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□ 1,3 𝑥 > 0 ⇒  1,3 ( 𝑦 > 0 ∧  0,0.001 𝑦 < 0 ⇒ 𝑥 > 1 ∨ (𝑥 < −1)



 Requirements describe desirable properties of system behaviors

 High assurance/safety-critical, or mission-critical systems must use formal requirements

 Behavioral requirements: requirement can be evaluated on individual system behaviors

 Requirements met by the whole system if all behaviors satisfy requirements

 There needs to be a clear separation between requirements (what needs to be 
implemented) and the design (how should it be implemented)

 Unfortunately, this is not often obeyed

Requirements
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 Informal requirements: implicit or stated in natural language
 If an obstacle is sensed by the car, it should stop if it is safe to do so

 Formal requirements: explicit and mathematically precise
 If the vision system, with a probability > 0.8, 

labels an object (𝑥 + 𝑑safe) meters from the car as a stationary 
obstacle, 

 then as long as the current velocity 𝑢 of the car is less than 2𝑥𝑏 𝑢  , 
the vehicle should execute an emergency stop maneuver within 10 ms. 

Here, the maximum braking deceleration that the car can produce at velocity 
𝑢 is −𝑏max(𝑢), and 𝑑safe is a safe stopping distance between vehicles

Rigor in Requirements

4



 Hard Requirements: Violation leads to endangering safety-criticality or 
mission-criticality

Safety Requirements: system never does something bad

Liveness Requirements: from any point of time, system eventually does 
something good 

 Soft Requirements: Violations lead to inefficiency, but are not critical

 (Absolute) Performance Requirements: system performance is not worst 
than a certain level

 (Average) Performance Requirements: average system performance is at a 
certain level

Types of Specifications/Requirements
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 Languages and Logics to describe mathematically precise requirements

 Examples:

Automata, State Machines

Propositional Logic, Temporal Logic, Regular Expressions

Structured language/grammar-based requirements

Requirement Formalisms
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 Temporal Logic (literally logic of time) allows us to specify infinite sequences 
of states using logical formulae

 Amir Pnueli in 1977 used a form of temporal logic called Linear Temporal 
Logic (LTL) for requirements of reactive systems: later selected for the 1996 
Turing Award

 Clarke, Emerson, Sifakis in 2007 received the Turing Award for the model 
checking algorithm, originally designed for checking Computation Tree Logic 
(CTL) properties of distributed programs

Temporal Logic
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 Syntax: A set of operators that allow us to construct formulas from specific 
ground terms

 Semantics: A set of rules that assign meanings to well-formed formulas 
obtained by using above syntactic rules

 Simplest form is Propositional Logic

What is a logic in context of today’s lecture?
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 Simplest form of logic with a set of:

  atomic propositions: 
𝐴𝑃 = 𝑝, 𝑞, 𝑟, …

Boolean connectives:
∧,∨, ¬, ⇒, ≡

 Syntax recursively gives how new 
formulae are constructed from 
smaller formulae

Propositional Logic
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Syntax of Propositional Logic

𝜑 ∷= 𝑡𝑟𝑢𝑒 | the true formula

𝑝 | 𝑝 is a prop in AP

¬𝜑 | Negation

𝜑 ∧ 𝜑 | Conjunction

𝜑 ∨ 𝜑 | Disjunction

𝜑 ⇒ 𝜑 | Implication

𝜑 ≡ 𝜑 | Equivalence



 Semantics (i.e. meaning) of a formula 
can be defined recursively

 Semantics of an atomic proposition 
defined by a valuation function 𝜈

 Valuation function assigns each 
proposition a value 1 (true) or 0 
(false), always assigns the 𝑡𝑟𝑢𝑒 
formula the value 1, and for other 
formulae is defined recursively

Semantics 
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Semantics of Prop. Logic

