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□ 1,3 𝑥 > 0 ⇒  1,3 ( 𝑦 > 0 ∧  0,0.001 𝑦 < 0 ⇒ 𝑥 > 1 ∨ (𝑥 < −1)



 Requirements describe desirable properties of system behaviors

 High assurance/safety-critical, or mission-critical systems must use formal requirements

 Behavioral requirements: requirement can be evaluated on individual system behaviors

 Requirements met by the whole system if all behaviors satisfy requirements

 There needs to be a clear separation between requirements (what needs to be 
implemented) and the design (how should it be implemented)

 Unfortunately, this is not often obeyed

Requirements
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 Informal requirements: implicit or stated in natural language
 If an obstacle is sensed by the car, it should stop if it is safe to do so

 Formal requirements: explicit and mathematically precise
 If the vision system, with a probability > 0.8, 

labels an object (𝑥 + 𝑑safe) meters from the car as a stationary 
obstacle, 

 then as long as the current velocity 𝑢 of the car is less than 2𝑥𝑏 𝑢  , 
the vehicle should execute an emergency stop maneuver within 10 ms. 

Here, the maximum braking deceleration that the car can produce at velocity 
𝑢 is −𝑏max(𝑢), and 𝑑safe is a safe stopping distance between vehicles

Rigor in Requirements
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 Hard Requirements: Violation leads to endangering safety-criticality or 
mission-criticality

Safety Requirements: system never does something bad

Liveness Requirements: from any point of time, system eventually does 
something good 

 Soft Requirements: Violations lead to inefficiency, but are not critical

 (Absolute) Performance Requirements: system performance is not worst 
than a certain level

 (Average) Performance Requirements: average system performance is at a 
certain level

Types of Specifications/Requirements
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 Languages and Logics to describe mathematically precise requirements

 Examples:

Automata, State Machines

Propositional Logic, Temporal Logic, Regular Expressions

Structured language/grammar-based requirements

Requirement Formalisms
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 Temporal Logic (literally logic of time) allows us to specify infinite sequences 
of states using logical formulae

 Amir Pnueli in 1977 used a form of temporal logic called Linear Temporal 
Logic (LTL) for requirements of reactive systems: later selected for the 1996 
Turing Award

 Clarke, Emerson, Sifakis in 2007 received the Turing Award for the model 
checking algorithm, originally designed for checking Computation Tree Logic 
(CTL) properties of distributed programs

Temporal Logic
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 Syntax: A set of operators that allow us to construct formulas from specific 
ground terms

 Semantics: A set of rules that assign meanings to well-formed formulas 
obtained by using above syntactic rules

 Simplest form is Propositional Logic

What is a logic in context of today’s lecture?
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 Simplest form of logic with a set of:

  atomic propositions: 
𝐴𝑃 = 𝑝, 𝑞, 𝑟, …

Boolean connectives:
∧,∨, ¬, ⇒, ≡

 Syntax recursively gives how new 
formulae are constructed from 
smaller formulae

Propositional Logic
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Syntax of Propositional Logic

𝜑 ∷= 𝑡𝑟𝑢𝑒 | the true formula

𝑝 | 𝑝 is a prop in AP

¬𝜑 | Negation

𝜑 ∧ 𝜑 | Conjunction

𝜑 ∨ 𝜑 | Disjunction

𝜑 ⇒ 𝜑 | Implication

𝜑 ≡ 𝜑 | Equivalence



 Semantics (i.e. meaning) of a formula 
can be defined recursively

 Semantics of an atomic proposition 
defined by a valuation function 𝜈

 Valuation function assigns each 
proposition a value 1 (true) or 0 
(false), always assigns the 𝑡𝑟𝑢𝑒 
formula the value 1, and for other 
formulae is defined recursively

Semantics 
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Semantics of Prop. Logic

