
Cyber-Physical Systems

Laura Nenzi
Università degli Studi di Trieste

I Semestre 2024

Lecture 12: Automata and Temporal Logic

[Many Slides due to J. Deshmukh, USC, LA,USA]

2

□ 1,3 𝑥 > 0 ⇒ 1,3 (𝑦 > 0 ∧ 0,0.001 𝑦 < 0 ⇒ 𝑥 > 1 ∨ (𝑥 < −1)

 Requirements describe desirable properties of system behaviors

 High assurance/safety-critical, or mission-critical systems must use formal requirements

 Behavioral requirements: requirement can be evaluated on individual system behaviors

 Requirements met by the whole system if all behaviors satisfy requirements

 There needs to be a clear separation between requirements (what needs to be
implemented) and the design (how should it be implemented)

 Unfortunately, this is not often obeyed

Requirements

3

 Informal requirements: implicit or stated in natural language
 If an obstacle is sensed by the car, it should stop if it is safe to do so

 Formal requirements: explicit and mathematically precise
 If the vision system, with a probability > 0.8,

labels an object (𝑥 + 𝑑safe) meters from the car as a stationary
obstacle,

 then as long as the current velocity 𝑢 of the car is less than 2𝑥𝑏 𝑢 ,
the vehicle should execute an emergency stop maneuver within 10 ms.

Here, the maximum braking deceleration that the car can produce at velocity
𝑢 is −𝑏max(𝑢), and 𝑑safe is a safe stopping distance between vehicles

Rigor in Requirements

4

 Hard Requirements: Violation leads to endangering safety-criticality or
mission-criticality

Safety Requirements: system never does something bad

Liveness Requirements: from any point of time, system eventually does
something good

 Soft Requirements: Violations lead to inefficiency, but are not critical

 (Absolute) Performance Requirements: system performance is not worst
than a certain level

 (Average) Performance Requirements: average system performance is at a
certain level

Types of Specifications/Requirements

6

 Languages and Logics to describe mathematically precise requirements

 Examples:

Automata, State Machines

Propositional Logic, Temporal Logic, Regular Expressions

Structured language/grammar-based requirements

Requirement Formalisms

8

 Temporal Logic (literally logic of time) allows us to specify infinite sequences
of states using logical formulae

 Amir Pnueli in 1977 used a form of temporal logic called Linear Temporal
Logic (LTL) for requirements of reactive systems: later selected for the 1996
Turing Award

 Clarke, Emerson, Sifakis in 2007 received the Turing Award for the model
checking algorithm, originally designed for checking Computation Tree Logic
(CTL) properties of distributed programs

Temporal Logic

10

 Syntax: A set of operators that allow us to construct formulas from specific
ground terms

 Semantics: A set of rules that assign meanings to well-formed formulas
obtained by using above syntactic rules

 Simplest form is Propositional Logic

What is a logic in context of today’s lecture?

11

 Simplest form of logic with a set of:

 atomic propositions:
𝐴𝑃 = 𝑝, 𝑞, 𝑟, …

Boolean connectives:
∧,∨, ¬, ⇒, ≡

 Syntax recursively gives how new
formulae are constructed from
smaller formulae

Propositional Logic

12

Syntax of Propositional Logic

𝜑 ∷= 𝑡𝑟𝑢𝑒 | the true formula

𝑝 | 𝑝 is a prop in AP

¬𝜑 | Negation

𝜑 ∧ 𝜑 | Conjunction

𝜑 ∨ 𝜑 | Disjunction

𝜑 ⇒ 𝜑 | Implication

𝜑 ≡ 𝜑 | Equivalence

 Semantics (i.e. meaning) of a formula
can be defined recursively

 Semantics of an atomic proposition
defined by a valuation function 𝜈

 Valuation function assigns each
proposition a value 1 (true) or 0
(false), always assigns the 𝑡𝑟𝑢𝑒
formula the value 1, and for other
formulae is defined recursively