𝜈(𝑡𝑟𝑢𝑒) 1

𝜈 𝑝 1 if 𝜈 𝑝 = 1

𝜈 ¬𝜑
1 if 𝜈 𝜑 = 0
0 if 𝜈 𝜑 = 1

𝜈(𝜑1 ∧ 𝜑2) 
1 if 𝜈 𝜑1  = 1 and 𝜈 𝜑2 = 1,
0 otherwise

𝜑1 ∨ 𝜑2 𝜈 ¬(¬𝜑1 ∧ ¬𝜑2)

𝜑1 ⇒ 𝜑2 𝜈 ¬𝜑1 ∨ 𝜑2

𝜑1 ≡ 𝜑2 𝜈 𝜑1 ⇒ 𝜑2 ∧ 𝜑2 ⇒ 𝜑1



 𝑝 : There is an upright bicycle in the 
middle of the road

 r: the bicycle has a rider

 𝑝 ⇒ 𝑟: If there is an upright bicycle in 
the middle of the road, the bicycle has 
a rider

 𝑞 : There is car in the field of vision

 𝑜𝑖: Car 𝑖 is in the intersection

 𝑜1 ∧ ¬𝑜2 ∨ (¬𝑜1 ∧ 𝑜2)

Examples
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 𝜈: 𝑝1 ↦ 1, 𝑝2 ↦ 0, 𝑝3 ↦ 0. What is 𝜈 𝑝1 ∧ 𝑝2 ⇒ 𝑝3 ?

 𝜈 𝑝1 ∧ 𝑝2 ⇒ 𝑝3  =1

 𝜈: 𝑝1 ↦ 1, 𝑝2 ↦ 0, 𝑝3 ↦ 0. What is 𝜈 (𝑝1⇒ 𝑝3) ∧ 𝑝2 ⇒ 𝑝3

 𝜈 (𝑝1⇒ 𝑝3) ∧ 𝑝2 ⇒ 𝑝3  =0

 Is this true?  𝜈 𝑝1 ∧ 𝑝2 ⇒ 𝑝3 ≡ 𝑝1 ⇒ 𝑝3 ∧ 𝑝2 ⇒ 𝑝3  = 1? 

(For all valuations)?

Interpreting a formula of prop. logic
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 Propositional Logic is interpreted over valuations to atoms

 Temporal Logic is interpreted over traces/sequences/strings

 Trace is an infinite sequence of valuations

 𝜌: 

Temporal Logic = Prop. Logic + Temporal Operators
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0 1 2 3 4 42⋯ ⋯
𝑝, 
𝑞

𝑝, 
¬𝑞

¬𝑝, 
¬𝑞

𝑝, 
𝑞

¬𝑝, 
𝑞

𝑝, 
𝑞

 Can also write as: (0,1,1), (1,1,0), (2,0,0), (3,1,1),(4,0,1),… ,(42,1,1), … 



LTL
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 LTL is a logic interpreted over infinite traces

 Temporal logic with a view that time evolves in a linear fashion

Other logics where time is branching!

 Assumes that a trace is a discrete-time trace, with equal time intervals

 Actual interval between time-points does not matter : similar to rounds in 
synchronous reactive components

 LTL can be used to express safety and liveness properties!

Linear Temporal Logic
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 LTL formulas are built from 
propositions  using:

Boolean connectives

Temporal Operators

 Only shown ∧ and ¬, but can 
define ∨, ⇒, ≡ for convenience

LTL Syntax

20

Syntax of LTL

𝜑 ∷= 𝑝 | 𝑝 is a prop in AP

¬𝜑 | Negation

𝜑 ∧ 𝜑 | Conjunction

𝐗𝜑 | NeXt Step

𝐅𝜑 | Some Future Step

𝐆𝜑 | Globally in all steps

𝜑 𝐔 𝜑 |
In all steps Until in 
some step



 Semantics of LTL is defined by a valuation function that assigns to each 
proposition at each time-point in the trace a truth value (0 or 1)

