Refactoring, Code Smells,
Coupling and Cohesion

' ﬁ ; Dario Campagna

=

b

Code Smells

Symptoms of a problem

~ 7

Code Smells

A code smell is a surface indication that usually corresponds
to a deeper problem in the system.

= Quick to spot
= Provide feedback on our decisions
» Don'’t always indicate a problem worth solving

Bloaters

. ong Method
| arge Class
Primitive Obsession

L.ong Parameter List

Data Clumps

Couplers
e Feature Envy

e |[nappropriate Intimacy

e Message Chains
e Middle Man

Have a look at https:/refactoring.guru/refactoring/smells.

Categories of code smells

Object-orientation abusers

e Switch Statements

e Temporary Fields

e Refused Bequest

e Alternative Classes with Different Interfaces

Change preventers Dispensables

e Divergent Change e | azy Class

e Shotgun Surgery e Data Class

e Parallel Inheritance Hierarchies e Duplicated Code
e Dead Code

e Speculative Generality
e Comments

J

https://refactoring.guru/refactoring/smells

Primitive Obsession

Use of primitive types instead of small package it. esteco. pos;
objects for simple tasks. inport java. util.HashMap;

import java.util.Map;
public class Sale {

private Display display;
private final Map<String, String> pricesByBarcode;

public Sale(Display display, HashMap<String, String> pricesByBarcode) {
this.display = display;
this.pricesByBarcode = pricesByBarcode;

}
u er ace data Value With Object pubL%c void onBarcode(String barcode) {
if ("".equals(barcode)) {
M display.setText("Scanning error: empty barcode!");
= Replace type code with class S ’ i
. . if (pricesByBarcode.containsKey(barcode)) {
u er ace array Wlth ObJeCt display.setText(pricesByBarcode.get(barcode));
} else {
" ... display.setText("Product not found for " +
barcode);
}
}
}

Feature Envy

A method accesses the data of another
object more than its own data.

public class Coordinate

{
publiec int X {get; set}
public int Y {get; set}

1

2

3

4

5 1}
6

7 public class PositionUpdater
8

9

{
- Move method |{Jub11c Coordinate MoveUp(Coordinate coordinate)
10
m EXtraCt methOd 11 return new Coordinate{X = coordinate.X, Y = coordinate.Y + 1};
12 }
13}

J

Message Chains

A message chain occurs when a client
requests another object, that object requests

yet another one, and so on.

master.getModelisable()
.getDockablePanel ()
.getCustomizer()
.getSaveltem()
.setEnabled(Boolean.FALSE .booleanValue());

= Hide delegate
= Extract method
= Move method

Message Chains

A message chain occurs when a client
requests another object, that object requests

yet another one, and so on.

master.getModelisable()
.getDockablePanel ()
.getCustomizer()
.getSaveltem()
.setEnabled(Boolean.FALSE .booleanValue());

= Hide delegate
= Extract method

= Move method master.allowSavingOfCustomizations();

Comments

The best comment is a good name for a

public void Play(char symbol, int x, int y) throws Exception {

method or class. //if first move
if (_lastSymbol == ' ') {
//if player is X
if (symbol == '0') {
throw new Exception("Invalid first player");
¥
¥
//if not first move but player repeated
else if (symbol == _lastSymbol) {
throw new Exception("Invalid next player");
. ¥
n . . .
EXtraCt Varlable //1if not first move but play on an already played tile
lse if (_board.TileAt(x, y).Symbol != ' ") {
= Extract method ° '
throw new Exception("Invalid position");
= Rename method '

// update game state
_lastSymbol = symbol;
_board.AddTileAt(symbol, x, y);

Comments can sometimes be useful

WJORKAROUND

WE NEVER HAD THE
TIME TO FINISH IT
BUT UE HAVE A
LORKAROUND

MONKEYUSER.COM

Explain why

To explain why something is being
iImplemented in a particular way.

Define: Feature Tokens (7)) of codes in Table 3
Input: Program Codes (C), C = {c1,¢c2,¢3, - , Cn}
Output: Tokenized SF (7 F) for all C
for each program code ¢; € C do
Refine Code RC; «— removeComments(c;)
Scan RC; and Select SF in RC; where VSF € T
Extract Selected Features (£.F;) <— extractSelect-
edFeatures (RC;)
8: for each extracted feature f € £F; do

AR A~ > v

9: TF fecF; <— Token ID
10: end for
11: end for

12: Return 7 F ¢

Image from Watanobe, Y., Rahman, M.M., Amin, M.F.l. et al. Identifying algorithm in program code
based on structural features using CNN classification model. Appl Intell 53, 12210-12236 (2023).

Citations

To cite an external knowledge source utilized
in the implementation.

- 4

More Code Smells

Five additional code smells described in the book “Refactoring
to Patterns”.

R EFACTORING
TO PATTERNS

= Conditional Complexity
» Indecent Exposure

= Solution Sprawl

= Combinatorial Explosion ,

- O d d b 3 | | S 0 | U tl on T

Coupling and Cohesion

Metrics that (roughly) describe how easy it will be to change the behavior of
some code.

Coupling

Measures the degree of interdependence between software
components.

» Elements are coupled if a change in one forces a change in the

other.
= We want to make changes in a component without impacting

other components.
= We want coupling to be as low as possible, but not lower.

Cohesion

Measures how strongly related and focused the
responsibilities of a software module are.

» |ndicates a component’s functional strength and how much it

focuses on a single point.
= Low cohesion results in behavior being scattered instead of

existing in a single component.
= We want high cohesion.

Have you seen the unbelievable

THOR Automagic Washer

everyone is talking about?

DI Glory el Hers's the CLOTHES WASHER of your dreama!

weget for & misute that it can be changed into a
dishwarber (we below)—just consider the clarivi
snbvivg features of the Thor Automagic, asd you'll wane

one tomorraw. By agitator action, it wavhes &

Cohesion, coupling and code smells

e Divergent Change e Data Class

e Feature Envy e Lazy Class

e Inappropriate Intimacy e Middle Man

e Message Chains e Primitive Obsession
e Middle Man e Shotgun Surgery

e Shotgun Surgery

High coupling Low cohesion

Indicators of possible high coupling. Indicators of possible low cohesion.

Smelly Tic Tac Toe

A TicTacloe implementation with quite a few code smells.

https:/github.com/AgileTechPraxis/CodeSmells

= Start by identifying the smells.
= Then slowly refactor the code.

https://github.com/AgileTechPraxis/CodeSmells

