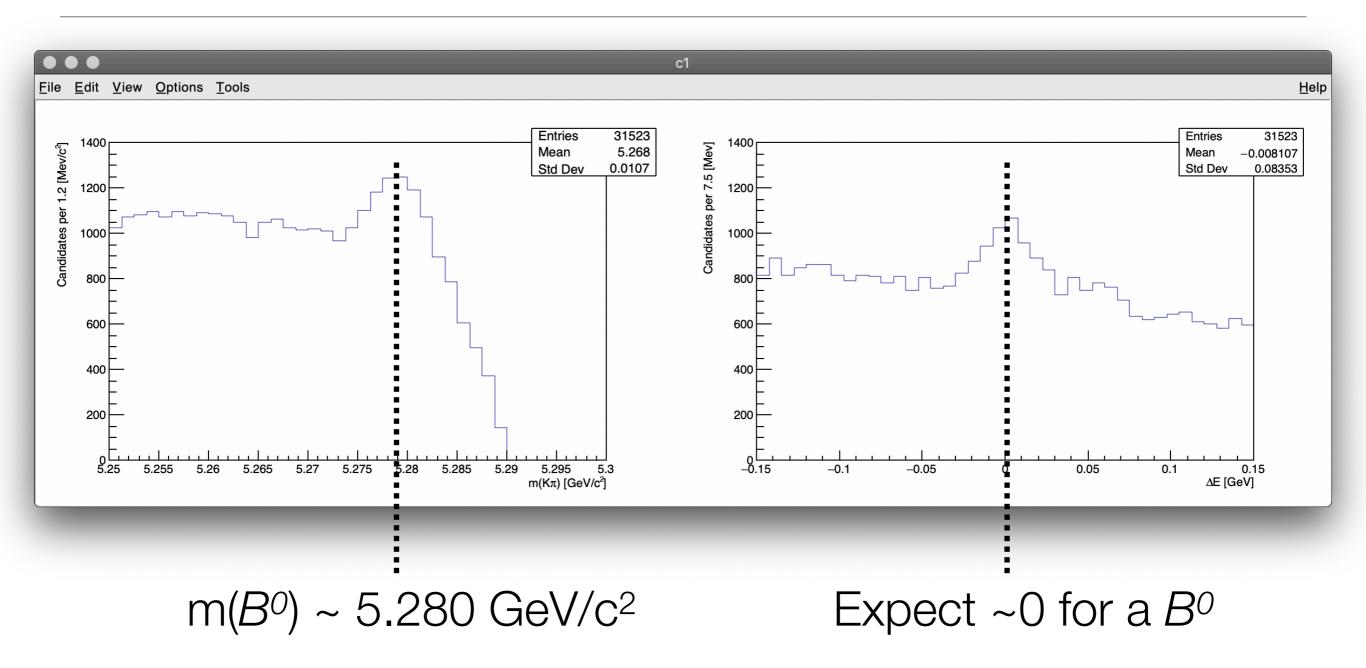
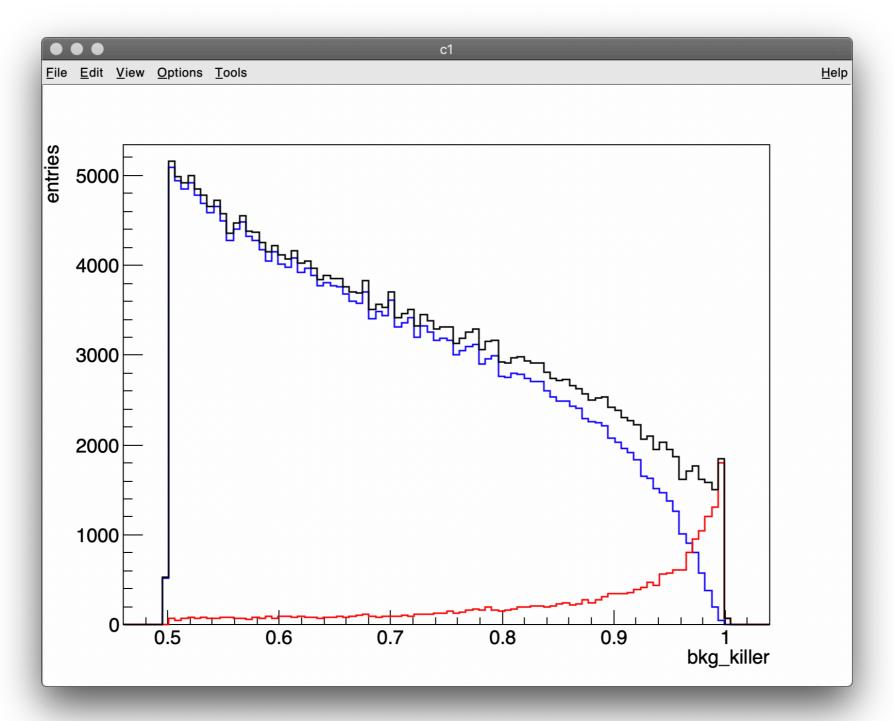