𝜈(𝑡𝑟𝑢𝑒) 1

𝜈 𝑝 1 if 𝜈 𝑝 = 1

𝜈 ¬𝜑
1 if 𝜈 𝜑 = 0
0 if 𝜈 𝜑 = 1

𝜈(𝜑1 ∧ 𝜑2) 
1 if 𝜈 𝜑1  = 1 and 𝜈 𝜑2 = 1,
0 otherwise

𝜑1 ∨ 𝜑2 𝜈 ¬(¬𝜑1 ∧ ¬𝜑2)

𝜑1 ⇒ 𝜑2 𝜈 ¬𝜑1 ∨ 𝜑2

𝜑1 ≡ 𝜑2 𝜈 𝜑1 ⇒ 𝜑2 ∧ 𝜑2 ⇒ 𝜑1



 𝑝 : There is an upright bicycle in the 
middle of the road

 r: the bicycle has a rider

 𝑝 ⇒ 𝑟: If there is an upright bicycle in 
the middle of the road, the bicycle has 
a rider

 𝑞 : There is car in the field of vision

 𝑜𝑖: Car 𝑖 is in the intersection

 𝑜1 ∧ ¬𝑜2 ∨ (¬𝑜1 ∧ 𝑜2)

Examples
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 𝜈: 𝑝1 ↦ 1, 𝑝2 ↦ 0, 𝑝3 ↦ 0. What is 𝜈 𝑝1 ∧ 𝑝2 ⇒ 𝑝3 ?

 𝜈 𝑝1 ∧ 𝑝2 ⇒ 𝑝3  =1

 𝜈: 𝑝1 ↦ 1, 𝑝2 ↦ 0, 𝑝3 ↦ 0. What is 𝜈 (𝑝1⇒ 𝑝3) ∧ 𝑝2 ⇒ 𝑝3

 𝜈 (𝑝1⇒ 𝑝3) ∧ 𝑝2 ⇒ 𝑝3  =0

 Is this true?  𝜈 𝑝1 ∧ 𝑝2 ⇒ 𝑝3 ≡ 𝑝1 ⇒ 𝑝3 ∧ 𝑝2 ⇒ 𝑝3  = 1? 

(For all valuations)?

Interpreting a formula of prop. logic
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 Propositional Logic is interpreted over valuations to atoms

 Temporal Logic is interpreted over traces/sequences/strings

 Trace is an infinite sequence of valuations

 𝜌: 

Temporal Logic = Prop. Logic + Temporal Operators
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0 1 2 3 4 42⋯ ⋯
𝑝, 
𝑞

𝑝, 
¬𝑞

¬𝑝, 
¬𝑞

𝑝, 
𝑞

¬𝑝, 
𝑞

𝑝, 
𝑞

 Can also write as: (0,1,1), (1,1,0), (2,0,0), (3,1,1),(4,0,1),… ,(42,1,1), … 



LTL
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 LTL is a logic interpreted over infinite traces

 Temporal logic with a view that time evolves in a linear fashion

Other logics where time is branching!

 Assumes that a trace is a discrete-time trace, with equal time intervals

 Actual interval between time-points does not matter : similar to rounds in 
synchronous reactive components

 LTL can be used to express safety and liveness properties!

Linear Temporal Logic
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 LTL formulas are built from 
propositions  using:

Boolean connectives

Temporal Operators

 Only shown ∧ and ¬, but can 
define ∨, ⇒, ≡ for convenience

LTL Syntax
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Syntax of LTL

𝜑 ∷= 𝑝 | 𝑝 is a prop in AP

¬𝜑 | Negation

𝜑 ∧ 𝜑 | Conjunction

𝐗𝜑 | NeXt Step

𝐅𝜑 | Some Future Step

𝐆𝜑 | Globally in all steps

𝜑 𝐔 𝜑 |
In all steps Until in 
some step



 Semantics of LTL is defined by a valuation function that assigns to each 
proposition at each time-point in the trace a truth value (0 or 1)

