Image Processing for Physicists

Prof. Pierre Thibault pthibault@units.it

Wave propagation and imaging with lenses

 $R = 90$

Overview

- Propagation modelization
- Wave propagation:
	- $-$ Near-field regime
	- Far-field regime

• Motivations:

1.Validation

Finite element simulation of an electromagnetic field in a dielectric

Monte Carlo simulation of positrons trajectories resulting from 68Ga and 18F decay.

sources: T.M. Chang *et al.* New J. Phys. (2012) A. Sanchez-Crespo, Appl. Rad. Isotopes (2012)

• Motivations:

2.Inversion

Image reconstruction from sound wave propagation (ultrasonography)

The surface of Betelgeuse reconstructed from interferometric data (IOTA)

sources: wikipedia Haubois *et al. Astronom. & Astrophys.* (2009)

- Particles
	- Model particle tracks (rays) through different media
	- $-$ Model may include: refraction, force fields, particle decay and interactions
	- Not included: diffraction

- Wave
	- $-$ Model the interaction of a field with a medium
	- $-$ Can be very complicated \rightarrow approximations are needed

Starting point: Helmholtz equation

- for EM field: neglect polarization (scalar wave approximation) comes from Maxwell's equations
- for electron wave, assume high energy electrons

$$
G \text{ comes from Schrödinger}
$$
\n
$$
F_{ij} = \frac{1}{2} \int_{\text{c}}^{\text{2}} \int_{\text{c}}^{\text{2}} \psi - \frac{n^2}{c^2} \frac{\partial^2 \psi}{\partial t^2} = 0
$$
\n
$$
F_{ij} = \frac{1}{2} \int_{\text{c}}^{\text{2}} \psi - \frac{n^2}{c^2} \frac{\partial^2 \psi}{\partial t^2} = 0
$$
\n
$$
F_{ij} = \frac{1}{2} \int_{\text{c}}^{\text{2}} \psi \frac{\partial^2 \psi}{\partial t^2} = 0
$$
\n
$$
F_{ij} = \frac{1}{2} \int_{\text{c}}^{\text{2}} \psi \frac{\partial^2 \psi}{\partial t^2} = 0
$$

$$
k = \frac{2\pi}{\lambda} (wavenumber) \qquad \nabla^2 \psi + k^2 n^2 \psi = 0
$$
 $k^2 = \frac{w^2}{c^2}$

- Useful to:
	- better understand optical systems
	- understand diffraction, holography, phase contrast, interferometry, ...

X-ray hologram TEM through-focus series

 -0.07 um 6um $-6um$ 12 um -12 um 23um 17 um -19 um

sources: Mayo *et al.* Opt. Express (2003) http://www.christophtkoch.com/Vorlesung/

The physics of propagation

Angular spectrum representation

Forward propagation	Figure 1:ellet at 220		
\n $\psi(x_7, z=0)$ \n	\n $\mathcal{L}(\sqrt{x_1}, z=0)$ \n	\n $\mathcal{L}(\sqrt{x_1}, z=0)$ \n	\n $\mathcal{L}(\sqrt{x_1}, z=0)$ \n
\n $\mathcal{L}(\sqrt{x_1}, z=0)$ \n	\n $\mathcal{L}(\sqrt{x_1}, z=0)$ \n		
\n $\mathcal{L}(\sqrt{x_1}, z) = \mathcal{L}^{-1}\left\{\mathcal{L}(\sqrt{x_1}, z=0)\right\} \exp\left(\sqrt{x_1} + \frac{1}{2}x\right)\right\}$ \n			
\n $\mathcal{L}(\sqrt{x_1}, z) = \mathcal{L}^{-1}\left\{\mathcal{L}(\sqrt{x_1}, z=0)\right\} \exp\left(\sqrt{x_1} + \frac{1}{2}x\right)\right\}$ \n			
\n $\mathcal{L}(\sqrt{x_1}, z) = \mathcal{L}^{-1}\left\{\mathcal{L}(\sqrt{x_1}, z=0)\right\} \exp\left(\sqrt{x_1} + \frac{1}{2}x\right)\right\}$ \n			
\n $\mathcal{L}(\sqrt{x_1}, z) = \mathcal{L}^{-1}\left\{\mathcal{L}(\sqrt{x_1}, z=0)\right\} \exp\left(\sqrt{x_1} + \frac{1}{2}x\right)\right\}$ \n			
\n $\mathcal{L}(\sqrt{x_1}, z) = \mathcal{L}^{-1}\left\{\mathcal{L}(\sqrt{x_1}, z=0)\right\} \exp\left(\sqrt{x_1} + \frac{1}{2}x\right)\right\}$ \n			
\n $\mathcal{L}(\sqrt{x_1}, z) = \mathcal{L}^{-1}\left\{\mathcal{L}(\sqrt{x_1}, z=0)\right\} \exp\left(\sqrt{x_1} + \frac{1}{2}x\right)\right\}$ \n			