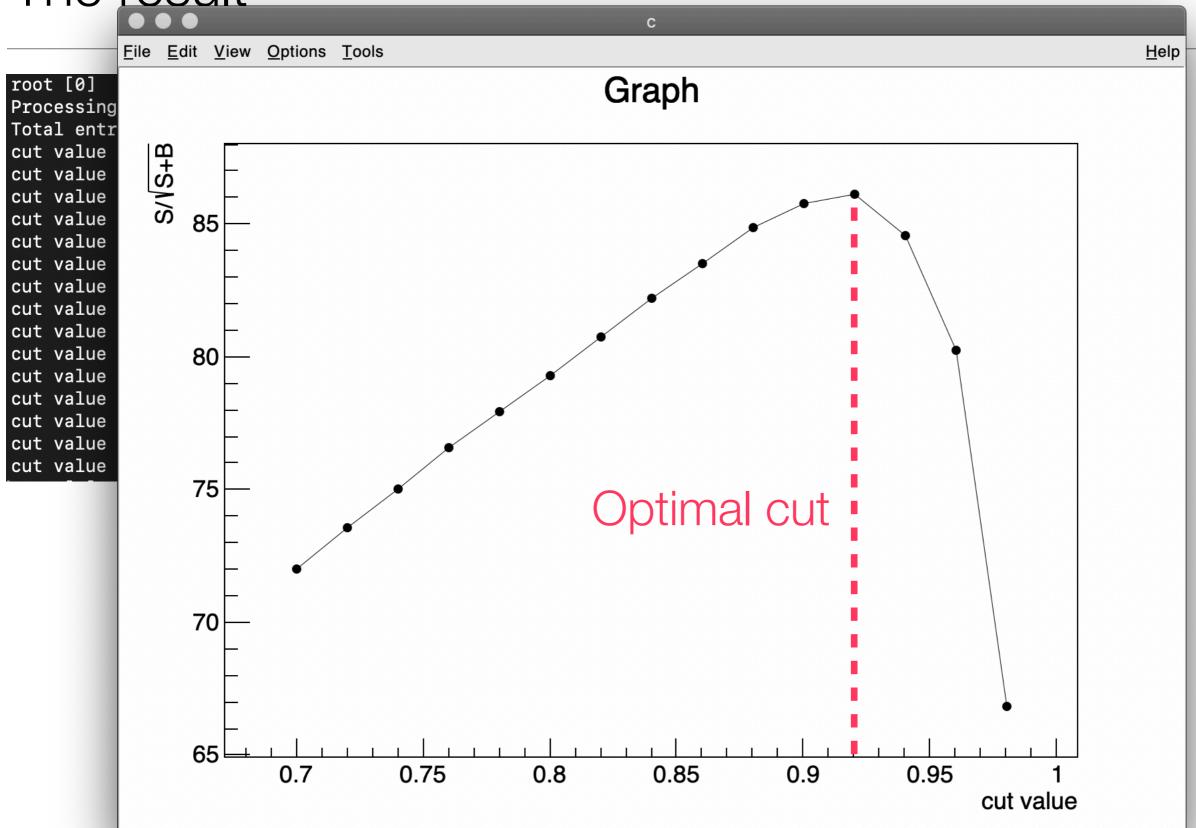
Introduction to ROOT: final part


Mirco Dorigo mirco.dorigo@ts.infn.it

Previous lesson


- Accessing the data from a TTree in a ROOT file
- Inspect the data looking at distributions, make a selection, in macros and live (also in 2 dimensions)
- Making a graph to display data pairs.
- Manipulating histograms (use of Sum2w(), and treatment of bin-content errors).

The peak



The background killer

