
Introduction to  
ROOT: part 1

LACD 2024-2025
March 19th, 2025

Mirco Dorigo  
mirco.dorigo@ts.infn.it

mailto:mirco.dorigo@ts.infn.it

• Researcher @INFN Trieste

• mirco.dorigo@ts.infn.it 
mirco.dorigo@cern.ch

• Worked in CDF (UniTS, 2009-2013)  
and LHCb (EPFL, CERN, 2013-2020)

• In Belle II since 2020 
https://web.infn.it/Belle-II/index.php/our-research

Contacts

2

https://www.ts.infn.it/#
mailto:mirco.dorigo@ts.infn.t
mailto:mirco.dorigo@cern.ch
https://cdf.fnal.gov
http://lhcb.web.cern.ch
https://www.belle2.org
https://web.infn.it/Belle-II/index.php/our-research

Wed 19/03 Aula A, Ed A  
Setup, basics commands and (very) little C++ tour

Fri 22/03 Aula B, Ed A  
Reading and storing data (histograms, tuples)

Wed 27/03 Aula A, Ed A  
Manipulating data (inspecting distributions, making selections, making
graphs)

Wed 03/04 Aula B, Ed B  
Fitting data

Main resource: https://moodle2.units.it/course/view.php?id=14880

Class plan

3

https://moodle2.units.it/course/view.php?id=14880

• Open-source analysis framework  
with building blocks for:

✓ Data processing

✓ Data analysis

✓ Data visualisation

✓ Data storage

• Widely use in high-energy physics (but not only): 
> 1EB of data in ROOT format at CERN, 
thousands of plots from ROOT in papers…

• Written mainly in C++ (bindings for Python available)

https://root.cern.ch

4

https://root.cern.ch

https://root.cern.ch

https://root.cern.ch

Let’s do a real data analysis!

6

• We will learn ROOT by doing  
an analysis using data from  
a real experiment, Belle II.

• Our goal is to see the signal peak  
of a rare B decay  
(branching fraction ~10-5):

• With ROOT we will optimise a selection to enhance our signal and
measure its yield in our data.

• The study of this decay has been part of a real Belle II publications: 
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.109.012001  
one of the three main authors was a Master student like you!

B0 → K+π−

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.109.012001

• C++ is a coding language to program (writing instructions for your pc to execute).

• Here we won’t learn C++: just very basic concepts to tell ROOT what to do.

• C++ is a compiled language: a compiler translates ASCII files with code into
machine instructions. A compiler is gcc.

• ROOT comes with an interpreter (CLING), don’t need to compile code to run it

• it’s not a C++ feature, its ROOT

• CLING features just in time (JIT) compilation

• CLNG provides an interactive C++ shell

• Very convenient: rapid prototype/check (drawback: learn sloppy C++…)

Root and C++

7

https://isocpp.org
https://gcc.gnu.org

Let’s start ROOT

8

• To start ROOT just type root in your shell

• .q to quit ROOT

• .? to obtain a list of command

• .!<command> (e.g. .!pwd) to access shell command

• Can start ROOT also with flags (eg. root -l).

‣ -l (do not show the root banner)

‣ -b (batch mode, no graphics)

‣ -q (run and quit)

• A few examples below, try man root for full list.

Using the prompt

9

• As a simple calculator

• Accessing complex functions (via TMath library)

• Can run also C++ instructions
ROOT As a Calculator

64

Here we make a step forward.
We declare variables and use a for
control structure.

root [0] double x=.5

(double) 0.5

root [1] int N=30

(int) 30

root [2] double gs=0;

root [3] for (int i=0;i<N;++i) gs += pow(x,i)

root [4] std::abs(gs - (1/(1-x)))

(Double_t) 1.86265e-09

Using the prompt

10

• To access ROOT classes

• Draw the function 1/(1-x)

Running a macro

11

• The prompt is powerful, but not convenient to (re)run several lines of
code. Let’s put them in a “macro”, a bunch of lines of code in a ASCII file.

• Go back and put in a macro the example of the geometrical series.

