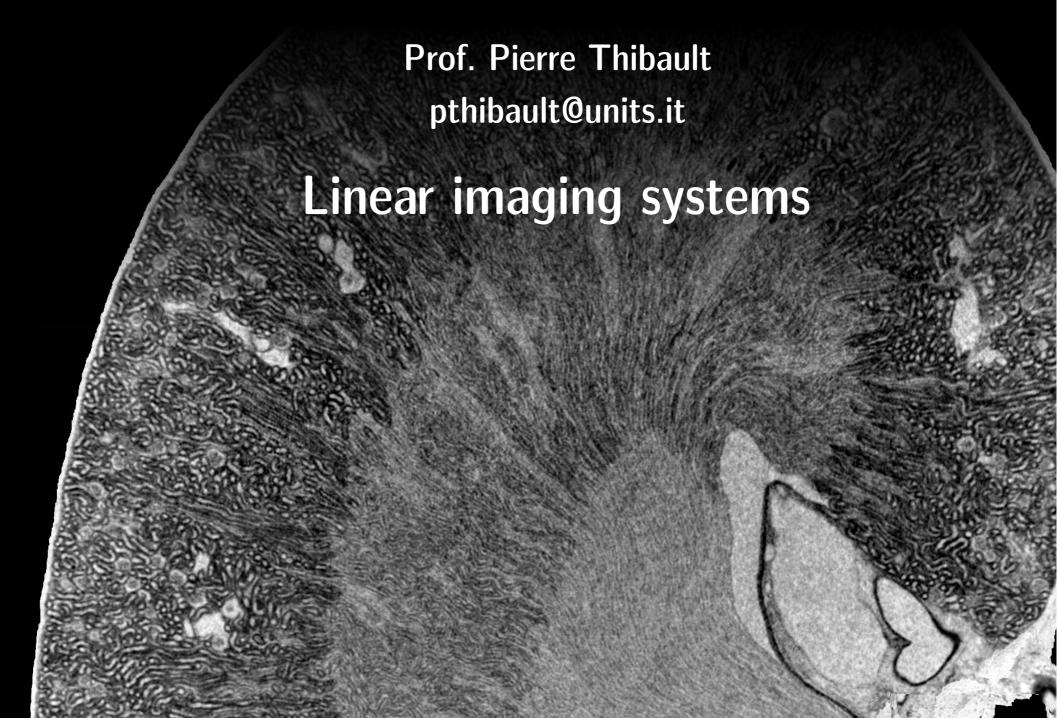
Image Processing for Physicists



Overview

- Definition of resolution
- Imaging systems:
 - Linear transfer model
 - Noise

Resolution

"the smallest detail that can be distinguished"

- Numerical aperture microscopy, photography, astronomy
 Pixel size detector limited
 Other criteria (PSF, MTF)

 - What is "detail"?
 - What is "distinguish"?

how is a delail burned by the imaging system?

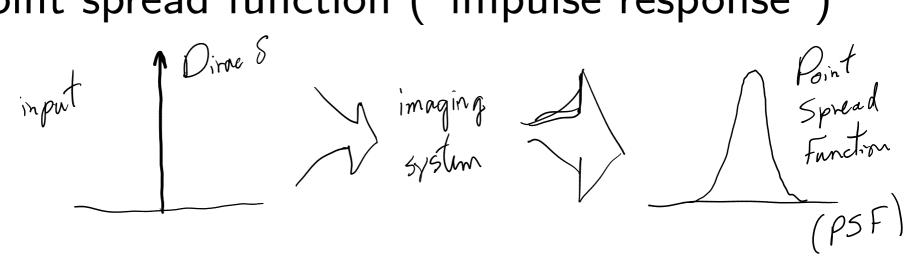
Resolution

1280 x 1280 640 x 640

- not simply given by pixel size (i.e. sampling rate)
- light quality, optics quality, detector quality, algorithm quality, noise, ...

Linear translation-invariant systems

• Point spread function ("impulse response")



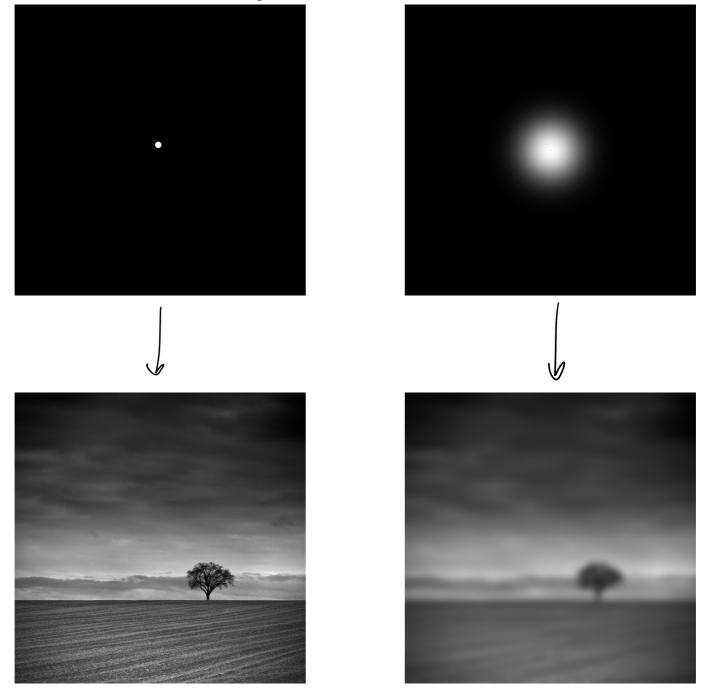
LTI system: convolution with PSF

$$f(x,y) = \int dx'dy' f(x',y') \delta(x-x') \delta(y-y'),$$

$$\int Imaging systm$$

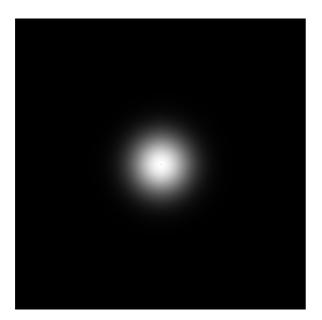
$$\int dx'dy' f(x',y') h(x-x',y-y') = f * h$$

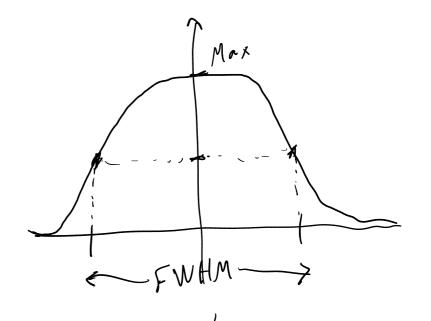
Point spread function



PSF and resolution

Common way to describe resolution as a function of PSF is with the "Full Width at Half Maximum" (FWHM)