 We use the symbol ⊨ (read models) to show that a trace-point satisfies a 
formula

 𝜌, 𝑛 ⊨ 𝜑 : Read as trace 𝜌 at time 𝑛 satisfies formula 𝜑

 If we omit 𝑛, then the meaning is time 0. I.e. 𝜌 ⊨ 𝜑 is the same as 𝜌, 0 ⊨ 𝜑

 Semantics is defined recursively over the formula

 Base case: Propositional formulas, Recursion over structure of formula

LTL Semantics
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 𝜌, 𝑛 ⊨ 𝑝 if 𝜈𝑛 𝑝 = 1, 

 i.e. if 𝑝 is true at time 𝑛

 𝜌, 𝑛 ⊨ ¬𝜑 if 𝜌, 𝑛 ⊭ 𝜑, 

 i.e. if 𝜑 is not true for the trace starting time 𝑛

 𝜌, 𝑛 ⊨ 𝜑1 ∧ 𝜑2 if 𝜌, 𝑛 ⊨ 𝜑1 and 𝜌, 𝑛 ⊨ 𝜑2

 i.e. if 𝜑1 and 𝜑2 both hold starting time 𝑛

Recursive semantics of LTL: I
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 𝜌, 𝑛 ⊨ 𝐗𝜑 if 𝜌, 𝑛 + 1 ⊨ 𝜑

 i.e. if 𝜑 holds starting at the next time point

 𝜌, 𝑛 ⊨ 𝐅 𝜑 if ∃𝑚 ≥ 𝑛 such that 𝜌, 𝑚 ⊨ 𝜑

  i.e. 𝜑 is true starting now, or there is some future time-point 𝑚 from 
where 𝜑 is true

Recursive semantics of LTL: II
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 𝐗𝑝 : NeXt Step 

Visualizing the temporal operators
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0 1 2 3 4 42

¬𝑝 𝒑 ¬𝑝 ¬𝑝 ¬𝑝 𝑝

 𝐅𝑝 : Some Future step 

0 1 2 3 4 42⋯ ⋯
¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 𝒑

0 1 2 3 4 42⋯ ⋯
𝒑 ¬𝑝 𝑝 ¬𝑝 ¬𝑝 𝑝



 𝜌, 𝑛 ⊨ 𝐆 𝜑 if ∀𝑚 ≥ 𝑛 : 𝜌, 𝑚 ⊨ 𝜑

  i.e. 𝜑 is true starting now, and for all future time-points 𝑚, 𝜑 is true 
starting at 𝑚

 𝜌, 𝑛 ⊨ 𝜑1𝐔𝜑2 if ∃𝑚 ≥ 𝑛 s.t. 𝜌, 𝑚 ⊨ 𝜑2 and ∀ℓ s.t. 𝑛 ≤ ℓ < 𝑚, 𝜌, ℓ ⊨ 𝜑1

 i.e. 𝜑2 eventually holds, and for all positions till 𝜑2 holds, 𝜑1 holds

Recursive semantics of LTL: II
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 𝐆𝑝: Globally 𝑝 holds

Visualizing the temporal operators
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0 1 2 3 4 42⋯ ⋯
𝒑 𝒑 𝒑 𝒑 𝒑 𝒑

 𝑝 𝐔 𝑞: 𝑝 holds Until 𝑞 holds

0 1 2 3 4 42⋯ ⋯
𝒑 

¬𝑞
𝒑 

¬𝑞
𝒑 

¬𝑞
𝒑 

¬𝑞

𝑝
𝒒



 What does 𝐗𝐅 𝑝 mean?

