0|1 A, accepts p if there exists a path
do qr along which a state in F appears

infinitely often
x = 0|1 q, x=0 What is the language of 4,7

LTL formula FG(x = 1)

Q: {qo, qf}, %:{0,1}, F: {q(} Fun fact: there is no deterministic Blchi
Transitions: (as shown) automaton that accepts this language

BUchi automaton Example 3

What is the language of A3?
LTL formula:
G((x=1)>F@y =1))
l.e. always when (x = 1), in some
future step, (y = 1)
In other words, (x = 1) must be
followed by (y = 1)

Q: {qO’ ql}l 2 {011}) F: {qf}
Transitions: (as shown)

Using Bluchi monitors

Theoretical result: Every LTL formula ¢ can be converted to a Blichi
monitor/automaton A,

Size of A, is generally exponential in the size of ¢; blow-up unavoidable in
general

BUchi monitors for runtime monitoring

Runtime monitoring: return a verdict based on only a finite portion of the
trace

Some kinds of formulas can be monitored on finite traces
F(pVaq)
G(—p)

Finitely satisfiable: F(p V q)

Finitely refutable: G(—p)

Some formulas can never return a verdict on finite traces
GFp,FG q,G(p = Fq)

Reachability, MC, Monitoring and SMC

Monitoring: computing S for a single trace X € trace M

Model checking (MC) is an algorithmic method for determining if a system
satisfies a formal specification expressed in temporal logic

M ¢ < VX etrace (M) B(¢,x,0)=1
Type equation here.

Statistical Model Checking (SMC): “doing statistics” on 8 (@, X, 0) for a finite-
subset of trace (M)

Reachability analysis is the process of computing the set of reachable states for a
system

	Slide 1: Cyber-Physical Systems
	Slide 2
	Slide 3: Requirements
	Slide 4: Rigor in Requirements
	Slide 6: Types of Specifications/Requirements
	Slide 8: Requirement Formalisms
	Slide 10: Temporal Logic
	Slide 11: What is a logic in context of today’s lecture?
	Slide 12: Propositional Logic
	Slide 13: Semantics
	Slide 14: Examples
	Slide 15: Interpreting a formula of prop. logic
	Slide 17: Temporal Logic = Prop. Logic + Temporal Operators
	Slide 18
	Slide 19: Linear Temporal Logic
	Slide 20: LTL Syntax
	Slide 21: LTL Semantics
	Slide 22: Recursive semantics of LTL: I
	Slide 23: Recursive semantics of LTL: II
	Slide 24: Visualizing the temporal operators
	Slide 25: Recursive semantics of LTL: II
	Slide 26: Visualizing the temporal operators
	Slide 27: You can nest operators!
	Slide 28: More operator fun
	Slide 29: More, more operator fun
	Slide 30: Linear Temporal Logic (LTL) specification
	Slide 31: Linear Temporal Logic (LTL) specification
	Slide 32: Operator duality and identities
	Slide 34: Example specifications in LTL
	Slide 35: Example specifications in LTL
	Slide 36: (Hard) Requirements
	Slide 37: Requirements example
	Slide 38: Requirements example
	Slide 44: Detour to automata and formal languages
	Slide 45: Finite State Automata (FSA)
	Slide 46: How does a Finite State Automaton work?
	Slide 47: Language of a finite state automaton
	Slide 51: LTL Monitors
	Slide 52
	Slide 53: Büchi automaton Example 1
	Slide 54: Büchi automaton Example 2
	Slide 55: Büchi automaton Example 3
	Slide 56: Using Büchi monitors
	Slide 58: Büchi monitors for runtime monitoring
	Slide 59: Reachability, MC, Monitoring and SMC