Another definition of resolution is Rayleigh criterion

La applies to PSF generaled by circular aperture

resolution: position of first minimum

some Bessel function

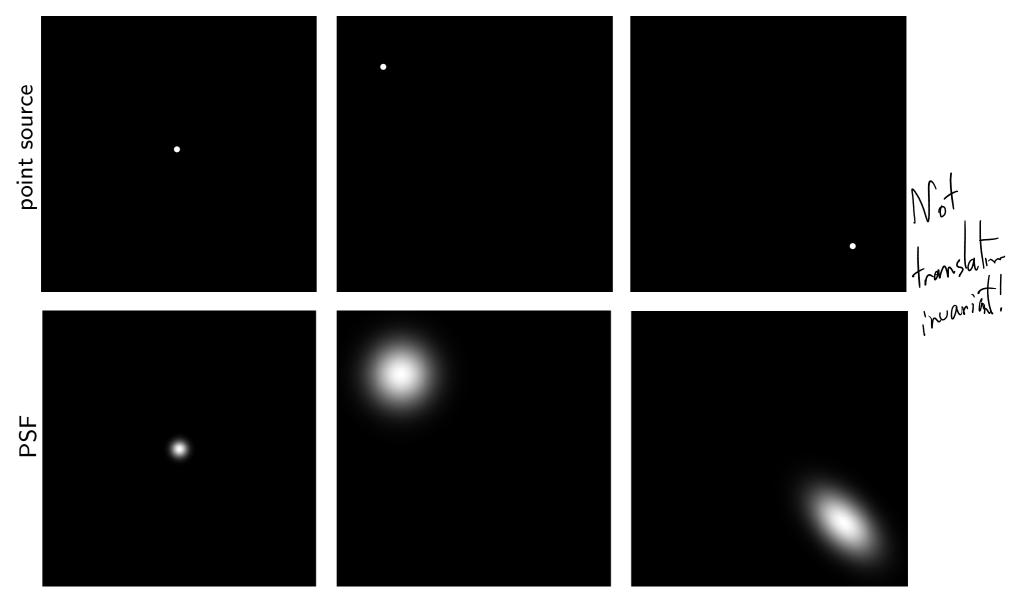
Imaging systems

Measurement of the PSF

• Direct measurement from impulse

• Since-spread function

PSF and translation invariance



- Not translation invariant o PSF depends on position o not a convolution
- Useful to model system imperfections, lens aberrations, ...

The Fourier picture

7 { f * h} = F(u). H(u) Fourier transform of PSF "Optical Transfer Function" Consider a single spatial frequency (uo)

Fraging system

H(u.) A, e

modulated amplitude

original amplitude

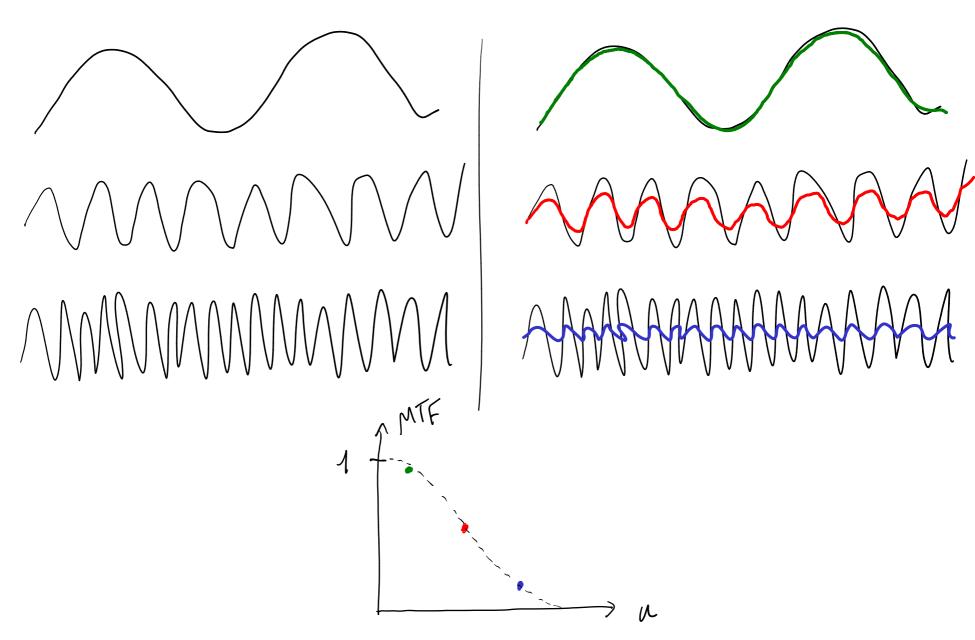
H(u,) \left(1) * observation: pure oscillations of the form e a eigenfunctions of a LTI imaging system

Optical transfer function

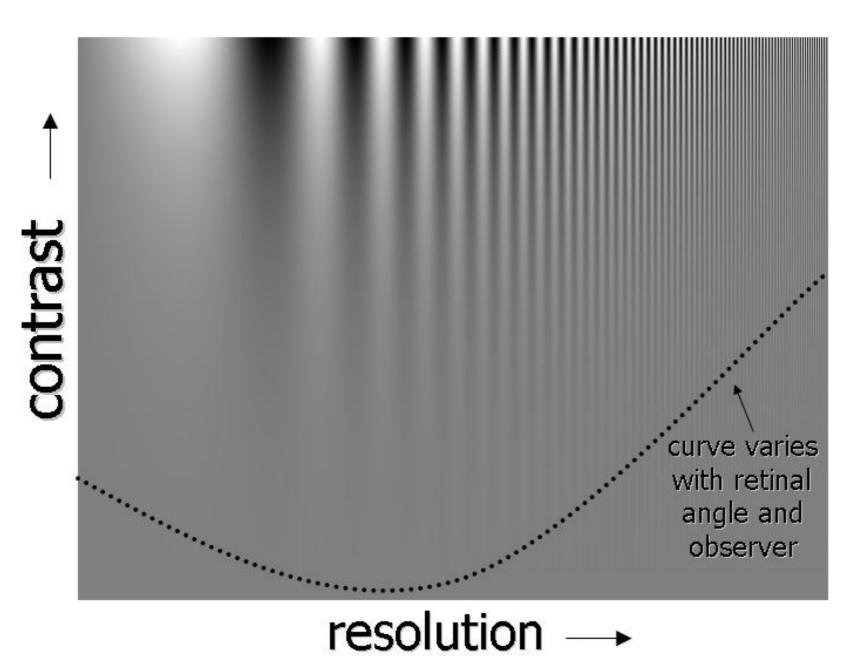
Response of a system to an oscillating signal with well-defined frequency

Modulation transfer function

Amplitude change of an oscillating signal for a given frequency



Eye MTF



Imaging s_.

Campbell-Robson curve

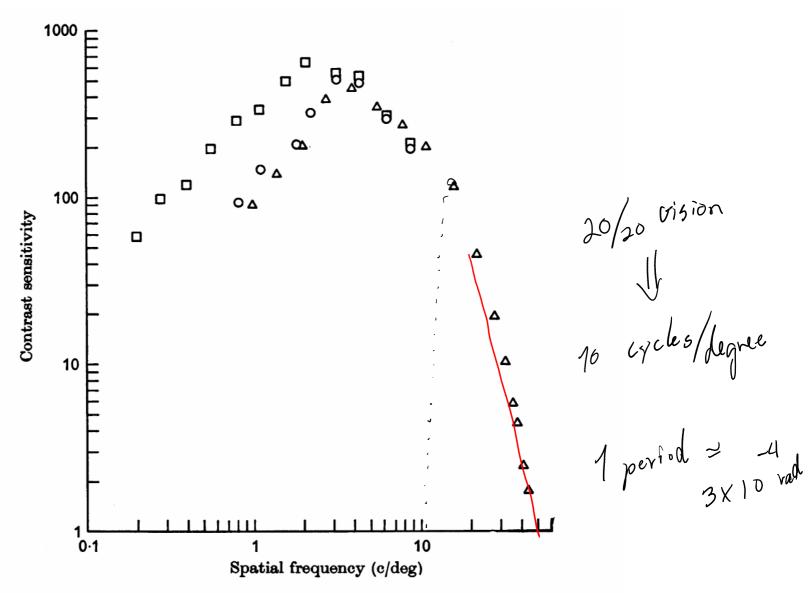
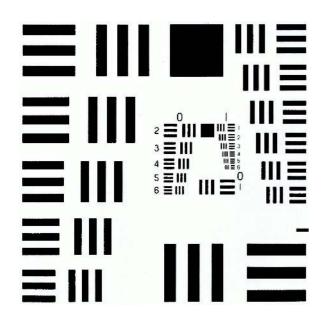
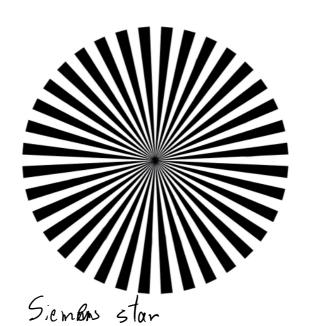
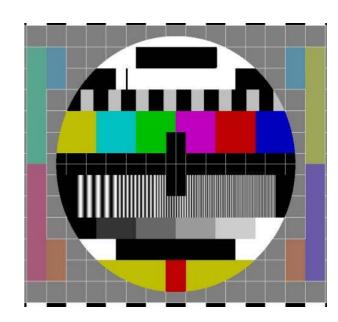