Trace satisfies 𝐗𝐅𝑝 (at time 0) if at time 1, 𝐅𝑝 holds. I.e. 𝑝 holds at some 
point strictly in the future

You can nest operators!
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⋯ ⋯0 1 2 3 4 42

¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 𝒑

 What does 𝐆𝐅 𝑝 mean?
Trace satisfies 𝐆𝐅𝑝 (at time 0) if at 𝑛, there is always a 𝒑 in the future

0 1 2

¬𝑝 ¬𝑝 𝒑

⋯ 14 ⋯15

𝒑¬𝑝

65

𝒑

⋯



 What does 𝐅𝐆𝑝 mean?

More operator fun
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10 11 12 13 14 42⋯ ⋯
𝒑 𝒑 𝒑 𝒑 𝒑 𝒑

0

¬𝑝

⋯

 What does 𝐆 𝑝 ⇒ 𝐅𝑞  mean?

0 1 2

𝒑 𝒒

14 15

𝒒

65

𝒒𝒑

54

𝒑

⋯ ⋯⋯



 What does the following formula mean: 𝑝1 ∧ 𝐗 𝑝2 ∧ 𝐗 𝑝3 ∧ 𝐗(𝑝4∧ 𝐗𝑝5 ?

More, more operator fun
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0 1 2 3 4 5

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

 Is this true? 𝐅(𝑝 ∧ 𝑞) is the same as 𝐅𝑝 ∧ 𝐅𝑞?

0 1 2 3 4 42⋯ ⋯
𝑝, 
¬𝑞

¬𝑝, 
𝑞

𝑝, 
¬𝑞

¬𝑝, 
𝑞

𝑝, 
¬𝑞

𝑝, 
¬𝑞



Linear Temporal Logic (LTL) specification
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It is a logic interpreted over infinite discrete-time traces

E.g. It is always true that the highest temperature will be below 75 degree and the lowest 
temperature will be above 60 degree 

𝐆(p ∧ q)       p = T<75, q=T>60



E.g. For the next 3 days the highest temperature will be below 75 degree and the lowest 
temperature will be above 60 degree 

X (p ∧ q) ∧ X X (p ∧ q) ∧ X X X (p ∧ q)              with p = T<75, q=T>60

Linear Temporal Logic (LTL) specification

31

It is a logic interpreted over infinite discrete-time traces



 𝐅𝜑 ≡ ¬𝐆¬𝜑

 𝐆𝐅𝜑 ≡ ¬𝐅𝐆¬𝜑

 𝐅 𝜑 ∨ 𝜓 ≡ 𝐅𝜑 ∨ 𝐅𝜓

 𝐆 𝜑 ∧ 𝜓 ≡ 𝐆𝜑 ∧ 𝐆𝜓

 𝐅𝐅𝜑 ≡ 𝐅𝜑

 𝐆𝐆𝜑 ≡ 𝐆𝜑

 𝐅𝐆𝐅𝜑 ≡ 𝐆𝐅𝜑

 𝐆𝐅𝐆𝜑 ≡ 𝐅𝐆𝜑

Operator duality and identities

32



 Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL

34

Kitchen
(𝑘)

Bedroom (𝑑)

Living Room (ℓ)

Bathroom (𝑏)

Study (𝑠)

 Whenever the robot visits the 
kitchen, it should visit the 
bedroom after.

𝐆(𝑘𝑟 ⇒ 𝐅 𝑑𝑟)

 Robot should never go to the 
bathroom.

𝐆¬𝑏𝑟

 The robot should keep working 
until its battery becomes low

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝐔 𝑙𝑜𝑤_𝑏𝑎𝑡𝑡𝑒𝑟𝑦

TV



 Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL

35

Kitchen
(𝑘)

Bedroom (𝑑)

Living Room (ℓ)

Bathroom (𝑏)

Study (𝑠)

 The robot should repeatedly visit 
the living room

𝐆𝐅 ℓ

 Whenever the TV is on and the 
living room has no person in it, 
then within three steps, the robot 
should turn off the TV

𝑜(𝑟): room occupied by a person

𝐆 ¬𝑜 ℓ ∧ 𝑇𝑉𝑜𝑛 ⇒ 𝐅≤3(𝑇𝑉𝑜𝑓𝑓)  