• Note: the name of the macro must be the same of the function

• To run your macro, type root -l myMacro.C, or

Compiling a macro

12

• Not only JIT compilation, ACLIC can make libraries from your code

• Just load the macro adding a ‘+’ at the end: .L myMacro.C+

• What’s the problem?

Need to be C++ compliant

13

• Add some “headers”; make explicit the use of std (standard) library

• Should be OK now

Going full C++

14

• ROOT libraries can be used to produce standalone compiled applications.
Need to make our macro C++ standard code, by adding the main function

• Compile and run the binary example.

Note: not using ROOT libraries here, otherwise: g++ -o example myMacro.C `root-config --cflags --libs`

Language considerations

15

• Our code will be simple macros that can run on-the-fly, without
compilation. We can afford being sloppy with the language…

• Anyway, a minimum knowledge of C++ basics is needed.

• Will have a look but you will mostly learn by copying examples.
If you are completely unfamiliar, there are many good tutorials
and guides on the web (e.g. http://www.cplusplus.com).

• Let’s do a quick tour

http://www.cplusplus.com

Fundamental types

16

Variable declaration:  
every name and every expression
has a type that determines the
operations that can be

performed on it.

 Variable types

C++ Fundamental Types Machine Independent Types

C++ type Size (bytes) ROOT types Size (bytes) FORTRAN

(unsigned)char 1 (U)Char_t 1 CHARACTER*1

(unsigned)short 2 (U)Short_t 2 INTEGER*2

(unsigned)int 2 or 4 (U)Int_t 4 INTEGER*4

(unsigned)long 4 or 8 (U)Long_t 8 INTEGER*8

float 4 Float_t 4 REAL*4

double 8 (>=4) Double_t 8 REAL*8

long double 16 (>=double) REAL*16

see http://root.cern.ch/root/html/ListOfTypes.html for a complete list

23

Operators

17

Make actions on the variables, functions, output..

(Some) operators

18

Operators

Arithmetic and Assignment Operators

C++ Purpose FORTRAN
x++ Postincrement

++x Preincrement

x-- Postdecrement

--x Predecrement

+x Unary plus +X

-x Unary minus -X

x*y Multiply X*Y

x/y Divide X/Y

x%y Modulus MOD(X,Y)

x+y Add X+Y

x-y Subtract X-Y

Pow(x,y) or TMath::Power(x,y) Exp X**Y (FORTRAND and CINT)

x = y Assignment X = Y

X += y Updating assignment X = X+Y

X -=, *=, /=, %=, …, Y X=X-Y, X=X*Y, …

30

Logical Values and Operators, Relational Operators

C++ ROOT extension Purpose FORTRAN
false or 0 kFALSE False value .FALSE.

true or nonzero kTRUE True value .TRUE.

!x Logical negation .NOT.X

x && y Logical and X. AND. Y

x || y Logical or X. OR. Y

x < y Less than X. LT. Y

x <= y Less then or
equal

X. LE. Y

x > y Greater than X. GT. X

x >= y Greater than or
equal

X. GE. Y

x == y Equal X. EQ. Y

x != y Not equal X. NE. Y

41

Arithmetic operators Logic/comparison operators

Loops et al. (statements)

19

Repeat the
instructions N times

• There are other types of loops (eg. while).  
They can be combined with other kind of statement, like  
if, if … else …, switch … and so on

• We will see them with the examples throughout the lessons.

Functions

20

• Very convenient to write functions in our macros

• Notice: myMacro() was used as a function in main in slide 9.

Functions — overloading

21

• Parameters are important. Can overload functions.

Functions — overloading

22

• Parameters are important. Can overload functions.

Defining new types

• The first step to define new types is to create a structures to
group elements (members)

A structure to define a new type,

complex numbers

An object of the new type.

Access the members re and im
using a dot.

23

Defining new types

• The first step to define new types is to create a structures to
group elements (members)

24

Classes
• Classes are structures on steroids: add functionalities (methods)

25

Can define all operations
that you want with the
members of the class

class “constructor”

Access the methods  
with the dot.