Fig. 2. Contrast sensitivity for sine-wave gratings. Subject F.W.C., luminance 500 cd/m^2 . Viewing distance 285 cm and aperture $2^{\circ} \times 2^{\circ}$, \triangle ; viewing distance 57 cm, aperture $10^{\circ} \times 10^{\circ}$, \square ; viewing distance 57 cm, aperture $2^{\circ} \times 2^{\circ}$, \bigcirc .

Measurement of MTF





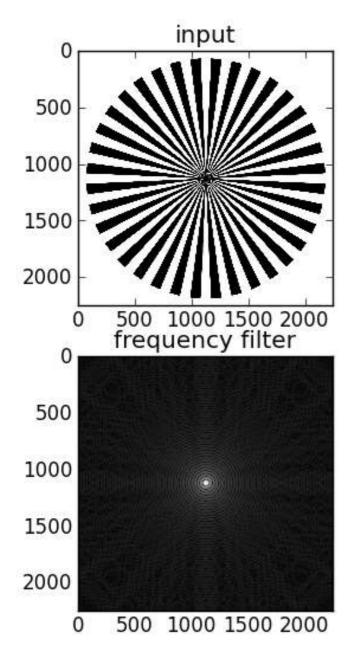


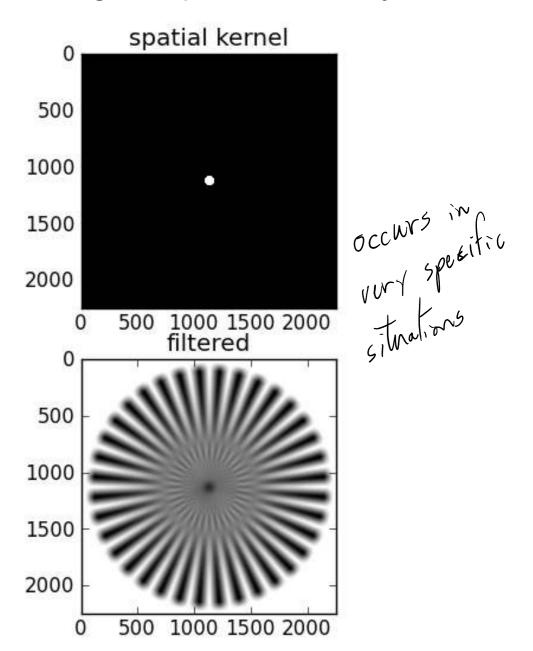
USAF resolution target

source: http://fotomagazin.de

Phase transfer function

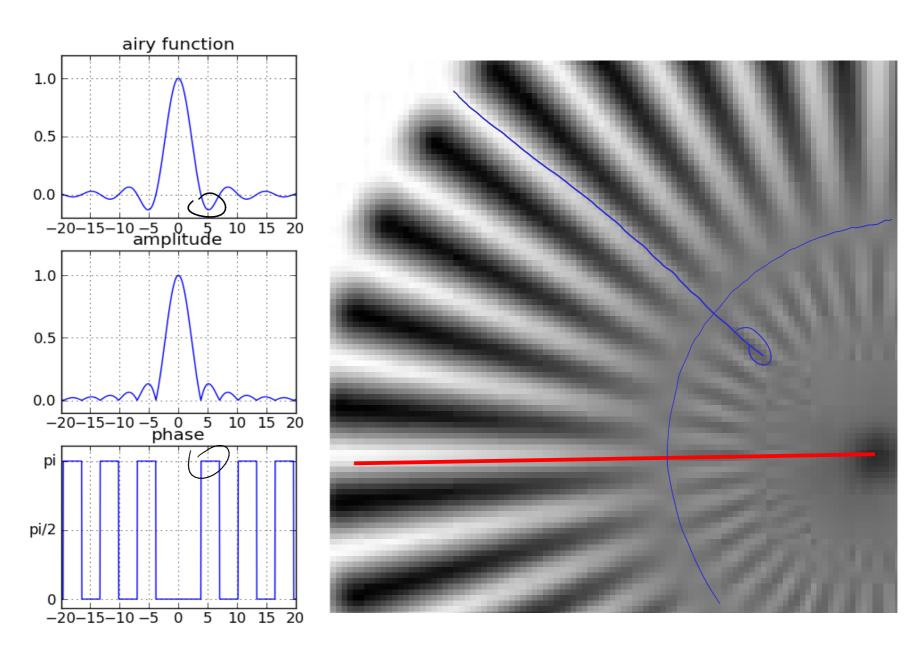
describes how an oscillating signal changes in phase due to system





Phase transfer function

describes how an oscillating signal changes in phase due to system

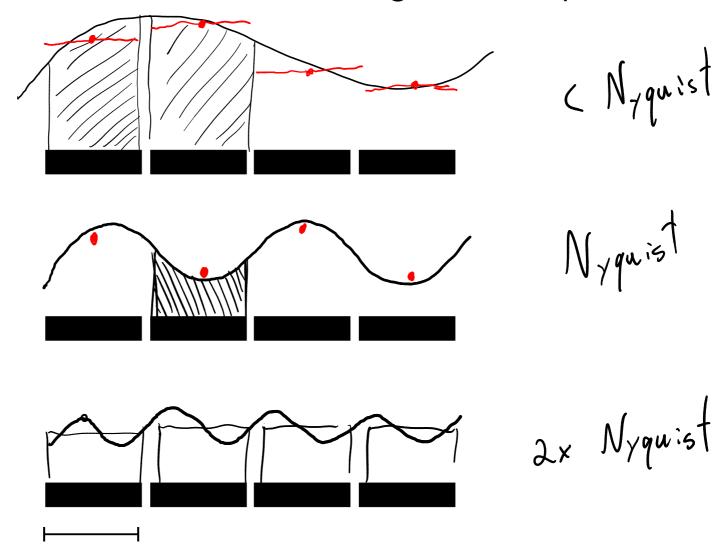


MTF of an ideal pixel square MIFat:-aliasing filter

leads to aliasing PSF: aw w Myquist frequency A PSF W Imaging systems

Pixel MTF

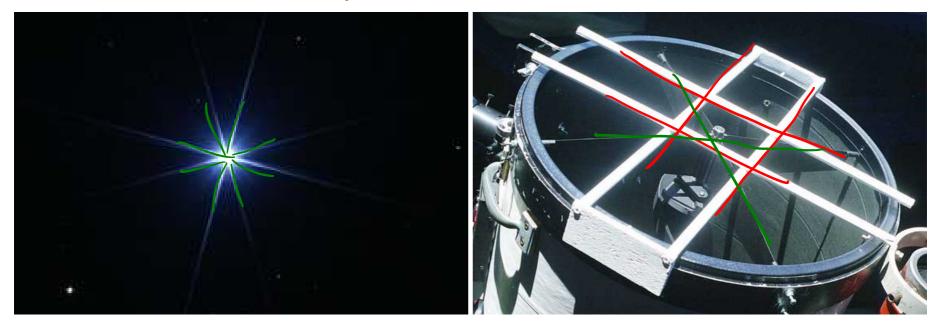
Modulation transfer function of a single detector pixel