 We use the symbol ⊨ (read models) to show that a trace-point satisfies a 
formula

 𝜌, 𝑛 ⊨ 𝜑 : Read as trace 𝜌 at time 𝑛 satisfies formula 𝜑

 If we omit 𝑛, then the meaning is time 0. I.e. 𝜌 ⊨ 𝜑 is the same as 𝜌, 0 ⊨ 𝜑

 Semantics is defined recursively over the formula

 Base case: Propositional formulas, Recursion over structure of formula

LTL Semantics
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 𝜌, 𝑛 ⊨ 𝑝 if 𝜈𝑛 𝑝 = 1, 

 i.e. if 𝑝 is true at time 𝑛

 𝜌, 𝑛 ⊨ ¬𝜑 if 𝜌, 𝑛 ⊭ 𝜑, 

 i.e. if 𝜑 is not true for the trace starting time 𝑛

 𝜌, 𝑛 ⊨ 𝜑1 ∧ 𝜑2 if 𝜌, 𝑛 ⊨ 𝜑1 and 𝜌, 𝑛 ⊨ 𝜑2

 i.e. if 𝜑1 and 𝜑2 both hold starting time 𝑛

Recursive semantics of LTL: I
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 𝜌, 𝑛 ⊨ 𝐗𝜑 if 𝜌, 𝑛 + 1 ⊨ 𝜑

 i.e. if 𝜑 holds starting at the next time point

 𝜌, 𝑛 ⊨ 𝐅 𝜑 if ∃𝑚 ≥ 𝑛 such that 𝜌, 𝑚 ⊨ 𝜑

  i.e. 𝜑 is true starting now, or there is some future time-point 𝑚 from 
where 𝜑 is true

Recursive semantics of LTL: II
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 𝐗𝑝 : NeXt Step 

Visualizing the temporal operators
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0 1 2 3 4 42

¬𝑝 𝒑 ¬𝑝 ¬𝑝 ¬𝑝 𝑝

 𝐅𝑝 : Some Future step 

0 1 2 3 4 42⋯ ⋯
¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 𝒑

0 1 2 3 4 42⋯ ⋯
𝒑 ¬𝑝 𝑝 ¬𝑝 ¬𝑝 𝑝



 𝜌, 𝑛 ⊨ 𝐆 𝜑 if ∀𝑚 ≥ 𝑛 : 𝜌, 𝑚 ⊨ 𝜑

  i.e. 𝜑 is true starting now, and for all future time-points 𝑚, 𝜑 is true 
starting at 𝑚

 𝜌, 𝑛 ⊨ 𝜑1𝐔𝜑2 if ∃𝑚 ≥ 𝑛 s.t. 𝜌, 𝑚 ⊨ 𝜑2 and ∀ℓ s.t. 𝑛 ≤ ℓ < 𝑚, 𝜌, ℓ ⊨ 𝜑1

 i.e. 𝜑2 eventually holds, and for all positions till 𝜑2 holds, 𝜑1 holds

Recursive semantics of LTL: II

25



 𝐆𝑝: Globally 𝑝 holds

Visualizing the temporal operators
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0 1 2 3 4 42⋯ ⋯
𝒑 𝒑 𝒑 𝒑 𝒑 𝒑

 𝑝 𝐔 𝑞: 𝑝 holds Until 𝑞 holds

0 1 2 3 4 42⋯ ⋯
𝒑 

¬𝑞
𝒑 

¬𝑞
𝒑 

¬𝑞
𝒑 

¬𝑞

𝑝
𝒒



 What does 𝐗𝐅 𝑝 mean?

