Image Processing for Physicists

Overview

- Propagation modelization
- Wave propagation:
 - Near-field regime
 - Far-field regime

Motivations:

1. Validation

Finite element simulation of an electromagnetic field in a dielectric

Monte Carlo simulation of positrons trajectories resulting from ⁶⁸Ga and ¹⁸F decay.

sources: T.M. Chang et al. New J. Phys. (2012) A. Sanchez-Crespo, Appl. Rad. Isotopes (2012)

Motivations:

2. Inversion

Image reconstruction from sound wave propagation (ultrasonography)

The surface of Betelgeuse reconstructed from interferometric data (IOTA)

sources: wikipedia Haubois et al. Astronom. & Astrophys. (2009)

Particles

- Model particle tracks (rays) through different media
- Model may include: refraction, force fields, particle decay and interactions
- Not included: diffraction

Wave

- Model the interaction of a field with a medium
- [–] Can be very complicated \rightarrow approximations are needed

Starting point: Helmholtz equation

- for EM field: neglect polarization (scalar wave approximation) comes from Maxwell's equations
- for electron wave, assume high energy electrons

$$\nabla^2 \psi - \frac{n^2}{c^2} \frac{\partial^2 \psi}{\partial t^2} = 0$$

fixed frequency monochromatic

consider solutions of the form $\psi(\vec{r},t) = \psi(\vec{r})e^{i\omega t}$

$$k = \frac{2\pi}{\lambda}$$
 (wavenumber) $\nabla^2 \psi + k^2 n^2 \psi = 0$ $k^2 = \frac{\omega^2}{c^2}$

- Useful to:
 - better understand optical systems
 - understand diffraction, holography, phase contrast, interferometry, ...

X-ray hologram

9μm

TEM through-focus series

sources: Mayo et al. Opt. Express (2003) http://www.christophtkoch.com/Vorlesung/

The physics of propagation

Free space propagation: n=1General solution: superposition of plane waves $\psi(\vec{r}) = \sum_{\vec{q}} A_{\vec{q}} e^{i\vec{q}\cdot\vec{r}} \quad \text{sum is over } \vec{q} \quad \text{such}$ that $q^2 = k^2$

g' + g' + g' = k' surface of a sphere

The physics of propagation

Angular spectrum representation

$$\begin{aligned}
q_z &= \frac{1}{\sqrt{k^2 - q_x^2 - q_y^2}} \\
\psi(\vec{r}) &= \sum_{q_x q_y} A_{p_x q_y} e^{i(q_x \cdot x + q_y \cdot y)} + \sqrt{k^2 - q_x^2 - q_y^2} z
\end{aligned}$$

$$\frac{1}{\sqrt{k^2 - q_x^2 - q_y^2}} = \frac{1}{\sqrt{k^2 - q_x^2$$

$$\psi(x,y,z) = \sum_{q_1q_2} \int_{q_1q_2} \frac{i(q_1x + q_2y)}{2p_1} e^{i\sqrt{k^2 - q_1x^2 - q_2y}} Z$$
The pagation are transform.

Forward propagation

$$V(x,y,z=0) = \sum_{i} A_{i} e^{i(q_{x}x+q_{y}y)} e^{x}$$

$$f_{x}q_{y}$$

Recipe:
$$V(\vec{r}_{\perp};z) = \mathcal{T} \left\{ \mathcal{T} \left\{ V(\vec{r}_{\perp};z=0) \right\} \exp \left(iz \sqrt{k^2 - q_{\perp}^2} \right) \right\}$$

In Practice:
$$\psi(x,y,z) = \overline{\psi}(x,y,z) e^{ikz}$$

$$\mathcal{F}(\vec{r}_{\perp};z) = \mathcal{F}^{-1}\left\{\mathcal{F}(\vec{r}_{\perp};z=0)\right\} \exp\left(iz\left[\sqrt{k'-q^2}-k\right]\right)\right\}$$