 This is the output of the classifier in our simulation, separated for signal, background, and their sum.

The result

Let's see on simulated data

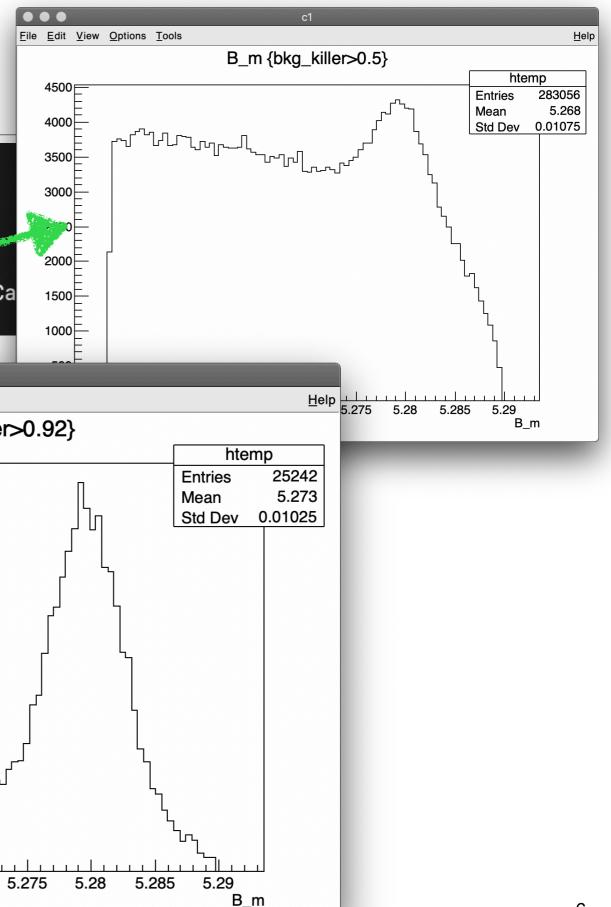
```
[mb-md-01:thirdLesson dorigo$ rootl simulation.root root [0]
Attaching file simulation.root as _file0...
(TFile *) 0x7f981b8de6f0
[root [1] simTree->Draw("B_m","bkg_killer>0.5");
Info in <TCanvas::MakeDefCanvas>: created default TCa 1500
[root [2] simTree->Draw("B_m","bkg_killer>0.92");

| C1 | Eile Edit View Options Tools | Edit Vie
```