Trace satisfies 𝐗𝐅𝑝 (at time 0) if at time 1, 𝐅𝑝 holds. I.e. 𝑝 holds at some 
point strictly in the future

You can nest operators!
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⋯ ⋯0 1 2 3 4 42

¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 ¬𝑝 𝒑

 What does 𝐆𝐅 𝑝 mean?
Trace satisfies 𝐆𝐅𝑝 (at time 0) if at 𝑛, there is always a 𝒑 in the future

0 1 2

¬𝑝 ¬𝑝 𝒑

⋯ 14 ⋯15

𝒑¬𝑝

65

𝒑

⋯



 What does 𝐅𝐆𝑝 mean?

More operator fun
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10 11 12 13 14 42⋯ ⋯
𝒑 𝒑 𝒑 𝒑 𝒑 𝒑

0

¬𝑝

⋯

 What does 𝐆 𝑝 ⇒ 𝐅𝑞  mean?

0 1 2

𝒑 𝒒

14 15

𝒒

65

𝒒𝒑
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𝒑

⋯ ⋯⋯



 What does the following formula mean: 𝑝1 ∧ 𝐗 𝑝2 ∧ 𝐗 𝑝3 ∧ 𝐗(𝑝4∧ 𝐗𝑝5 ?

More, more operator fun
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0 1 2 3 4 5

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

 Is this true? 𝐅(𝑝 ∧ 𝑞) is the same as 𝐅𝑝 ∧ 𝐅𝑞?

0 1 2 3 4 42⋯ ⋯
𝑝, 
¬𝑞

¬𝑝, 
𝑞

𝑝, 
¬𝑞

¬𝑝, 
𝑞

𝑝, 
¬𝑞

𝑝, 
¬𝑞



Linear Temporal Logic (LTL) specification
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It is a logic interpreted over infinite discrete-time traces

E.g. It is always true that the highest temperature will be below 75 degree and the lowest 
temperature will be above 60 degree 

𝐆(p ∧ q)       p = T<75, q=T>60



E.g. For the next 3 days the highest temperature will be below 75 degree and the lowest 
temperature will be above 60 degree 

X (p ∧ q) ∧ X X (p ∧ q) ∧ X X X (p ∧ q)              with p = T<75, q=T>60

Linear Temporal Logic (LTL) specification
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It is a logic interpreted over infinite discrete-time traces



 𝐅𝜑 ≡ ¬𝐆¬𝜑

 𝐆𝐅𝜑 ≡ ¬𝐅𝐆¬𝜑

 𝐅 𝜑 ∨ 𝜓 ≡ 𝐅𝜑 ∨ 𝐅𝜓

 𝐆 𝜑 ∧ 𝜓 ≡ 𝐆𝜑 ∧ 𝐆𝜓

 𝐅𝐅𝜑 ≡ 𝐅𝜑

 𝐆𝐆𝜑 ≡ 𝐆𝜑

 𝐅𝐆𝐅𝜑 ≡ 𝐆𝐅𝜑

 𝐆𝐅𝐆𝜑 ≡ 𝐅𝐆𝜑

Operator duality and identities
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 Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL
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Kitchen
(𝑘)

Bedroom (𝑑)

Living Room (ℓ)

Bathroom (𝑏)

Study (𝑠)

 Whenever the robot visits the 
kitchen, it should visit the 
bedroom after.

𝐆(𝑘𝑟 ⇒ 𝐅 𝑑𝑟)

 Robot should never go to the 
bathroom.

𝐆¬𝑏𝑟

 The robot should keep working 
until its battery becomes low

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝐔 𝑙𝑜𝑤_𝑏𝑎𝑡𝑡𝑒𝑟𝑦

TV



 Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL
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Kitchen
(𝑘)

Bedroom (𝑑)

Living Room (ℓ)

Bathroom (𝑏)

Study (𝑠)

 The robot should repeatedly visit 
the living room

𝐆𝐅 ℓ

 Whenever the TV is on and the 
living room has no person in it, 
then within three steps, the robot 
should turn off the TV

𝑜(𝑟): room occupied by a person

𝐆 ¬𝑜 ℓ ∧ 𝑇𝑉𝑜𝑛 ⇒ 𝐅≤3(𝑇𝑉𝑜𝑓𝑓)  