Forward propagation

\n
$$
e^{2\pi iux} \Leftrightarrow e^{2\pi ibx}
$$
\nSampleing: $\Delta x : sampling$ with $x = n\Delta x$

\n
$$
\Delta u : Fourier-Space sampling with $u = k\Delta u$
$$
\n
$$
\Delta u : Fourier-Space sampling with $u \times x \times \Delta v$
$$
\n
$$
\Delta u = k\Delta u
$$
\n
$$
\Delta u = \frac{1}{N\Delta x}
$$
\n
$$
g_x = \frac{1}{N}\pi u = 2\pi k\Delta u
$$
\n
$$
\sqrt{h^2 - g_x^2 - g_y^2} = \sqrt{(\frac{2\pi}{\lambda})^2 - (2\pi u)^2 - (2\pi v)^2} = \frac{2\pi}{\lambda} \sqrt{1 - \lambda^2 u^2 - \lambda^2 v^2}
$$
\n
$$
= \frac{2\pi}{\lambda} \sqrt{1 - \lambda^2 \Delta u^2 (k^2 + t^2)}
$$
\n
$$
= \frac{2\pi}{\lambda} \sqrt{1 - \lambda^2 (k^2 + t^2)}
$$
\n
$$
exp\left(i2\left[\sqrt{k^2 - g_i^2} - k\right]\right) = exp\left(\frac{2\pi i 2}{\lambda}\sqrt{1 - \lambda^2 (k^2 + v^2)} - 1\right)
$$

Forward propagation A numerical recipe

Near field, far field
\nFroblem's as z incenses, aliasing becomes a problem. There's a trick,
\n
$$
\frac{2\pi}{\lambda} [\sqrt{1 - \lambda^{2} (u^{2} + v^{2})} - 1] \approx \frac{2\pi}{\lambda} [\sqrt{-\frac{1}{2}} \lambda^{2} (u^{2} + v^{2}) - \lambda] \approx \text{proxariant}
$$
\n
$$
= -\pi \lambda (u^{2} + v^{2}) \qquad \text{(small angle)}
$$
\n
$$
\mathcal{L}(r_{\perp}, z) = \int_{0}^{1} \int_{0
$$

Near field, far field
\n
$$
\Psi(r_{1}; z) = \frac{-2\pi i}{\lambda z} \int d^{l}r^{l} \Psi(r^{2}; z=0) \exp\left(\frac{i\pi (r^{2}-\tilde{r}^{l})^{2}}{\lambda z}\right)
$$
\n
$$
= -\frac{2\pi i}{\lambda z} \int d^{l}r^{l} \Psi(r^{2}; z=0) \exp\left[\frac{i\pi}{\lambda z} \left[r^{l} + r^{l^{2}} - 2\tilde{r}^{l} \tilde{r}^{l} \right]\right]
$$
\n
$$
= -\frac{2\pi i}{\lambda z} \exp\left(\frac{i\pi r^{2}}{\lambda z}\right) \int d^{l}r^{l} \Psi(r^{2}; z=0) \exp\left(\frac{i\pi \tilde{r}^{l}}{\lambda z}\right) \exp\left(-\frac{i\pi \tilde{r}^{l}}{\lambda z}\right) \Psi(r^{2}; z=0) \exp\left(-\frac{i\pi \tilde{r}^{l}}{\lambda z}\right)
$$
\n
$$
\Psi(\tilde{r}_{1}; z) = -\frac{2\pi i}{\lambda z} \exp\left(\frac{i\pi r^{2}}{\lambda z}\right) \int \Psi(r^{2}; z=0) \exp\left(\frac{i\pi r^{2}}{\lambda z}\right) \left(\tilde{\mu} - \frac{\tilde{r}}{\lambda z}\right)
$$
\n
$$
\frac{\Psi(\tilde{r}_{1}; z) = -\frac{2\pi i}{\lambda z} \exp\left(-\frac{i\pi r^{2}}{\lambda z}\right) \int \Psi(r^{2}; z=0) \exp\left(-\frac{i\pi r^{2}}{\lambda z}\right) \left(\tilde{\mu} - \frac{\tilde{r}}{\lambda z}\right)
$$
\n
$$
\frac{\partial \tilde{r}}{\partial z} \exp\left(-\frac{i\pi r^{2}}{\lambda z}\right) \exp\left(-\frac{i\pi r^{2}}{\lambda z}\right) \left(\tilde{r}_{1}; z=0\right) \exp\left(-\frac{i\pi r^{2}}{\lambda z}\right) \left(\tilde{r}_{2}; z=0\right)
$$