Semantics

13

Semantics of Prop. Logic

𝜈(𝑡𝑟𝑢𝑒) 1

𝜈 𝑝 1 if 𝜈 𝑝 = 1

𝜈 ¬𝜑
1 if 𝜈 𝜑 = 0
0 if 𝜈 𝜑 = 1

𝜈(𝜑1 ∧ 𝜑2)
1 if 𝜈 𝜑1 = 1 and 𝜈 𝜑2 = 1,
0 otherwise

𝜑1 ∨ 𝜑2 𝜈 ¬(¬𝜑1 ∧ ¬𝜑2)

𝜑1 ⇒ 𝜑2 𝜈 ¬𝜑1 ∨ 𝜑2

𝜑1 ≡ 𝜑2 𝜈 𝜑1 ⇒ 𝜑2 ∧ 𝜑2 ⇒ 𝜑1

 𝑝 : There is an upright bicycle in the
middle of the road

 r: the bicycle has a rider

 𝑝 ⇒ 𝑟: If there is an upright bicycle in
the middle of the road, the bicycle has
a rider

 𝑞 : There is car in the field of vision

 𝑜𝑖: Car 𝑖 is in the intersection

 𝑜1 ∧ ¬𝑜2 ∨ (¬𝑜1 ∧ 𝑜2)

Examples

14

 𝜈: 𝑝1 ↦ 1, 𝑝2 ↦ 0, 𝑝3 ↦ 0. What is 𝜈 𝑝1 ∧ 𝑝2 ⇒ 𝑝3 ?

 𝜈 𝑝1 ∧ 𝑝2 ⇒ 𝑝3 =1

 𝜈: 𝑝1 ↦ 1, 𝑝2 ↦ 0, 𝑝3 ↦ 0. What is 𝜈 (𝑝1⇒ 𝑝3) ∧ 𝑝2 ⇒ 𝑝3

 𝜈 (𝑝1⇒ 𝑝3) ∧ 𝑝2 ⇒ 𝑝3 =0

 Is this true? 𝜈 𝑝1 ∧ 𝑝2 ⇒ 𝑝3 ≡ 𝑝1 ⇒ 𝑝3 ∧ 𝑝2 ⇒ 𝑝3 = 1?

(For all valuations)?

Interpreting a formula of prop. logic

15

 Propositional Logic is interpreted over valuations to atoms

 Temporal Logic is interpreted over traces/sequences/strings

 Trace is an infinite sequence of valuations

 𝜌:

Temporal Logic = Prop. Logic + Temporal Operators

17

0 1 2 3 4 42⋯ ⋯
𝑝,
𝑞

𝑝,
¬𝑞

¬𝑝,
¬𝑞

𝑝,
𝑞

¬𝑝,
𝑞

𝑝,
𝑞

 Can also write as: (0,1,1), (1,1,0), (2,0,0), (3,1,1),(4,0,1),… ,(42,1,1), …

LTL

18

 LTL is a logic interpreted over infinite traces

 Temporal logic with a view that time evolves in a linear fashion

Other logics where time is branching!

 Assumes that a trace is a discrete-time trace, with equal time intervals

 Actual interval between time-points does not matter : similar to rounds in
synchronous reactive components

 LTL can be used to express safety and liveness properties!

Linear Temporal Logic

19

 LTL formulas are built from
propositions using:

Boolean connectives

Temporal Operators

 Only shown ∧ and ¬, but can
define ∨, ⇒, ≡ for convenience

LTL Syntax

20

Syntax of LTL

𝜑 ∷= 𝑝 | 𝑝 is a prop in AP

¬𝜑 | Negation

𝜑 ∧ 𝜑 | Conjunction

𝐗𝜑 | NeXt Step

𝐅𝜑 | Some Future Step

𝐆𝜑 | Globally in all steps

𝜑 𝐔 𝜑 |
In all steps Until in
some step

 Semantics of LTL is defined by a valuation function that assigns to each
proposition at each time-point in the trace a truth value (0 or 1)