Angular spectrum propagation method

Wave propagation

Forward propagation/

Du: Fourier-space sampling pitch

$$\Delta u = \frac{L}{NOX}$$

$$\sqrt{k^{2}-q_{x}^{2}-q_{y}^{2}}=\sqrt{\left(\frac{2\pi}{\lambda}\right)^{2}-\left(2\pi u\right)^{2}-\left(2\pi v\right)^{2}}=\frac{2\pi}{\lambda}\sqrt{1-\lambda^{2}u^{2}-\lambda^{2}v^{2}}$$

$$X = n \triangle X$$

$$U = k \triangle U$$

$$UX = nk \triangle X \triangle U$$

$$U \Rightarrow 0 \times 0 U = 1$$

$$= \frac{2\pi}{\lambda} \sqrt{|-\lambda^2 u^2 - \lambda^2 v^2} \in$$

Du=

$$= \frac{2\pi}{\lambda} \sqrt{1 - \lambda^2 \omega^2 (k^2 + \ell^2)}$$

$$\exp\left(iz\left[\sqrt{k'-q_{\perp}^{2}}-k\right]\right)=\exp\left(\frac{2\pi iz}{\lambda}\left[\sqrt{1-\lambda^{2}(u^{2}+v^{2})}-1\right]\right)$$

Forward propagation

A numerical recipe

Near field, far field

Froblemi as zincreases, aliasing becomes a problem. There's a trick.

$$\frac{2\pi}{\lambda} \left[\sqrt{1 - \lambda^2 (u^2 + v^2)} - 1 \right] \simeq \frac{2\pi}{\lambda} \left[1 - \frac{1}{2} \lambda^2 (u^2 + v^2) - 1 \right] \in \text{pavaxial}$$
approximation

$$= - \pi \lambda (v^2 + v^2)$$

$$= - \pi \lambda (u^{2} + v^{2})$$

$$= - \pi \lambda (u^{2} + v^$$

observation: this has the form of a convolution.

$$\Psi(\vec{r}_1;z) = \Psi(r_1;z=0) * P_z(\vec{r}_1) =$$

$$P_{z}(\vec{r}_{\perp}) = \mathcal{F}^{-1} \left\{ exp\left(-i\pi\lambda z \left(u^{7}+v^{2}\right)\right) \right\}$$

$$= -\frac{2\pi i}{\lambda z} exp\left(\frac{i\pi \gamma_{\perp}^{2}}{\lambda z}\right)$$

Fresnel-Huygians

integral

Hurgens principle

Near field, far field

$$\Psi(r_{1};z) = \frac{-3\pi i}{\lambda z} \int d^{2}r' \, \Psi(\vec{r}';z=0) \exp\left(\frac{i\pi(\vec{r}-\vec{r}')^{2}}{\lambda z}\right)$$

$$= -\frac{2\pi i}{\lambda z} \int d^{2}r' \, \Psi(\vec{r}';z=0) \exp\left[\frac{i\pi}{\lambda z} \left[r^{2} + r^{12} - 2\vec{r}'\cdot\vec{r}'\right]\right]$$

$$= -\frac{2\pi i}{\lambda z} \exp\left(\frac{i\pi r^{2}}{\lambda z}\right) \int d^{2}r' \, \Psi(r';z=0) \exp\left(\frac{i\pi \vec{r}'}{\lambda z}\right) \exp\left(\frac{i\pi \vec{r}'}{\lambda z}\right)$$

$$\frac{1}{2}(\vec{r}_1;z) = -\frac{2\pi i'}{\lambda z} \exp\left(\frac{i\pi r^2}{\lambda z}\right) \int \left\{ \frac{1}{2}(r;z=o) \exp\left(\frac{i\pi r^2}{\lambda z}\right) \right\} \left(\vec{u} = \frac{\vec{r}}{\lambda z}\right)$$

observation: as
$$z \to \infty$$
 $|\psi(\vec{r}) z \to \infty|^2 \propto |\mathcal{T}\{\psi(r; z=0)\}|^2 (\vec{u}=\vec{x})$

