
Refactoring, Code Smells, 
Coupling and Cohesion

Dario Campagna

Head of Research and Development



Code Smells
Symptoms of a problem



A code smell is a surface indication that usually corresponds 
to a deeper problem in the system.

▪ Quick to spot 
▪ Provide feedback on our decisions 
▪ Don’t always indicate a problem worth solving

Code Smells



Categories of code smells

Bloaters 
• Long Method 
• Large Class 
• Primitive Obsession 
• Long Parameter List 
• Data Clumps

Couplers 
• Feature Envy 
• Inappropriate Intimacy 
• Message Chains 
• Middle Man

Object-orientation abusers 
• Switch Statements 
• Temporary Fields 
• Refused Bequest 
• Alternative Classes with Different Interfaces

Change preventers 
• Divergent Change 
• Shotgun Surgery 
• Parallel Inheritance Hierarchies

Dispensables 
• Lazy Class 
• Data Class 
• Duplicated Code 
• Dead Code 
• Speculative Generality 
• Comments

Have a look at https://refactoring.guru/refactoring/smells.

https://refactoring.guru/refactoring/smells


Use of primitive types instead of small 
objects for simple tasks.

▪ Replace data value with object 
▪ Replace type code with class 
▪ Replace array with object 
▪ …

Primitive Obsession



A method accesses the data of another 
object more than its own data.

▪ Move method 
▪ Extract method

Feature Envy



A message chain occurs when a client 
requests another object, that object requests 
yet another one, and so on.

▪ Hide delegate 
▪ Extract method 
▪ Move method

Message Chains

master.getModelisable()
.getDockablePanel()
.getCustomizer()
.getSaveItem()
 .setEnabled(Boolean.FALSE.booleanValue());



A message chain occurs when a client 
requests another object, that object requests 
yet another one, and so on.

▪ Hide delegate 
▪ Extract method 
▪ Move method

Message Chains

master.getModelisable()
.getDockablePanel()
.getCustomizer()
.getSaveItem()
 .setEnabled(Boolean.FALSE.booleanValue());

master.allowSavingOfCustomizations();



The best comment is a good name for a 
method or class.

▪ Extract variable 
▪ Extract method 
▪ Rename method

Comments



To explain why something is being 
implemented in a particular way.

Comments can sometimes be useful

Explain why
To cite an external knowledge source utilized 
in the implementation.

Citations
Image from Watanobe, Y., Rahman, M.M., Amin, M.F.I. et al. Identifying algorithm in program code 
based on structural features using CNN classification model. Appl Intell 53, 12210–12236 (2023). 



Five additional code smells described in the book “Refactoring 
to Patterns”.

▪ Conditional Complexity 
▪ Indecent Exposure 
▪ Solution Sprawl 
▪ Combinatorial Explosion 
▪ Oddball Solution

More Code Smells



Coupling and Cohesion
Metrics that (roughly) describe how easy it will be to change the behavior of 
some code.



Measures the degree of interdependence between software 
components.

▪ Elements are coupled if a change in one forces a change in the 
other. 

▪ We want to make changes in a component without impacting 
other components. 

▪ We want coupling to be as low as possible, but not lower.

Coupling



Measures how strongly related and focused the 
responsibilities of a software module are.

▪ Indicates a component’s functional strength and how much it 
focuses on a single point. 

▪ Low cohesion results in behavior being scattered instead of 
existing in a single component. 

▪ We want high cohesion.

Cohesion

LIFE Magazine (March 4, 1946)



Indicators of possible high coupling.

Cohesion, coupling and code smells

High coupling
Indicators of possible low cohesion.
Low cohesion

• Data Class 
• Lazy Class 
• Middle Man 
• Primitive Obsession 
• Shotgun Surgery 

• Divergent Change 
• Feature Envy 
• Inappropriate Intimacy 
• Message Chains 
• Middle Man 
• Shotgun Surgery 



A TicTacToe implementation with quite a few code smells. 

https://github.com/AgileTechPraxis/CodeSmells

▪ Start by identifying the smells. 
▪ Then slowly refactor the code.

Smelly Tic Tac Toe

https://github.com/AgileTechPraxis/CodeSmells

