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Consider a wavefunction (not necessarily the ground state) : ψ(x) = exp(−x2/4σ2)

Generate random numbers  x with a distribution proportional to   
calculated on such points x and accumulate the quantities to be integrated, 
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4σ2

−
x2

8σ4 )

|ψ (x) |2

TO DO:
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⟨Epot⟩ =
1
2

σ2 = 0.5, ⟨Ekin⟩ =
1

8σ2
= 0.125For σ = 1, we expect :

convergence w.r.t the number of steps (one seed)
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convergence w.r.t the number of steps (different seeds)

Δ =
⟨x2⟩calc − ⟨x⟩2

calc

σ2
− 1
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Correlations - Metropolis algorithm

    xp = x + delta * (rnd-0.5_dp)

In gauss_metropolis.f90 , δ is defined as the full amplitude of the possible displacement:
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Correlations - Metropolis algorithm

for values of the parameter δ/σ that are too low (< 5) or too high (> 10) the autocorrelation function 
decays very slowly: to effectively generate random numbers that are not correlated with each other it is 
therefore necessary to choose a ratio δ/σ such that 5 ≤ δ/σ ≤ 10, which corresponds to the acceptance 
ratio range between ≈ 1/3 and ≈ 1/3

Random number 
sequence 
generated with the 
Metropolis 
algorithm and 
different values of 
δ/σ 
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Metropolis algorithm in the 
canonical ensemble



Metropolis algorithm in the 
canonical ensemble
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This choice of πs implies that the estimate Am of the mean value of A can be written as

Am =
1
m

m∑

s=1

As. (17.8)

The choice (17.7) for πs is due to Metropolis et al.
Although we discussed the Metropolis sampling method in Section 11.8 in the context of

the numerical evaluation of integrals, it is not necessary to read Section 11.8 to understand the
Metropolis algorithm in the present context. The Metropolis algorithm can be summarized in the
context of the simulation of a system of spins or particles as follows:

1. Establish an initial microstate.

2. Make a random trial change in the microstate. For example, choose a spin at random and
flip it. Or choose a particle at random and displace it a random distance.

3. Compute ∆E ≡ Etrial −Eold, the change in the energy of the system due to the trial change.

4. If ∆E is less than or equal to zero, accept the new microstate and go to step 8.

5. If ∆E is positive, compute the quantity w = e−β∆E .

6. Generate a random number r in the unit interval.

7. If r ≤ w, accept the new microstate; otherwise retain the previous microstate.

8. Determine the value of the desired physical quantities.

9. Repeat steps (2) through (8) to obtain a sufficient number of microstates.

10. Periodically compute averages over microstates.

Steps 2 through 7 give the conditional probability that the system is in microstate {sj} given
that it was in microstate {si}. These steps are equivalent to the transition probability

W (i → j) = min
(
1, e−β∆E

)
, (Metropolis algorithm) (17.9)

where ∆E = Ej−Ei. W (i → j) is the probability per unit time for the system to make a transition
from microstate i to microstate j. Because it is necessary to evaluate only the ratio Pj/Pi = e−β∆E ,
it is not necessary to normalize the probability. Note that because the microstates are generated
with a probability proportional to the desired probability, all averages become arithmetic averages
as in (17.8). However, because the constant of proportionally is not known, it is not possible to
estimate the partition function Z in this way.

Although we choose πs to be the Boltzmann distribution, other choices of πs are possible and
are useful in some contexts. In addition, the choice (17.9) of the transition probability is not the
only one that leads to the Boltzmann distribution. It can be shown that if W satisfies the “detailed
balance” condition

W (i → j) e−βEi = W (j → i) e−βEj , (detailed balance) (17.10)

T (i → j) = min(1, e−β∆E) (Metropolis algorithm),

Reminder: the detailed balance in the canonical ensemble is verified by:
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Metropolis algorithm generates states with Boltzmann distribution

We can prove empirically that with this T(i⟶j)

1 free particle in 1D:  Energy:
in this case, velocity or energy labels a microstate

(the energy with a factor of 2 , due to +/- sign of v);
Different microstates are generated by random variations of the 
velocity and we accept/reject with Metropolis => obtain:
1) the average <E> 
2) P(E)