 We use the symbol ⊨ (read models) to show that a trace-point satisfies a
formula

 𝜌, 𝑛 ⊨ 𝜑 : Read as trace 𝜌 at time 𝑛 satisfies formula 𝜑

 If we omit 𝑛, then the meaning is time 0. I.e. 𝜌 ⊨ 𝜑 is the same as 𝜌, 0 ⊨ 𝜑

 Semantics is defined recursively over the formula

 Base case: Propositional formulas, Recursion over structure of formula

LTL Semantics

21

 𝜌, 𝑛 ⊨ 𝑝 if 𝜈𝑛 𝑝 = 1,

 i.e. if 𝑝 is true at time 𝑛

 𝜌, 𝑛 ⊨ ¬𝜑 if 𝜌, 𝑛 ⊭ 𝜑,

 i.e. if 𝜑 is not true for the trace starting time 𝑛

 𝜌, 𝑛 ⊨ 𝜑1 ∧ 𝜑2 if 𝜌, 𝑛 ⊨ 𝜑1 and 𝜌, 𝑛 ⊨ 𝜑2

 i.e. if 𝜑1 and 𝜑2 both hold starting time 𝑛

Recursive semantics of LTL: I

22

 𝜌, 𝑛 ⊨ 𝐗𝜑 if 𝜌, 𝑛 + 1 ⊨ 𝜑

 i.e. if 𝜑 holds starting at the next time point

 𝜌, 𝑛 ⊨ 𝐅 𝜑 if ∃𝑚 ≥ 𝑛 such that 𝜌, 𝑚 ⊨ 𝜑

 i.e. 𝜑 is true starting now, or there is some future time-point 𝑚 from
where 𝜑 is true

Recursive semantics of LTL: II

23

 𝐗𝑝 : NeXt Step

Visualizing the temporal operators

24

0 1 2 3 4 42

¬𝑝 𝒑 ¬𝑝 ¬𝑝 ¬𝑝 𝑝

 𝐅𝑝 : Some Future step

0 1 2 3 4 42⋯ ⋯
¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 𝒑

0 1 2 3 4 42⋯ ⋯
𝒑 ¬𝑝 𝑝 ¬𝑝 ¬𝑝 𝑝

 𝜌, 𝑛 ⊨ 𝐆 𝜑 if ∀𝑚 ≥ 𝑛 : 𝜌, 𝑚 ⊨ 𝜑

 i.e. 𝜑 is true starting now, and for all future time-points 𝑚, 𝜑 is true
starting at 𝑚

 𝜌, 𝑛 ⊨ 𝜑1𝐔𝜑2 if ∃𝑚 ≥ 𝑛 s.t. 𝜌, 𝑚 ⊨ 𝜑2 and ∀ℓ s.t. 𝑛 ≤ ℓ < 𝑚, 𝜌, ℓ ⊨ 𝜑1

 i.e. 𝜑2 eventually holds, and for all positions till 𝜑2 holds, 𝜑1 holds

Recursive semantics of LTL: II

25

 𝐆𝑝: Globally 𝑝 holds

Visualizing the temporal operators

26

0 1 2 3 4 42⋯ ⋯
𝒑 𝒑 𝒑 𝒑 𝒑 𝒑

 𝑝 𝐔 𝑞: 𝑝 holds Until 𝑞 holds

0 1 2 3 4 42⋯ ⋯
𝒑

¬𝑞
𝒑

¬𝑞
𝒑

¬𝑞
𝒑

¬𝑞

𝑝
𝒒

 What does 𝐗𝐅 𝑝 mean?

Trace satisfies 𝐗𝐅𝑝 (at time 0) if at time 1, 𝐅𝑝 holds. I.e. 𝑝 holds at some
point strictly in the future

You can nest operators!

27

⋯ ⋯0 1 2 3 4 42

¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 𝒑

 What does 𝐆𝐅 𝑝 mean?
Trace satisfies 𝐆𝐅𝑝 (at time 0) if at 𝑛, there is always a 𝒑 in the future

0 1 2

¬𝑝 ¬𝑝 𝒑

⋯ 14 ⋯15

𝒑¬𝑝

65

𝒑

⋯

 What does 𝐅𝐆𝑝 mean?

More operator fun

28

10 11 12 13 14 42⋯ ⋯
𝒑 𝒑 𝒑 𝒑 𝒑 𝒑

0

¬𝑝

⋯

 What does 𝐆 𝑝 ⇒ 𝐅𝑞 mean?