Imaging as a linear filter

PSF examples

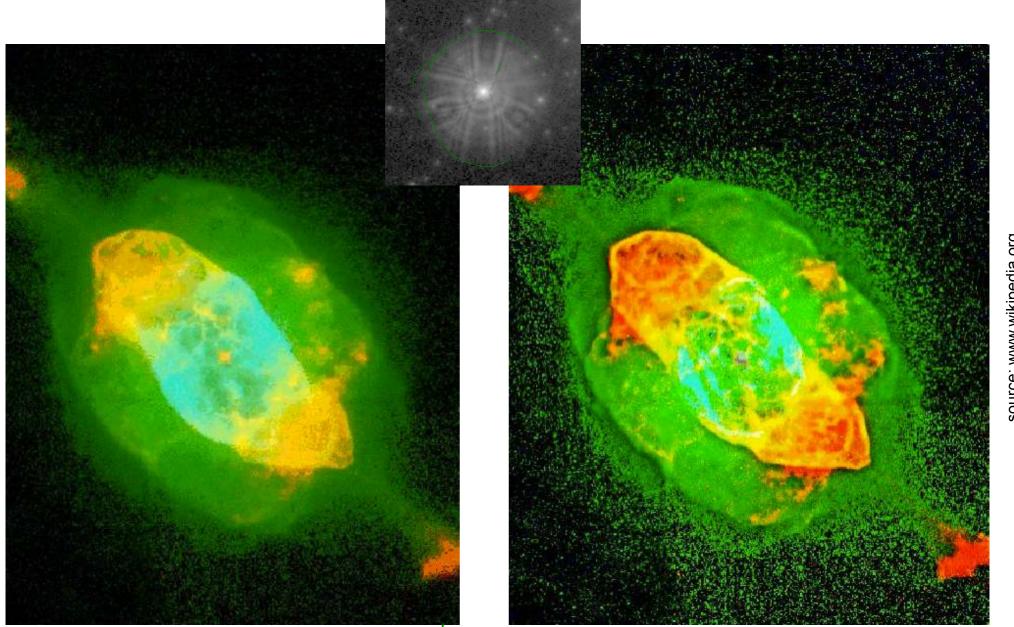
isolated stars are essentially PSFs



source: www.apod.nasa.gov

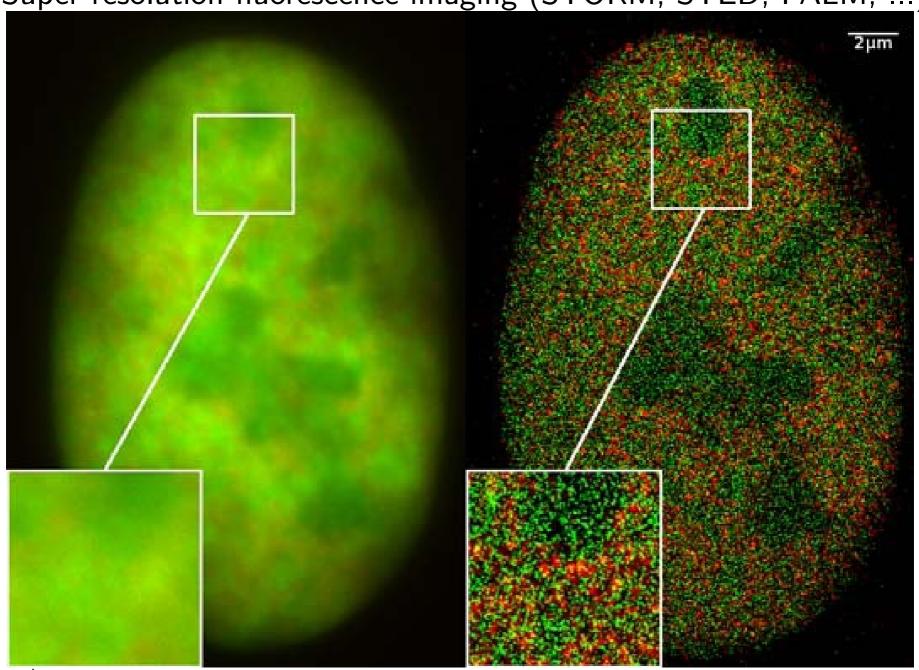
PSF examples

Hubble flawed mirror deconvolution (correction for spherical aberration)



PSF examples

Super-resolution fluorescence imaging (STORM, STED, PALM, ...)

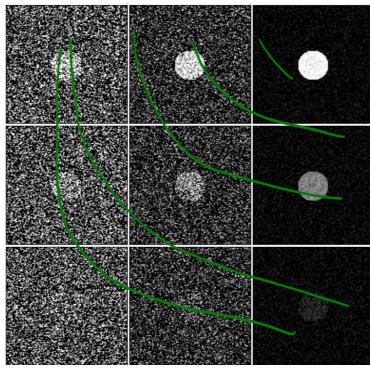


Imaging systems

Contrast and noise

Intensity operation:
 higher contrast,
 higher noise

 Contrast-to-noise remains constant



lives of equal contrast to noise

Decreasing noise

Random variables

random variable, sample space

$$\chi$$
 \mathcal{I}

probability of measuring
$$x: p(x)$$

$$p(x) = 1$$

probability density function

bability density function
$$p(a < x < b) = \int_{a}^{b} p(x) dx$$
probability density

expectation value

$$\langle f \rangle = \int f(x) f(x) dx$$

$$\langle x \rangle = \int x p(x) dx$$
special cases:

variance

$$Var(x) = \langle (x - \langle x \rangle)^{t} \rangle = \langle x^{2} \rangle - \langle x \rangle^{t}$$