𝐅≤3𝜑 ≡ 𝜑 ∨ 𝐗𝜑 ∨ 𝐗𝐗𝜑 ∨ 𝐗𝐗𝐗𝜑TV



 Safety and liveness requirements require fundamentally different classes of model 
checking algorithms

 safety requirement: “system never does something bad”

“if something bad happens on an infinite run, then it happens already on some 
finite prefix”

Counterexamples no reachable ERROR state

 liveness requirement: “system eventually does something good “

“no matter what happens along a finite run, something good could still happen 
later”

Infinite-length counterexamples, loop

(Hard) Requirements

36



 It cannot happen that both processes are in their critical sections simultaneously

 Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most 
once before process P1 gets to enter.

 Whenever process P1 wants to enter the critical section, provided process P2 never stays in the 
critical section forever, P1 gets to enter eventually.

 The elevator will arrive within 30 seconds of being called

 Patient’s blood glucose never drops below 80 mg/dL

37

Requirements example 



 It cannot happen that both processes are in their critical sections simultaneously S

 Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most 
once before process P1 gets to enter. S

 Whenever process P1 wants to enter the critical section, provided process P2 never stays in the 
critical section forever, P1 gets to enter eventually. L

 The elevator will arrive within 30 seconds of being called S (observe the finite prefix of all 
computation steps until 30 seconds have passed, and decide the property, therefore safety )

 Patient’s blood glucose never drops below 80 mg/dL S

38

Requirements example 



 Most programmers have used regular expressions

 Regular Expressions (RE) are sequences of characters that specify 
(acceptable) pattern of finite length

 Example:

 [a-z][a-z 0-9] : strings starting with a lowercase letter (a-z) followed by one 
lowercase letter or number

 [a-z][0-9]*[a-z] : strings starting with a lowercase letter, followed by finitely 
many numbers followed by a lowercase letter

Detour to automata and formal languages

44



Famous equivalence between FSA and regular expressions:
 For every regular expression 𝑅𝑖  , there is a corresponding FSA 𝐴𝑖  that accepts the set of 

strings generated by 𝑅𝑖  .
 For every FSA 𝐴𝑖  there is a corresponding regular expression that generates the set of 

strings accepted by 𝐴𝑖  .

Finite State Automata (FSA)
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𝑞0
𝑞𝑓

a-z
𝑞1

a-z,0-9
[a-z][a-z 0-9 ]

𝐴1

State

Accepting
state



How does a Finite State Automaton work?
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 Starts at the initial state 𝑞0

 In 𝑞0, if it receives a letter in a-z, goes to 𝑞1

      else, it goes to 𝑞𝑟

 In 𝑞1, if it receives a number in 0-9, it stays in 𝑞1     

     else, it goes to 𝑞𝑓 (as it received a-z)

 In 𝑞𝑟, no matter what it gets, it stays in 𝑞𝑟

 𝑞𝑓 is an accepting state where computation halts

 Any string that takes the automaton from 𝑞0 to 𝑞𝑓 is 
accepted by the automaton

𝑞0
𝑞𝑓a-z

𝑞1

a-z

0-9

𝐴2

𝑞𝑟

*

0-9

[a-z][0-9]*[a-z] 



 What strings are accepted by 𝐴2?
ab, zy, s2r, q123s, u3123123v, etc.

 What strings are not accepted by 𝐴2?

2b, 334a, etc.

 The set of all strings accepted by 𝐴2 is 
called its language 

 The language of a finite state automaton 
consists of strings, each of which can be 
arbitrarily long, but finite

Language of a finite state automaton
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𝑞0
𝑞𝑓a-z

𝑞1

a-z

0-9

𝐴2

𝑞𝑟

*

0-9



 A safety monitor classifies system behaviors into good and bad

 Can we use a monitor to classify infinite behaviors into good or bad?

 Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi 
in 1960 

LTL Monitors 

51



Büchi Automata

52



 Extension of finite state automata to accept infinite strings

Büchi automaton Example 1

53

𝑞0 𝑞𝑓

𝐴1
𝑥 = 0

𝑥 = 1

 States 𝑄: {𝑞0, 𝑞𝑓}

 Input variable 𝑥 with domain Σ: 0,1

 Final state: {𝑞𝑓}

 Transitions: (as shown)

 Given trace 𝜌 (infinite sequence of symbols from 
Σ), 𝜌 is accepted by 𝐴1, if 𝑞𝑓 appears inf. often

 What is the language of 𝐴1?

LTL formula 𝐆𝐅(𝑥 = 1) 

𝑥 = 1

𝑥 = 0



Büchi automaton Example 2
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𝑞0 𝑞𝑓

𝐴2
𝑥 =  0|1

𝑥 =  0|1

𝑥 = 1

 𝑄: 𝑞0, 𝑞𝑓 , Σ: 0,1 , 𝐹: {𝑞𝑓}

 Transitions: (as shown)

 Note that this is a nondeterministic 
Büchi automaton

 𝐴2 accepts 𝜌 if there exists a path 
along which a state in 𝐹 appears 
infinitely often

 What is the language of 𝐴2? 

LTL formula 𝐅𝐆(𝑥 = 1)

Fun fact: there is no deterministic Büchi 
automaton that accepts this language

𝑞𝑟𝑥 =  0|1
𝑥 =  0



 What is the language of 𝐴3?
LTL formula: 

𝐆 𝑥 = 1 ⇒ 𝐅(𝑦 = 1)

 I.e. always when 𝑥 = 1 , in some 
future step, (𝑦 = 1)

 In other words, (𝑥 = 1) must be 
followed by (𝑦 = 1)

Büchi automaton Example 3
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𝑞1

𝐴3
𝑥 =  0

 𝑦 = 1

𝑥 = 1 & 𝑦 = 0

𝑦 = 0

𝑦 = 1

 𝑄: 𝑞0, 𝑞1 , Σ: 0,1 , 𝐹: {𝑞𝑓}

 Transitions: (as shown)

𝑞0



 Theoretical result: Every LTL formula 𝜑 can be converted to a Büchi 
monitor/automaton 𝐴𝜑

 Size of 𝐴𝜑 is generally exponential in the size of 𝜑; blow-up unavoidable in 
general

Using Büchi monitors

56



 Runtime monitoring: return a verdict based on only a finite portion of the 
trace

 Some kinds of formulas can be monitored on finite traces

𝐅 𝑝 ∨ 𝑞

𝐆 (¬p )

 Finitely satisfiable: 𝐅 𝑝 ∨ 𝑞

 Finitely refutable: 𝐆(¬𝑝)

 Some formulas can never return a verdict on finite traces

𝐆𝐅 𝑝, 𝐅𝐆 𝑞, 𝐆(𝑝 ⇒ 𝐅𝑞)

Büchi monitors for runtime monitoring

58



 Monitoring: computing 𝛽 for a single trace 𝐱 ∈ 𝑡𝑟𝑎𝑐𝑒 𝑀

 Model checking (MC) is an algorithmic method for determining if a system 
satisfies a formal specification expressed in temporal logic

𝑀 ⊨𝜙 ⟺ ∀𝐱 ∈𝑡𝑟𝑎𝑐𝑒 (𝑀) 𝛽( 𝜑,𝐱,0 )=1 
Type equation here.

 Statistical Model Checking (SMC): “doing statistics” on 𝛽 (𝜑, 𝐱, 0) for a finite-
subset of 𝑡𝑟𝑎𝑐𝑒 (𝑀)

 Reachability analysis is the process of computing the set of reachable states for a 
system

Reachability, MC, Monitoring and SMC
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