0 1 2

𝒑 𝒒

14 15

𝒒

65

𝒒𝒑

54

𝒑

⋯ ⋯⋯

 What does the following formula mean: 𝑝1 ∧ 𝐗 𝑝2 ∧ 𝐗 𝑝3 ∧ 𝐗(𝑝4∧ 𝐗𝑝5 ?

More, more operator fun

29

0 1 2 3 4 5

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

 Is this true? 𝐅(𝑝 ∧ 𝑞) is the same as 𝐅𝑝 ∧ 𝐅𝑞?

0 1 2 3 4 42⋯ ⋯
𝑝,
¬𝑞

¬𝑝,
𝑞

𝑝,
¬𝑞

¬𝑝,
𝑞

𝑝,
¬𝑞

𝑝,
¬𝑞

Linear Temporal Logic (LTL) specification

30

It is a logic interpreted over infinite discrete-time traces

E.g. It is always true that the highest temperature will be below 75 degree and the lowest
temperature will be above 60 degree

𝐆(p ∧ q) p = T<75, q=T>60

E.g. For the next 3 days the highest temperature will be below 75 degree and the lowest
temperature will be above 60 degree

X (p ∧ q) ∧ X X (p ∧ q) ∧ X X X (p ∧ q) with p = T<75, q=T>60

Linear Temporal Logic (LTL) specification

31

It is a logic interpreted over infinite discrete-time traces

 𝐅𝜑 ≡ ¬𝐆¬𝜑

 𝐆𝐅𝜑 ≡ ¬𝐅𝐆¬𝜑

 𝐅 𝜑 ∨ 𝜓 ≡ 𝐅𝜑 ∨ 𝐅𝜓

 𝐆 𝜑 ∧ 𝜓 ≡ 𝐆𝜑 ∧ 𝐆𝜓

 𝐅𝐅𝜑 ≡ 𝐅𝜑

 𝐆𝐆𝜑 ≡ 𝐆𝜑

 𝐅𝐆𝐅𝜑 ≡ 𝐆𝐅𝜑

 𝐆𝐅𝐆𝜑 ≡ 𝐅𝐆𝜑

Operator duality and identities

32

 Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL

34

Kitchen
(𝑘)

Bedroom (𝑑)

Living Room (ℓ)

Bathroom (𝑏)

Study (𝑠)

 Whenever the robot visits the
kitchen, it should visit the
bedroom after.

𝐆(𝑘𝑟 ⇒ 𝐅 𝑑𝑟)

 Robot should never go to the
bathroom.

𝐆¬𝑏𝑟

 The robot should keep working
until its battery becomes low

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝐔 𝑙𝑜𝑤_𝑏𝑎𝑡𝑡𝑒𝑟𝑦

TV

 Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL

35

Kitchen
(𝑘)

Bedroom (𝑑)

Living Room (ℓ)

Bathroom (𝑏)

Study (𝑠)

 The robot should repeatedly visit
the living room

𝐆𝐅 ℓ

 Whenever the TV is on and the
living room has no person in it,
then within three steps, the robot
should turn off the TV

𝑜(𝑟): room occupied by a person

𝐆 ¬𝑜 ℓ ∧ 𝑇𝑉𝑜𝑛 ⇒ 𝐅≤3(𝑇𝑉𝑜𝑓𝑓)

𝐅≤3𝜑 ≡ 𝜑 ∨ 𝐗𝜑 ∨ 𝐗𝐗𝜑 ∨ 𝐗𝐗𝐗𝜑TV

 Safety and liveness requirements require fundamentally different classes of model
checking algorithms

 safety requirement: “system never does something bad”

“if something bad happens on an infinite run, then it happens already on some
finite prefix”

Counterexamples no reachable ERROR state

 liveness requirement: “system eventually does something good “

“no matter what happens along a finite run, something good could still happen
later”

Infinite-length counterexamples, loop

(Hard) Requirements

36

 It cannot happen that both processes are in their critical sections simultaneously

 Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most
once before process P1 gets to enter.

 Whenever process P1 wants to enter the critical section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.