Uniform distribution

probability density function

$$P(X) = \begin{cases} \frac{1}{6-\alpha} & a < X < b \\ 0 & a \end{cases}$$

$$0.25$$

$$0.25$$

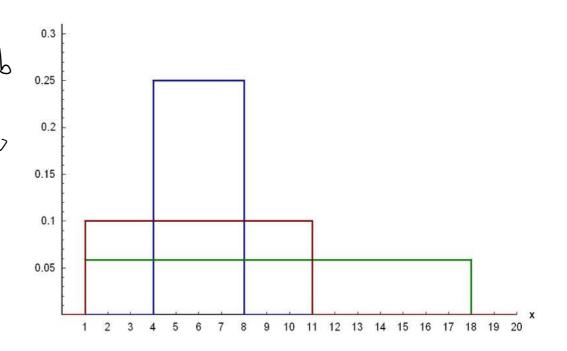
$$0.25$$

$$0.26$$

$$0.15$$

expectation value

$$\langle x \rangle = \frac{1}{2}(n+b)$$

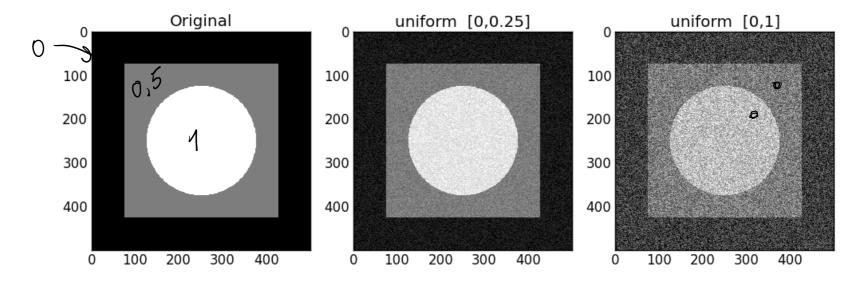


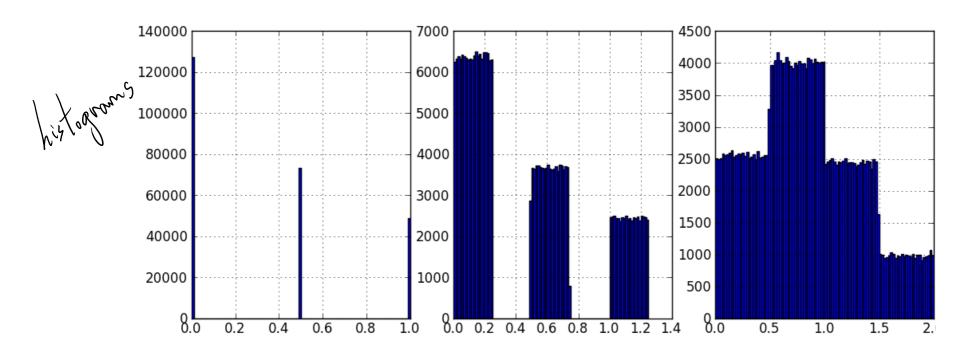
variance

$$var x = \frac{(b-a)^2}{12}$$

• occurrence — not very common in imaging, but usuful to build other distributions

Uniform distribution





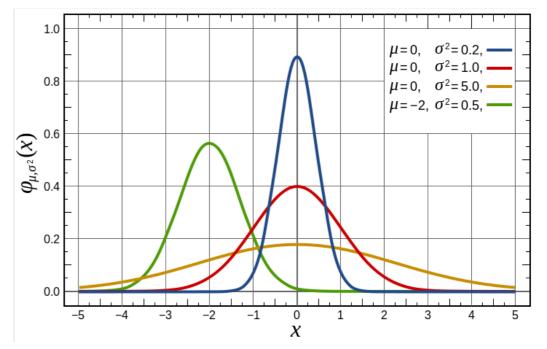
Gaussian distribution

probability density function

probability density function
$$\int_{-(x-\mu)^{2}/2}^{2} x$$

$$\int_{-2\pi}^{(x-\mu)^{2}/2} x$$

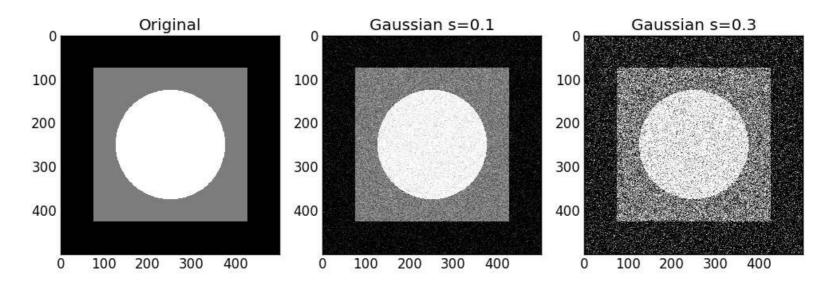
expectation value

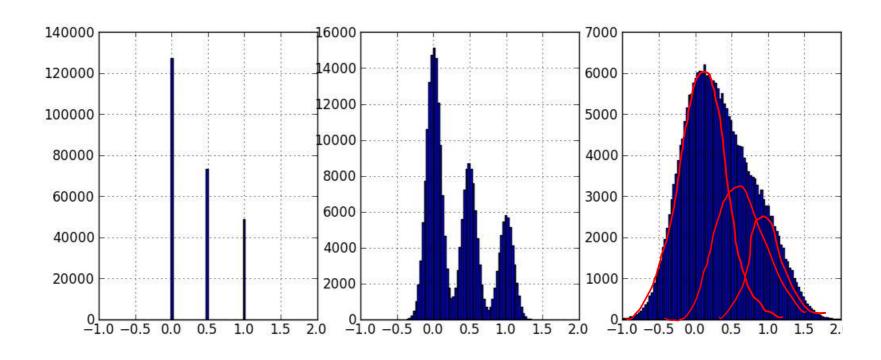


variance

very common occurrence

Gaussian distribution





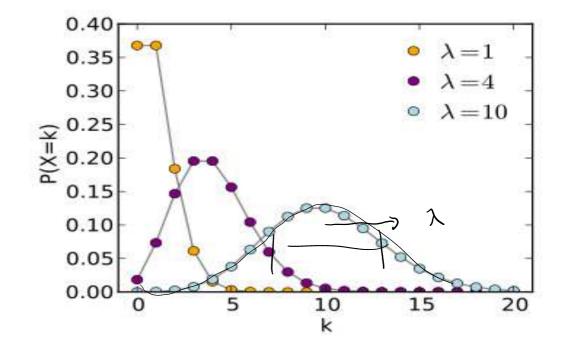
Poisson distribution

probability mass function

$$p(n) = \frac{1}{n!} \lambda^n e^{-\lambda}$$

expectation value

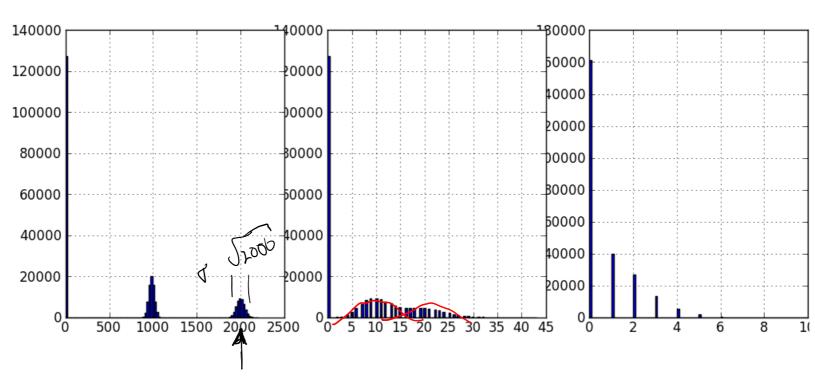
$$\langle n \rangle = \lambda$$



variance

occurrence

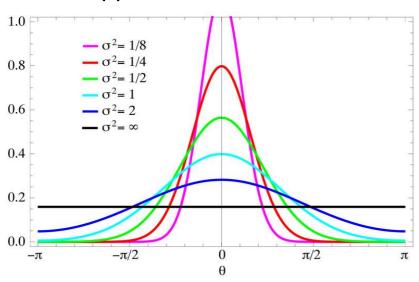
Poisson distribution Poisson N=2000 Poisson N=20 Poisson N=2