Back focal plane of a lens
$$
\frac{\partial}{\partial} \rho
$$
 obiral coordinates ρ *refil. t(r) = t₀ - ar²*
\n
$$
\star
$$
 thichras ρ *refil. t(r) = t₀ - ar²*
\n
$$
\star
$$
 phasc ρ $(r1) = \frac{1}{\lambda} \frac{t}{r} \frac{t}{r^{2}}$
\n
$$
\star
$$
 fluct d α *luns*: $\Psi(r_{1}; z=0) \rightarrow \Psi \cdot \exp(\frac{-irr^{2}}{\lambda^{2}})$
\n
$$
\Psi(r_{1}; z) = -\frac{2\pi i}{\lambda z} \exp(\frac{i\pi r}{\lambda z}) \frac{\pi}{2} \left\{ \frac{\pi}{2} (\vec{r}_{1}; z=0) \exp(\frac{i\pi r^{4}}{\lambda} (\frac{1}{z} - \frac{1}{r})) \right\} (\vec{u} \times \vec{r})
$$

\n*q re in* $\frac{1}{\lambda z}$
\n*q re in* $\frac{1}{\lambda z}$
\n*q in*

Plane waves, point sources

circular waves evanescent waves contact region

parabolic waves near field Fresnel region

plane waves far field Fraunhofer region

Why optical elements?

with objective lens without objective lens

Why optical elements?

- Information from many sources overlaps in detector plane
- Need models to understand image forming systems

Pinhole camera model

camera obscura

Pinhole camera model

PSF determined by aperture width

Projection model

Lens camera model

Diffraction-limited imaging systems

• Rayleigh criterion $PSF: F.1. of a disc
airy disc$ pointe al • Numerical aperture

Answer 7 km/sform of disc of radius
$$
u_{max}
$$
 :

\n
$$
\frac{U_1(2\pi r u_{max})}{r u_{max}}
$$
\n
$$
U_i: First
$$
\nBecause the function:

\n
$$
u_{max}
$$
\

of two images of point
sources
of the two sources are perfectly
coherent, then interference Coherent us incoherent imaging system $\bigg(\bigg)$ $1 = |\psi_1 + \psi_2|$ $|\psi_{1}+\psi_{2}|^{2}=|\psi_{1}|^{2}+|\psi_{2}|^{2}$ $G = |PSF_{coh} * \Psi|^{2}$
a) if the two sources do not
interfere (incoherent) $T2Re\{+\sqrt{\frac{1}{2}v^2}\}$ $S_{\text{In general:}} \frac{1}{\gamma} = \frac{|\psi_1| + |\psi_2|^2}{\gamma^2}$

Scanning systems

Transmission

• …

• ...

• ...

- **S**canning **T**ransmission **E**lectron **M**icroscopy
- **S**canning **T**ransmission **X**-ray **M**icroscopy

Indirect (reflection, scattering, fluorescence, …)

- **L**aser **S**canning **C**onfocal **M**icropsopy
- **S**canning **E**lectron **M**icroscopy
- **X**-ray **F**luorescence **M**icroscopy
- **P**hoto**E**mission **E**lectron **M**icroscopy

Physical probe

- **A**tomic **F**orce **M**icroscopy
- **S**canning **T**unneling **M**icroscopy

Scanning transmission X-ray microscopy

Scanning Transmission X-ray Microscopy

STXM

source: http://www-ssrl.slac.stanford.edu

Scanning electron microscopy

Atomic force microscopy

Resolution in scanning systems

Resolution mainly limited by probe size

Scanning vs. full field systems

Transmission probe: the reciprocity theorem