Initialise an object

Classes
• Classes are structures on steroids: add functionalities (methods)

26

Object oriented
• Classes have  

members (variables) and  
methods (functions)

• An instance of a class is an
object, created by a special
method, the constructor 
(can be overloaded).

• We can define very abstract
classes, and then add derived
classes that inherit from them  
to go more specific with  
what we need to do.

27

Vehicle

Bus Car Bike

Sedan

S-Wagon

Race car

Going back to ROOT
• ROOT is organised in classes: you will use objects and methods

• All classes begin with a “T” in ROOT (TGraph,TH1,TF1…)

• All methods begin with a capital letter (Draw(),GetX(),Derive()…)

• Classes inherited from more general (abstract) classes

28

https://root.cern.ch/doc/master/classTH1.html

https://root.cern.ch/doc/master/classTH1.html

Pointers

29

• Values are in memory, at a location (an address).

• & takes the address of value

• address now contains the memory-address of value

• *address accesses the content

value = 10

address

0x10804c0c0

0x10804c……

0x10804c……

0x10804c……

0x10804c……

Pointers and objects

30

• Can use pointers with objects: create with new

normal object

w is a pointer to an object

Methods cannot be called by ‘.’

 Use ‘->’, which is a shorthand for
‘(*w).cPrint()’

• Make explicit in code:  
ComplexNumber* w = new ComplexNumber(3,2);

• Should need also a destructor to delete, but for simple classes like that the
compiler takes care for us (important when you have pointers in the class,  
to free allocated memory).

Scope

31

• Every variables has a lifetime. It is defined only within a scope.

• It is determined by the { … }

C++ overview wrap-up

32

• Done a very quick (and incomplete) tour of C++.  
This is NOT sufficient C++ for real-life.

• Sufficient to follow the course. We will do very simple coding  
(might not be really C++ kosher…).

• Important to understand basic concepts, such that you are not
lost when navigating the ROOT class reference 
(eg. https://root.cern.ch/doc/master/classTH1.html)

• Writing macros will come with examples…

https://root.cern.ch/doc/master/classTH1.html

Our case analysis: setting the stage

33

34

Collisions of electron-positron beams at  (7 + 4) GeV s ≃ 10.6 GeV

The experiment

Data from Belle II

35

Collisions of electron-positron beams at  (7 + 4) GeV s ≃ 10.6 GeV

Data from Belle II

36

Belle/BaBar B factories: e+e- →Υ(4S)→BB

BB threshold

Very clean environment!

�(bb)
�(hadrons)

= 0.28

118

• Collisions of electron-positron beams at

• e+e-→ hadrons produce ~28% of the times a →  

(7 + 4) GeV s ≃ 10.5794 GeV
Υ(4S) BB

Data from Belle II

37

4

The Belle II detector

(7 GeV) electrons e −

(4 GeV) positrons e +

1.5T Magnet

Particle ID:
Time-of-Propagation counter (barrel)
Aerogel RICH (fwd)

Vertex Detector
(pixels detector PXD and
silicon strips detector)

Electromagnetic Calorimeter ECL
(CsI(Tl) crystals)

Central Drift Chamber
(cylindrical wire chamber
with 14336 sense wires)

KL and muon detector
(resistive plates and

scintillators)

Filippo Dattola | Search for decays with an inclusive tagging method at the Belle II experimentB+ → K+νν̄

New detector with respect to the predecessor Belle.
• B mesons have a lifetime of ~1.5 ps*: we detect the decay products.

*how much does it travel in the detector?

Data from Belle II

38

CHAPTER 2. THE BELLE II DETECTOR AT THE SUPERKEKB COLLIDER

from 17� to 180�.
The single hit spatial resolution is about 100 µm and the dE/dx resolution is 11.9% for

an incident angle of 90�. Figure 2.8 shows a reconstructed cosmic-ray track in the CDC.
The typical transverse momentum resolution is �(pT)/p2T ⇡ 0.5%/[GeV/c].

Figure 2.8: Example of event display of a typical hadronic event at Belle II. Curved tracks are recon-
structed in the CDC.