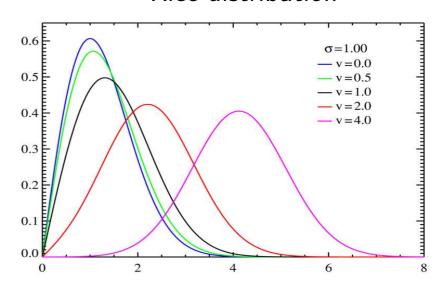
Poisson distribution

Many other distributions

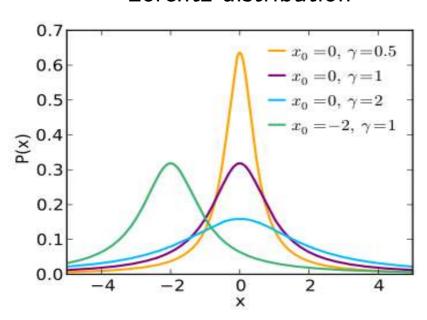
Wrapped normal distribution



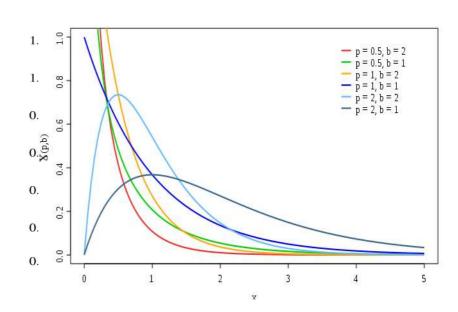
Rice distribution



Lorentz distribution

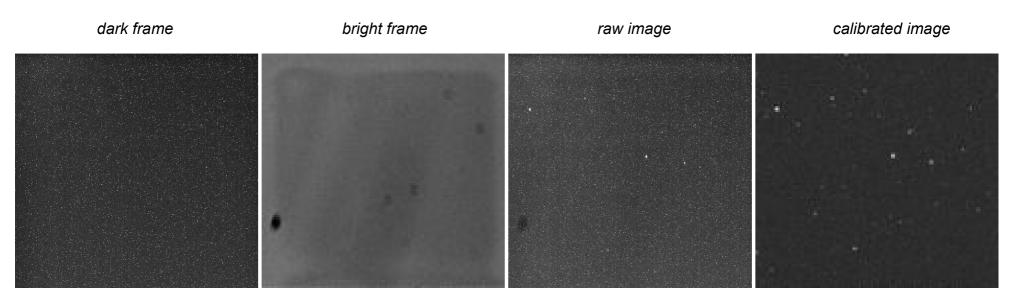


Gamma distribution



Detector noise (CCD)

- Various sources:
 - shot noise (photon statistics, Poisson)
 - dark current (thermal electronic fluctuations in semiconductor, Poisson)
 - readout noise (fluctuations during amplification and digitization, Gauss)
 - many other imperfections ...
- dark frame measures detector noise, hot pixels, dead pixels
- bright frame measures gain differences and imperfections (dust, etc)



source: H. Raab, Johannes-Kepler-Observatory, Linz

Correlation & Convolution

* Convolution:
$$f * g = \int_{-\infty}^{\infty} f(x') g(x-x') dx'$$

* Convolution theorem: $T \{ f * g \} = F \cdot G$

* Correlation $f (\mathscr{F}) g = \int_{-\infty}^{\infty} f(x') g(x+x') dx'$

$$f \otimes g = \int_{-\infty}^{\infty} dx' \int_{-\infty}^{\infty} F(u) e^{-2\pi i u x'} du \int_{-\infty}^{\infty} G(u') e^{2\pi i u'(x+x')} du'$$

$$= \int_{-\infty}^{\infty} du du' F(u) G(u') e^{2\pi i u x} = \int_{-\infty}^{\infty} f(x') G(u') e^{2\pi i$$

Imaging systems

Noise power spectrum

power spectrum of pure noise image

or spectrum of pure noise image

$$NPS = \left(\left| 7 \right| x, y \right)^{2}$$

ensemble average

 $N(u,v) = 7 \left\{ n(x,y) \right\}$
 $N(u,v) = 7 \left\{ n(x,y) \right\}$

connection to auto-correlation

$$|N(u,v)|^{2} = N^{*}(u,v) N(u,v)$$

$$|N(u,v)|^{2} = N^{*}(u,v) N(u,v)$$

$$|N(u,v)|^{2} = (n \otimes n)$$

Measuring NPS

1) measure multiple realizations of random variable n(x, y)

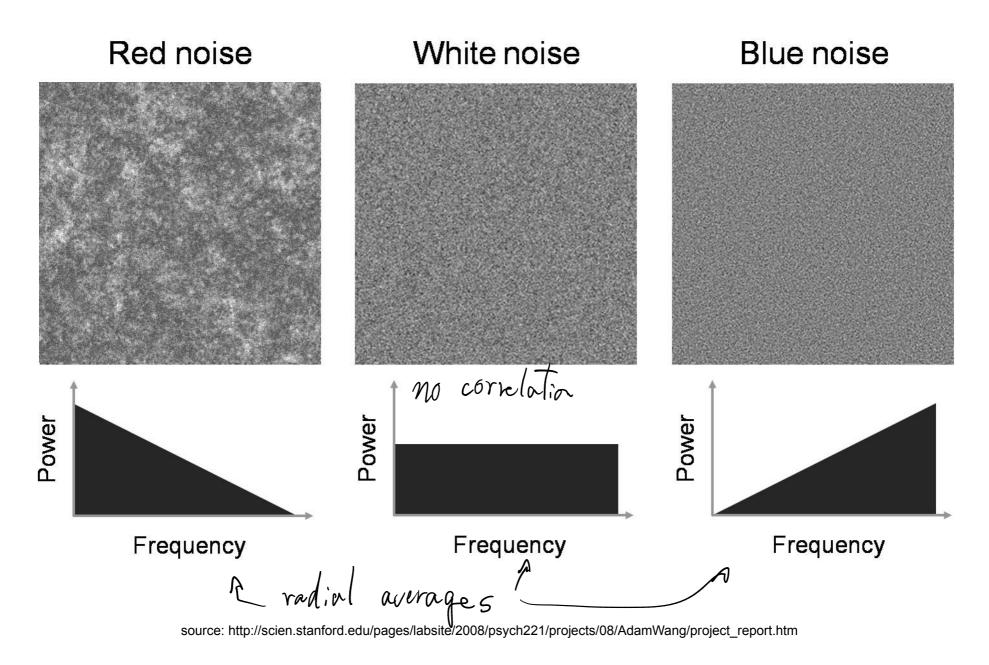
(sample the ensemble)

2) $N_i(u,v) = \int \{n_i(x,y)\}$

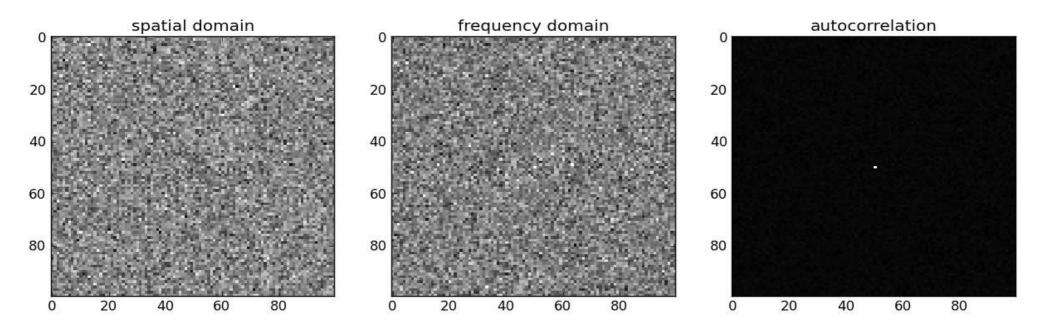
3) $\langle |N(u,v)|^2 \rangle = \frac{1}{M} \sum_{i} |N_{i}(u,v)|^2 \rightarrow \underset{for NPS}{\textit{mproximation}}$