 The elevator will arrive within 30 seconds of being called

 Patient’s blood glucose never drops below 80 mg/dL

37

Requirements example

 It cannot happen that both processes are in their critical sections simultaneously S

 Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most
once before process P1 gets to enter. S

 Whenever process P1 wants to enter the critical section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually. L

 The elevator will arrive within 30 seconds of being called S (observe the finite prefix of all
computation steps until 30 seconds have passed, and decide the property, therefore safety)

 Patient’s blood glucose never drops below 80 mg/dL S

38

Requirements example

 Most programmers have used regular expressions

 Regular Expressions (RE) are sequences of characters that specify
(acceptable) pattern of finite length

 Example:

 [a-z][a-z 0-9] : strings starting with a lowercase letter (a-z) followed by one
lowercase letter or number

 [a-z][0-9]*[a-z] : strings starting with a lowercase letter, followed by finitely
many numbers followed by a lowercase letter

Detour to automata and formal languages

44

Famous equivalence between FSA and regular expressions:
 For every regular expression 𝑅𝑖 , there is a corresponding FSA 𝐴𝑖 that accepts the set of

strings generated by 𝑅𝑖 .
 For every FSA 𝐴𝑖 there is a corresponding regular expression that generates the set of

strings accepted by 𝐴𝑖 .

Finite State Automata (FSA)

45

𝑞0
𝑞𝑓

a-z
𝑞1

a-z,0-9
[a-z][a-z 0-9]

𝐴1

State

Accepting
state

How does a Finite State Automaton work?

46

 Starts at the initial state 𝑞0

 In 𝑞0, if it receives a letter in a-z, goes to 𝑞1

 else, it goes to 𝑞𝑟

 In 𝑞1, if it receives a number in 0-9, it stays in 𝑞1

 else, it goes to 𝑞𝑓 (as it received a-z)

 In 𝑞𝑟, no matter what it gets, it stays in 𝑞𝑟

 𝑞𝑓 is an accepting state where computation halts

 Any string that takes the automaton from 𝑞0 to 𝑞𝑓 is
accepted by the automaton

𝑞0
𝑞𝑓a-z

𝑞1

a-z

0-9

𝐴2

𝑞𝑟

*

0-9

[a-z][0-9]*[a-z]

 What strings are accepted by 𝐴2?
ab, zy, s2r, q123s, u3123123v, etc.

 What strings are not accepted by 𝐴2?

2b, 334a, etc.

 The set of all strings accepted by 𝐴2 is
called its language

 The language of a finite state automaton
consists of strings, each of which can be
arbitrarily long, but finite

Language of a finite state automaton

47

𝑞0
𝑞𝑓a-z

𝑞1

a-z

0-9

𝐴2

𝑞𝑟

*

0-9

 A safety monitor classifies system behaviors into good and bad

 Can we use a monitor to classify infinite behaviors into good or bad?

 Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi
in 1960

LTL Monitors

51

Büchi Automata

52

 Extension of finite state automata to accept infinite strings

Büchi automaton Example 1

53

𝑞0 𝑞𝑓

𝐴1
𝑥 = 0

𝑥 = 1

 States 𝑄: {𝑞0, 𝑞𝑓}

 Input variable 𝑥 with domain Σ: 0,1

 Final state: {𝑞𝑓}

 Transitions: (as shown)

 Given trace 𝜌 (infinite sequence of symbols from
Σ), 𝜌 is accepted by 𝐴1, if 𝑞𝑓 appears inf. often

 What is the language of 𝐴1?

LTL formula 𝐆𝐅(𝑥 = 1)

𝑥 = 1

𝑥 = 0

Büchi automaton Example 2

54

𝑞0 𝑞𝑓

𝐴2
𝑥 = 0|1

𝑥 = 0|1

𝑥 = 1

 𝑄: 𝑞0, 𝑞𝑓 , Σ: 0,1 , 𝐹: {𝑞𝑓}

 Transitions: (as shown)

 Note that this is a nondeterministic
Büchi automaton

 𝐴2 accepts 𝜌 if there exists a path
along which a state in 𝐹 appears
infinitely often

 What is the language of 𝐴2?