Back focal plane of a lens of radial coordinate

* thickness profile $t(r) = t_0 - \alpha r^2$

* phase
$$\phi(\vec{r}_1) = \lambda \pi t(\vec{r}_1) (n-1)$$

$$= k(n-1)t = -\frac{\lambda}{\lambda} (n-1)r^2$$

focal length $(n-1) d = \frac{1}{2f} \Rightarrow \phi = \frac{\pi \alpha r^2}{\lambda f}$ effect of a lens; $\Psi(r_1; z=0) \Rightarrow \Psi \cdot \exp\left(\frac{-i\pi r^2}{\lambda f}\right)$

$$\overline{Y}(\vec{r}_{\perp};z) = -\frac{2\pi i}{\lambda z} \exp\left(\frac{i\pi r^2}{\lambda z}\right) - \left\{\overline{Y}(\vec{r}_{\perp};z=0) \exp\left(\frac{i\pi r^2}{\lambda}\left(\frac{1}{z} - \frac{1}{f}\right)\right)\right\} \left(\vec{u} = \frac{\vec{r}^2}{\lambda z}\right)$$

$$\operatorname{special case:} z = f: \quad \overline{Y}(\vec{r}_{\perp};z=f) = () \cdot F.T. \text{ of } \overline{Y}(\vec{r}_{\perp};z=0)$$

=> a converging lens acts as a fourier transform grerator!

Plane waves, point sources

circular waves evanescent waves contact region

parabolic waves near field Fresnel region plane waves far field Fraunhofer region

Why optical elements?

with objective lens

without objective lens

Why optical elements?

- Information from many sources overlaps in detector plane
- Need models to understand image forming systems

Pinhole camera model

camera obscura

Pinhole camera model

PSF determined by aperture width

Projection model

Lens camera model

Result similar to small pinhole but without compromise on intensity

Lens camera model

Inverse Fourier transform of disc of radius Umax: J, (2πrumax) J: First Bessel function Rayleigh criterion: resolution = distance to the first minimum from the origin: $J_{1}\left(2\pi r \mathcal{U}_{max}\right) = 0$ $J_{2}\pi \mathcal{U}_{max} = \frac{3.83}{2\pi}$ $J_{2}\pi \mathcal{U}_{max} = k \sin \theta$ $J_{3}\pi \mathcal{U}_{max} = k \sin \theta$ $J_{2}\pi \mathcal{U}_{max} = k \sin \theta$ $V_{min} = \frac{3.83}{2\pi} \frac{2\pi}{k \sin \theta} = \frac{3.83}{2\pi} \frac{\lambda}{\sin \theta}$ 2 sin 0 = NA

'numerical aperture'

sources

1) if the two sources are perfectly coherent, then interference occurs: Coherent us incoherent imaging system I = (4, + 4) 1 | \psi + \psi | = | \psi | 1 + | \psi | 1 5 I = | PSF coh * 4 | 2 2) if the two sources do not interfere (incoherent) + 2 Re { Y, * Y, 3} = 0 if incoherent S In general: $PSF_{inc} \times |\psi|^2$

Scanning systems

Transmission

- Scanning Transmission Electron Microscopy
- Scanning Transmission X-ray Microscopy
- •

Indirect (reflection, scattering, fluorescence, ...)

- Laser Scanning Confocal Micropsopy
- Scanning Electron Microscopy
- X-ray Fluorescence Microscopy
- PhotoEmission Electron Microscopy
- •

Physical probe

- Atomic Force Microscopy
- Scanning Tunneling Microscopy
- •

Scanning transmission X-ray microscopy

Scanning Transmission X-ray Microscopy STXM

source: http://www-ssrl.slac.stanford.edu

Scanning electron microscopy

Atomic force microscopy

Resolution in scanning systems

Resolution mainly limited by probe size

Scanning vs. full field systems

Transmission probe: the reciprocity theorem