4) J'ENPSZ: estimate of noise autocorrelation

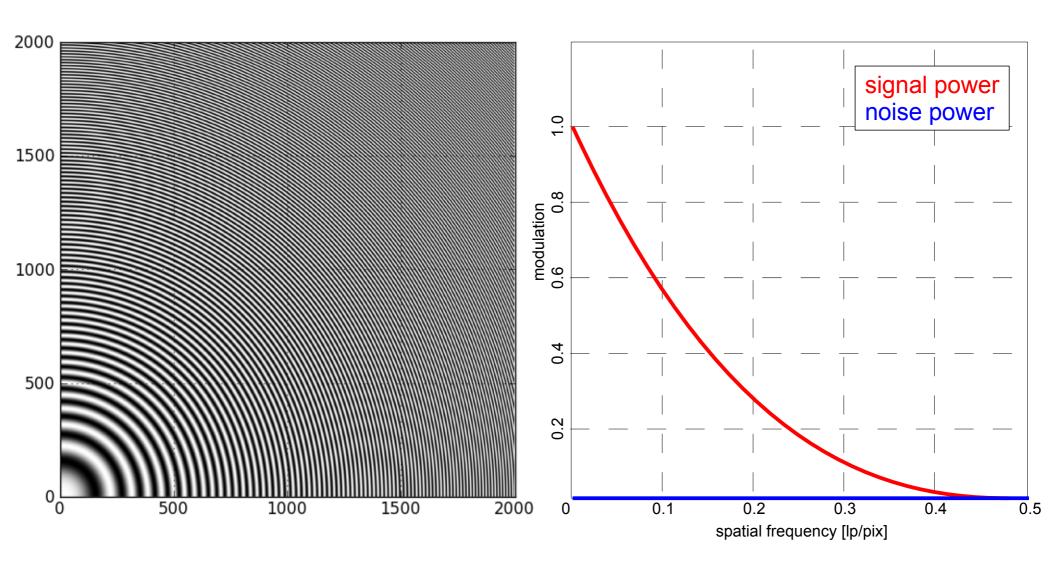
Noise power spectrum

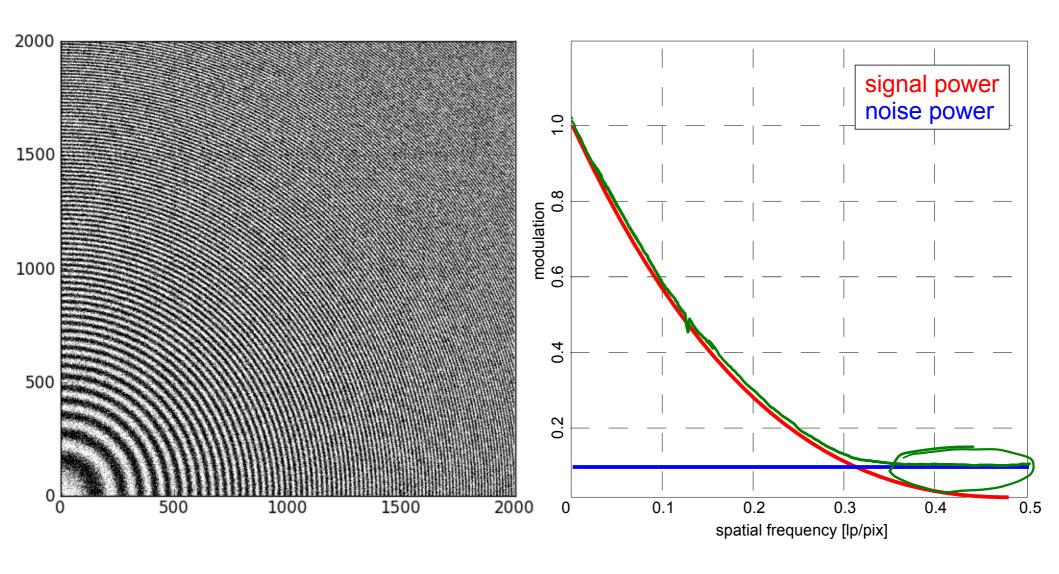


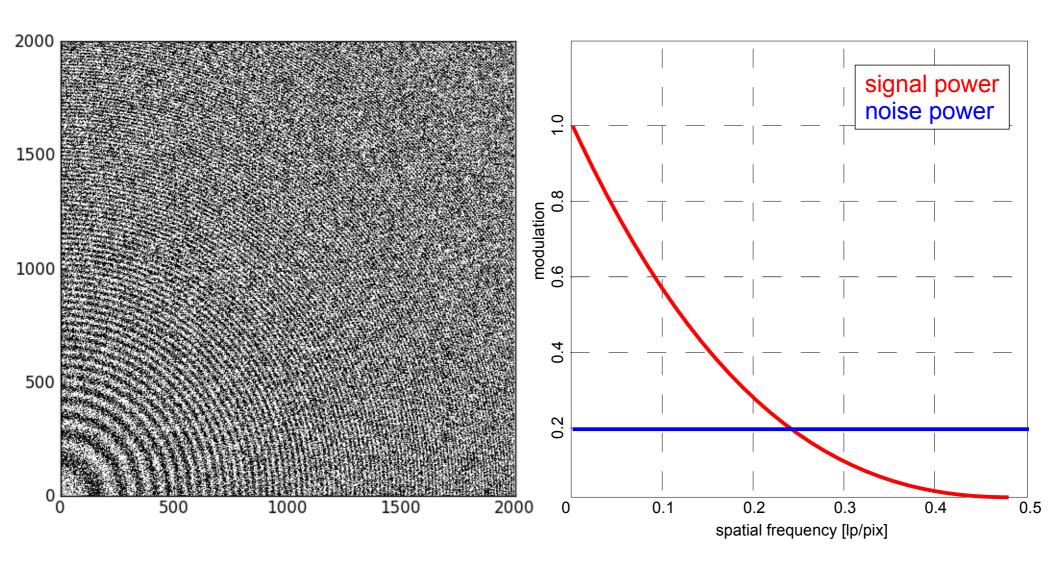
White noise

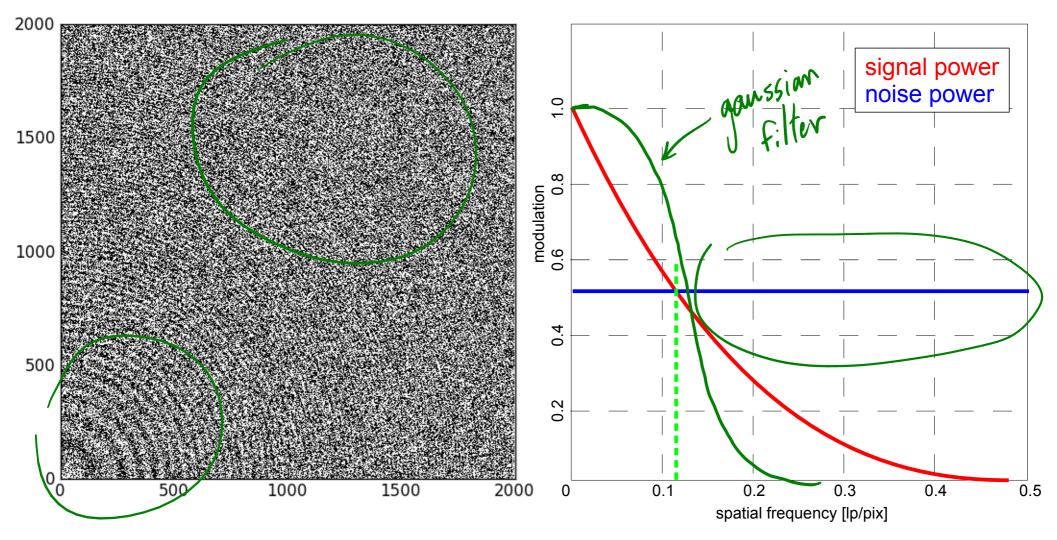


- white noise in spatial domain equals white noise in frequency domain
- white noise is perfectly uncorrelated
- all other types of noise are correlated to some degree
- white noise is an idealization