2.4 Particle-identification detectors

Charged particle identification in the Belle II experiment is mainly performed by two de-
tectors: the time of propagation counter (TOP) and the aerogel ring-imaging Cherenkov
counter (ARICH). Both use Cherenkov light to identify charged particles. Particle-identification
information is also provided by the electromagnetic calorimeter (ECL) and the K0

L and
muon detector (KLM).

2.4.1 Time of propagation counter

The TOP counter is located in the barrel region. It measures the time of propagation
of the Cherenkov photons produced by charged particles undergoing internal reflection in
its quartz radiator. A three-dimensional image of the photon cone is reconstructed using
the correlation between hits positions in the x-y plane and time of propagation. The TOP
consists of 16 quartz bars mounted on the barrel at 1.2m radius from the interaction point.
Each bar is a photon radiator and has three main components (Fig.2.9): a long section
that acts as a Cherenkov radiator, where photons are generated and propagate towards
the bar end; a spherical mirror mounted on the forward end, which focuses the light and
reduces the chromatic error; and a prism, mounted on the backward end of the bar, which
collects and guides the photons to a photomultiplier.

The polar angular acceptance ranges from 31� to 128�. The single-photon time resolu-
tion is about 100 ps, providing a good separation of pions and kaons in the 0.4� 4GeV/c
momentum range (kaon identification efficiency is about 95%, pion fake rate is about 10%).
This time resolution is achieved with a micro-channel plate photo-multiplier specially de-
veloped for this purpose.

25

Our data

39

px*
K π
py* pz* px* py* pz*

Our data

40

px*
K π
py* pz* px* py* pz*

?

Some exercises

41

• Start ROOT. From the prompt look at the content of your folder, and look
at the content of the folder above.

• Write a macro to compute the integral of x2 between —1 and 1.  
Don’t use TF1, but compare your results with that of TF1.

• Compile the macro in ROOT (.L macro.C+) and run it.

• Explore the TF1 class. Look at the type 2, expression using variable x
with parameters. Using this, write a normal Gaussian function in the range
—5 and 5, set the mean to 0 and the std deviation to 1, and draw it.  
Get the value of the 2nd derivative at x = 0. Put all in a macro and run it.

• From the ROOT prompt: draw the Landau function.

https://root.cern.ch/doc/master/classTF1.html#F2
https://root.cern.ch/doc/master/classTF1.html#F2

Extra

42

• Some instructions (a few years old, but should still work) at this link: 
https://www.unibo.it/sitoweb/gabriele.sirri2/contenuti-utili/df5f946d

• For Windows, follow the instructions under “run Ubuntu natively on
Windows 10/11 without Virtual Machines.”

• For Mac: in addition to the instructions in the link, you can also use
Homebrew (https://brew.sh/index_it) or MacPort (https://www.macports.org/
install.php), see https://root.cern/install/#macos-package-managers

• ROOT page for installation, where you can find the link to pre-compiled binaries:
https://root.cern.ch/downloading-root

• In case you need, a bash guide (get familiar with Sect. 1, 2 and 3):  
https://swcarpentry.github.io/shell-novice/

ROOT installation

43

https://www.unibo.it/sitoweb/gabriele.sirri2/contenuti-utili/df5f946d
https://brew.sh/index_it
https://root.cern/install/#macos-package-managers
https://root.cern.ch/downloading-root
https://swcarpentry.github.io/shell-novice/

Going back to ROOT

44

• Remember this?

• Put it on a macro and run it.

Stack and heap

45

• Text segment: code to be executed

• Initialised data segment: initialised
global variable

• Uninitialised data segment:
contains uninitialised global
variables

• The stack: contains the frames,
collections of all data associated
with one subprogram call (one
function)

• The heap: dynamic memory,
requested with “new”

Stack and heap

46

• Let’s try with pointers

• Without the pointer, the function func() is in the stack, and its scope ends
after closing the last “}”. The program, made just by this function, ends
and all variables inside the function are lost.

• “new” puts the object on the heap, escapes scope and the object survives.