LTL formula 𝐅𝐆(𝑥 = 1)

Fun fact: there is no deterministic Büchi
automaton that accepts this language

𝑞𝑟𝑥 = 0|1
𝑥 = 0

 What is the language of 𝐴3?
LTL formula:

𝐆 𝑥 = 1 ⇒ 𝐅(𝑦 = 1)

 I.e. always when 𝑥 = 1 , in some
future step, (𝑦 = 1)

 In other words, (𝑥 = 1) must be
followed by (𝑦 = 1)

Büchi automaton Example 3

55

𝑞1

𝐴3
𝑥 = 0

 𝑦 = 1

𝑥 = 1 & 𝑦 = 0

𝑦 = 0

𝑦 = 1

 𝑄: 𝑞0, 𝑞1 , Σ: 0,1 , 𝐹: {𝑞𝑓}

 Transitions: (as shown)

𝑞0

 Theoretical result: Every LTL formula 𝜑 can be converted to a Büchi
monitor/automaton 𝐴𝜑

 Size of 𝐴𝜑 is generally exponential in the size of 𝜑; blow-up unavoidable in
general

Using Büchi monitors

56

 Runtime monitoring: return a verdict based on only a finite portion of the
trace

 Some kinds of formulas can be monitored on finite traces

𝐅 𝑝 ∨ 𝑞

𝐆 (¬p)

 Finitely satisfiable: 𝐅 𝑝 ∨ 𝑞

 Finitely refutable: 𝐆(¬𝑝)

 Some formulas can never return a verdict on finite traces

𝐆𝐅 𝑝, 𝐅𝐆 𝑞, 𝐆(𝑝 ⇒ 𝐅𝑞)

Büchi monitors for runtime monitoring

58

 Monitoring: computing 𝛽 for a single trace 𝐱 ∈ 𝑡𝑟𝑎𝑐𝑒 𝑀

 Model checking (MC) is an algorithmic method for determining if a system
satisfies a formal specification expressed in temporal logic

𝑀 ⊨𝜙 ⟺ ∀𝐱 ∈𝑡𝑟𝑎𝑐𝑒 (𝑀) 𝛽(𝜑,𝐱,0)=1
Type equation here.

 Statistical Model Checking (SMC): “doing statistics” on 𝛽 (𝜑, 𝐱, 0) for a finite-
subset of 𝑡𝑟𝑎𝑐𝑒 (𝑀)

 Reachability analysis is the process of computing the set of reachable states for a
system

Reachability, MC, Monitoring and SMC

59

	Slide 1: Cyber-Physical Systems
	Slide 2
	Slide 3: Requirements
	Slide 4: Rigor in Requirements
	Slide 6: Types of Specifications/Requirements
	Slide 8: Requirement Formalisms
	Slide 10: Temporal Logic
	Slide 11: What is a logic in context of today’s lecture?
	Slide 12: Propositional Logic
	Slide 13: Semantics
	Slide 14: Examples
	Slide 15: Interpreting a formula of prop. logic
	Slide 17: Temporal Logic = Prop. Logic + Temporal Operators
	Slide 18
	Slide 19: Linear Temporal Logic
	Slide 20: LTL Syntax
	Slide 21: LTL Semantics
	Slide 22: Recursive semantics of LTL: I
	Slide 23: Recursive semantics of LTL: II
	Slide 24: Visualizing the temporal operators
	Slide 25: Recursive semantics of LTL: II
	Slide 26: Visualizing the temporal operators
	Slide 27: You can nest operators!
	Slide 28: More operator fun
	Slide 29: More, more operator fun
	Slide 30: Linear Temporal Logic (LTL) specification
	Slide 31: Linear Temporal Logic (LTL) specification
	Slide 32: Operator duality and identities
	Slide 34: Example specifications in LTL
	Slide 35: Example specifications in LTL
	Slide 36: (Hard) Requirements
	Slide 37: Requirements example
	Slide 38: Requirements example
	Slide 44: Detour to automata and formal languages
	Slide 45: Finite State Automata (FSA)
	Slide 46: How does a Finite State Automaton work?
	Slide 47: Language of a finite state automaton
	Slide 51: LTL Monitors
	Slide 52
	Slide 53: Büchi automaton Example 1
	Slide 54: Büchi automaton Example 2
	Slide 55: Büchi automaton Example 3
	Slide 56: Using Büchi monitors
	Slide 58: Büchi monitors for runtime monitoring
	Slide 59: Reachability, MC, Monitoring and SMC