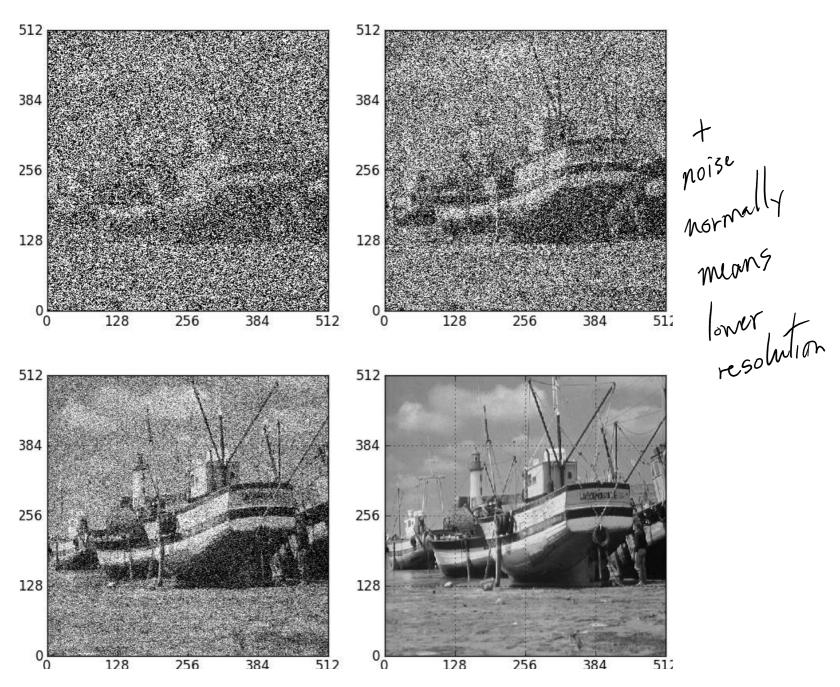






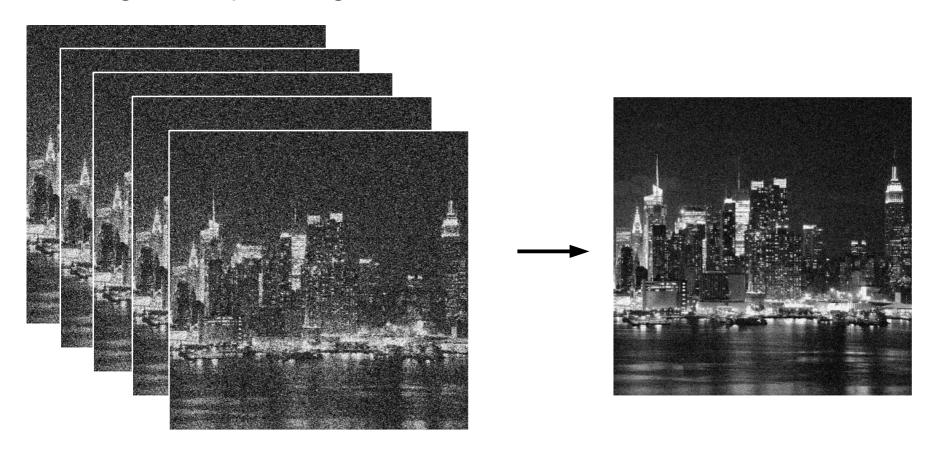


- Noise power exceeds signal power for high frequencies
- Small scale image details are lost in noise first



Noise reduction by averaging

Average multiple images



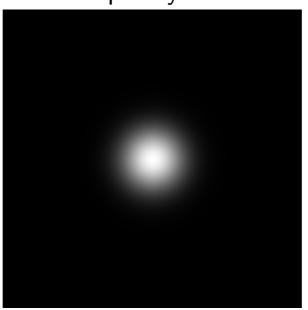
requirement: additive noise, zero mean

Denoising by linear filtering

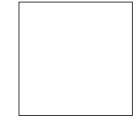
- use spatial convolution or frequency filtering to reduce noise
- noise reduction
 possible, but at cost
 of sharpness
- trade-off between noise reduction and resolution
- need fancier methods

original

frequency filter



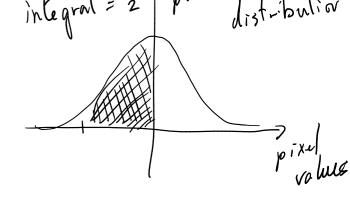
convolution kernel



Resulting image

Median filtering integral = 2 | probability distribution

Use median as estimator for fat tail distributions



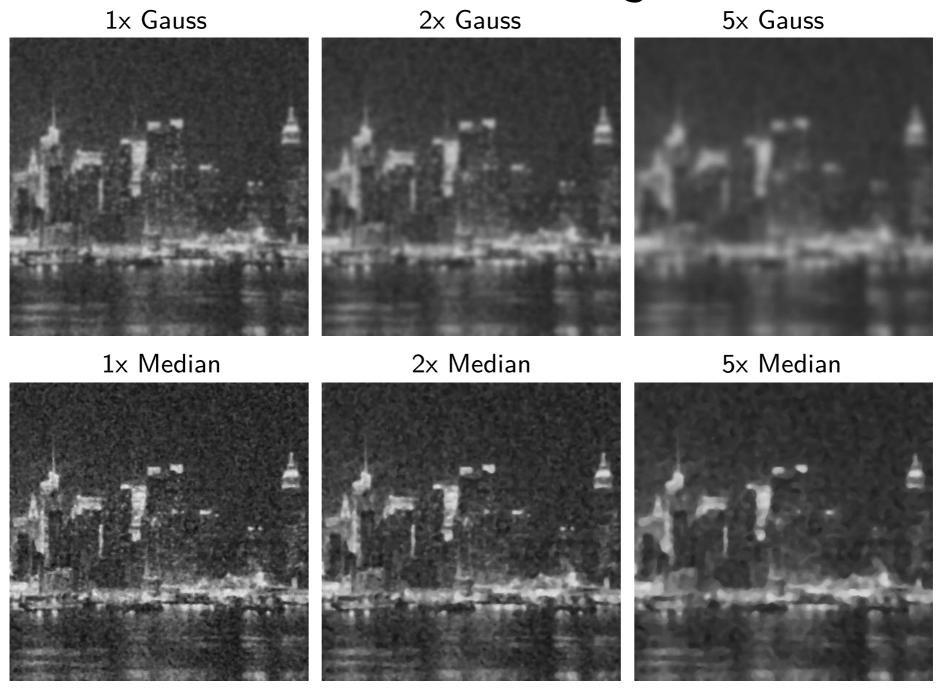
less sensitive to outliers in pixel ensemble, better edge preservation

Salt and pepper noise

Gauss sigma=1 pixel

Median 1 pixel

Median filtering



Common abbreviations

Abbreviation	Name	Definition
IRF	Impulse response function	Linear operator map of delta function
PSF	Point spread function	Image of point object (optical IRF)
OTF	Optical transfer function	Fourier transform of PSF
PTF	Phase transfer function	Phase part of OTF
MTF	Modulation transfer function	Amplitude of OTF
CTF	Contrast transfer function	MTF for non-sinusoidal objects
PDF	Probability density function	Probability distribution for a given random variable
SPS	Signal power spectrum	Amplitude squared of signal F.T.
NPS	Noise power spectrum	Amplitude squared of noise F.T.
SNR	Signal to noise ratio	Mean signal / mean noise
CNR	Contrast to noise ratio	Mean contrast / mean noise