𝐅≤3𝜑 ≡ 𝜑 ∨ 𝐗𝜑 ∨ 𝐗𝐗𝜑 ∨ 𝐗𝐗𝐗𝜑TV



 Safety and liveness requirements require fundamentally different classes of model 
checking algorithms

 safety requirement: “system never does something bad”

“if something bad happens on an infinite run, then it happens already on some 
finite prefix”

Counterexamples no reachable ERROR state

 liveness requirement: “system eventually does something good “

“no matter what happens along a finite run, something good could still happen 
later”

Infinite-length counterexamples, loop

(Hard) Requirements
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 It cannot happen that both processes are in their critical sections simultaneously

 Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most 
once before process P1 gets to enter.

 Whenever process P1 wants to enter the critical section, provided process P2 never stays in the 
critical section forever, P1 gets to enter eventually.

 The elevator will arrive within 30 seconds of being called

 Patient’s blood glucose never drops below 80 mg/dL
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Requirements example 



 It cannot happen that both processes are in their critical sections simultaneously S

 Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most 
once before process P1 gets to enter. S

 Whenever process P1 wants to enter the critical section, provided process P2 never stays in the 
critical section forever, P1 gets to enter eventually. L

 The elevator will arrive within 30 seconds of being called S (observe the finite prefix of all 
computation steps until 30 seconds have passed, and decide the property, therefore safety )

 Patient’s blood glucose never drops below 80 mg/dL S
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Requirements example 



 Most programmers have used regular expressions

 Regular Expressions (RE) are sequences of characters that specify 
(acceptable) pattern of finite length

 Example:

 [a-z][a-z 0-9] : strings starting with a lowercase letter (a-z) followed by one 
lowercase letter or number

 [a-z][0-9]*[a-z] : strings starting with a lowercase letter, followed by finitely 
many numbers followed by a lowercase letter

Detour to automata and formal languages
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Famous equivalence between FSA and regular expressions:
 For every regular expression 𝑅𝑖  , there is a corresponding FSA 𝐴𝑖  that accepts the set of 

strings generated by 𝑅𝑖  .
 For every FSA 𝐴𝑖  there is a corresponding regular expression that generates the set of 

strings accepted by 𝐴𝑖  .

Finite State Automata (FSA)
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𝑞0
𝑞𝑓

a-z
𝑞1

a-z,0-9
[a-z][a-z 0-9 ]

𝐴1

State

Accepting
state



How does a Finite State Automaton work?
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 Starts at the initial state 𝑞0

 In 𝑞0, if it receives a letter in a-z, goes to 𝑞1

      else, it goes to 𝑞𝑟

 In 𝑞1, if it receives a number in 0-9, it stays in 𝑞1     

     else, it goes to 𝑞𝑓 (as it received a-z)

 In 𝑞𝑟, no matter what it gets, it stays in 𝑞𝑟

 𝑞𝑓 is an accepting state where computation halts

 Any string that takes the automaton from 𝑞0 to 𝑞𝑓 is 
accepted by the automaton

𝑞0
𝑞𝑓a-z

𝑞1

a-z

0-9

𝐴2

𝑞𝑟

*

0-9

[a-z][0-9]*[a-z] 



 What strings are accepted by 𝐴2?
ab, zy, s2r, q123s, u3123123v, etc.

 What strings are not accepted by 𝐴2?

2b, 334a, etc.

 The set of all strings accepted by 𝐴2 is 
called its language 

 The language of a finite state automaton 
consists of strings, each of which can be 
arbitrarily long, but finite

Language of a finite state automaton
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𝑞0
𝑞𝑓a-z

𝑞1

a-z

0-9

𝐴2

𝑞𝑟

*

0-9



 A safety monitor classifies system behaviors into good and bad

 Can we use a monitor to classify infinite behaviors into good or bad?

 Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi 
in 1960 

LTL Monitors 
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Büchi Automata

52



 Extension of finite state automata to accept infinite strings

Büchi automaton Example 1
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𝑞0 𝑞𝑓

𝐴1
𝑥 = 0

𝑥 = 1

 States 𝑄: {𝑞0, 𝑞𝑓}

 Input variable 𝑥 with domain Σ: 0,1

 Final state: {𝑞𝑓}

 Transitions: (as shown)

 Given trace 𝜌 (infinite sequence of symbols from 
Σ), 𝜌 is accepted by 𝐴1, if 𝑞𝑓 appears inf. often

 What is the language of 𝐴1?

LTL formula 𝐆𝐅(𝑥 = 1) 

𝑥 = 1

𝑥 = 0



Büchi automaton Example 2
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𝑞0 𝑞𝑓

𝐴2
𝑥 =  0|1

𝑥 =  0|1

𝑥 = 1

 𝑄: 𝑞0, 𝑞𝑓 , Σ: 0,1 , 𝐹: {𝑞𝑓}

 Transitions: (as shown)

 Note that this is a nondeterministic 
Büchi automaton

 𝐴2 accepts 𝜌 if there exists a path 
along which a state in 𝐹 appears 
infinitely often

 What is the language of 𝐴2? 

LTL formula 𝐅𝐆(𝑥 = 1)

Fun fact: there is no deterministic Büchi 
automaton that accepts this language

𝑞𝑟𝑥 =  0|1
𝑥 =  0



 What is the language of 𝐴3?
LTL formula: 

𝐆 𝑥 = 1 ⇒ 𝐅(𝑦 = 1)

 I.e. always when 𝑥 = 1 , in some 
future step, (𝑦 = 1)

 In other words, (𝑥 = 1) must be 
followed by (𝑦 = 1)

Büchi automaton Example 3
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𝑞1

𝐴3
𝑥 =  0

 𝑦 = 1

𝑥 = 1 & 𝑦 = 0

𝑦 = 0

𝑦 = 1

 𝑄: 𝑞0, 𝑞1 , Σ: 0,1 , 𝐹: {𝑞𝑓}

 Transitions: (as shown)

𝑞0



 Theoretical result: Every LTL formula 𝜑 can be converted to a Büchi 
monitor/automaton 𝐴𝜑

 Size of 𝐴𝜑 is generally exponential in the size of 𝜑; blow-up unavoidable in 
general

Using Büchi monitors
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 Runtime monitoring: return a verdict based on only a finite portion of the 
trace

 Some kinds of formulas can be monitored on finite traces

𝐅 𝑝 ∨ 𝑞

𝐆 (¬p )

 Finitely satisfiable: 𝐅 𝑝 ∨ 𝑞

 Finitely refutable: 𝐆(¬𝑝)

 Some formulas can never return a verdict on finite traces

𝐆𝐅 𝑝, 𝐅𝐆 𝑞, 𝐆(𝑝 ⇒ 𝐅𝑞)

Büchi monitors for runtime monitoring
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 Monitoring: computing 𝛽 for a single trace 𝐱 ∈ 𝑡𝑟𝑎𝑐𝑒 𝑀

 Model checking (MC) is an algorithmic method for determining if a system 
satisfies a formal specification expressed in temporal logic

𝑀 ⊨𝜙 ⟺ ∀𝐱 ∈𝑡𝑟𝑎𝑐𝑒 (𝑀) 𝛽( 𝜑,𝐱,0 )=1 
Type equation here.

 Statistical Model Checking (SMC): “doing statistics” on 𝛽 (𝜑, 𝐱, 0) for a finite-
subset of 𝑡𝑟𝑎𝑐𝑒 (𝑀)

 Reachability analysis is the process of computing the set of reachable states for a 
system

Reachability, MC, Monitoring and SMC
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