E =
1

2
mv

2



A particle moving randomly has in each direction a distribution of the compo-
nent of the velocity:

f(vx) =

✓
m

2⇡kBT

◆1/2

e�mv2
x/2kBT (1)

hv2xi =
Z +1

�1
v2xf(vx)dvx =

kBT

m
(2)

In 1D:
f(v)2dv = P (E)dE

that gives: P (E) =
1

(⇡kBT )1/2
1p
E

e�E/kBT

In 3D, assuming independent motion along x, y, z, we have:

f(v) = f(vx, vy, vz) = f(vx)f(vy)f(vz) =

✓
m

2⇡kBT

◆3/2

e�mv2/2kBT (3)

The number of particles having velocity in the range dv about v is:

f(v)dv =

✓
m

2⇡kBT

◆3/2

e�mv2/2kBT dv

The number of particles having modulus of the velocity between v and v + dv
is:

f(v)dv =

Z

all directions of v
f(v)dv

Since: dv = v2dvd⌦, we have:

f(|v|) = f(v) =

Z

all directions of v
v2f(v)d⌦ = 4⇡

✓
m

2⇡kBT

◆3/2

v2e�mv2/2kBT

(4)

f(v)dv = P (E)dE =) P (E) =
2p
⇡

1

(kBT )3/2
p
E e�E/kBT (5)

1

ideal classical 1D gas
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⇡
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(kBT )3/2
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E exp

✓
� E

kBT

◆

hAi =
MX

s=1

AsPs =
1

Z

MX

s=1

Ase
��Es

P (Es) =
⌦(Es)

Z
e��Es

Ps =
1

Z
e��Es

=
1

2
�2

=
1

8�2

@⇢

@t
= r

8
><

>:

X, Y uniformly distributed in [�1,1];
take (X,Y ) only within the unitary circle;
) R2 = X2 + Y 2 is
uniformly distributed in [0,1]

x =
p

�2 lnR2
X

R
= X

p
�2 lnR2/R2

1

(3D)P

In 3D:

12

Boltzmann distribution in the canonical ensemble



Boltzmann distribution 

T = 1 → 〈E〉(expected) = 0.5 (m = 1)
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Un numero di 1000 step è sufficiente per un’accuratezza dell’1% su <E> e del
10% su <v>, tuttavia se vogliamo riprodurre la distribuzione servono molti piu’ punti



Boltzmann distribution 

14

1D: P(E) ∝
1

E
e−βE

⇒ ln(P(E)) ∝ −
1
2

ln(E) − βE
T=1 here



Boltzmann distribution 

many particles:  Energy: 
in this case, the energy is NOT a label of a microstate
(there are several microstates with the same total energy)

E =

∑N

i=1

1

2
miv

2
i

Note: the energy histogram is NOT the distribution of microstates!

P (E) =
∑

states s

with Es=E

Ps Ps =
1

Z
e
−βEs

P (E) ∝= e
−(E−〈E〉)2

2σ2 with ⟨E⟩ average over all the microstates

with

What is P(E)? (exercise)
15

for many particles
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Boltzmann distribution 
for many particles

Possible approach n. 1: 1 MC step corresponds to a loop on all the particles,
the configs in the Markov chain can differ just by a single particle value of velocity

E is an array labelled by the index of the MC step
 for the purpose of accumulate it at the end
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Boltzmann distribution 
for many particles

Possible approach: 1 MC step corresponds to a loop on all the particles,
the configs in the Markov chain can differ just by a single particle value of velocity

E is an array labelled by the index of the MC step
 for the purpose of accumulate it at the end
but we can also avoid
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Boltzmann distribution 
for many particles

Alternative approach: 
1 MC step corresponds to a loop on all the particles,
a new configuration in the Markov chain is considered after the loop
on all the particles

Alternative approach: 
1 MC step corresponds to a trial move on a single particle
=> drawback: the length of the trajectory is system size dependent



Boltzmann distribution 
for many particles
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N=20
T=50



Boltzmann distribution 
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Etot =
1
2

NkBT