1000

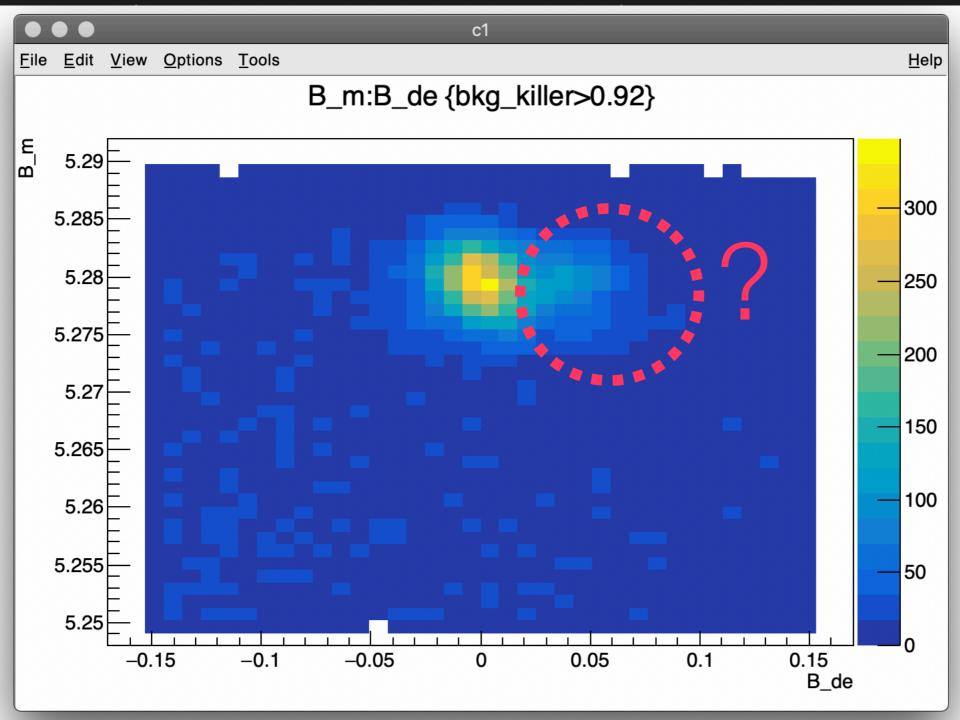
800

600

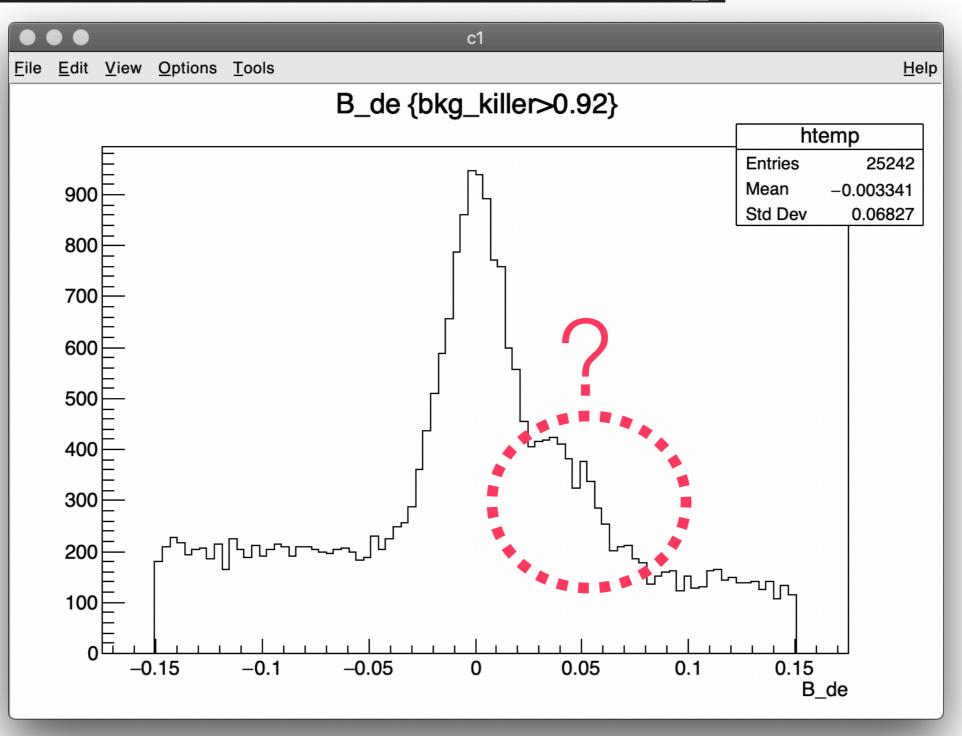

400

200

5.25


5.255

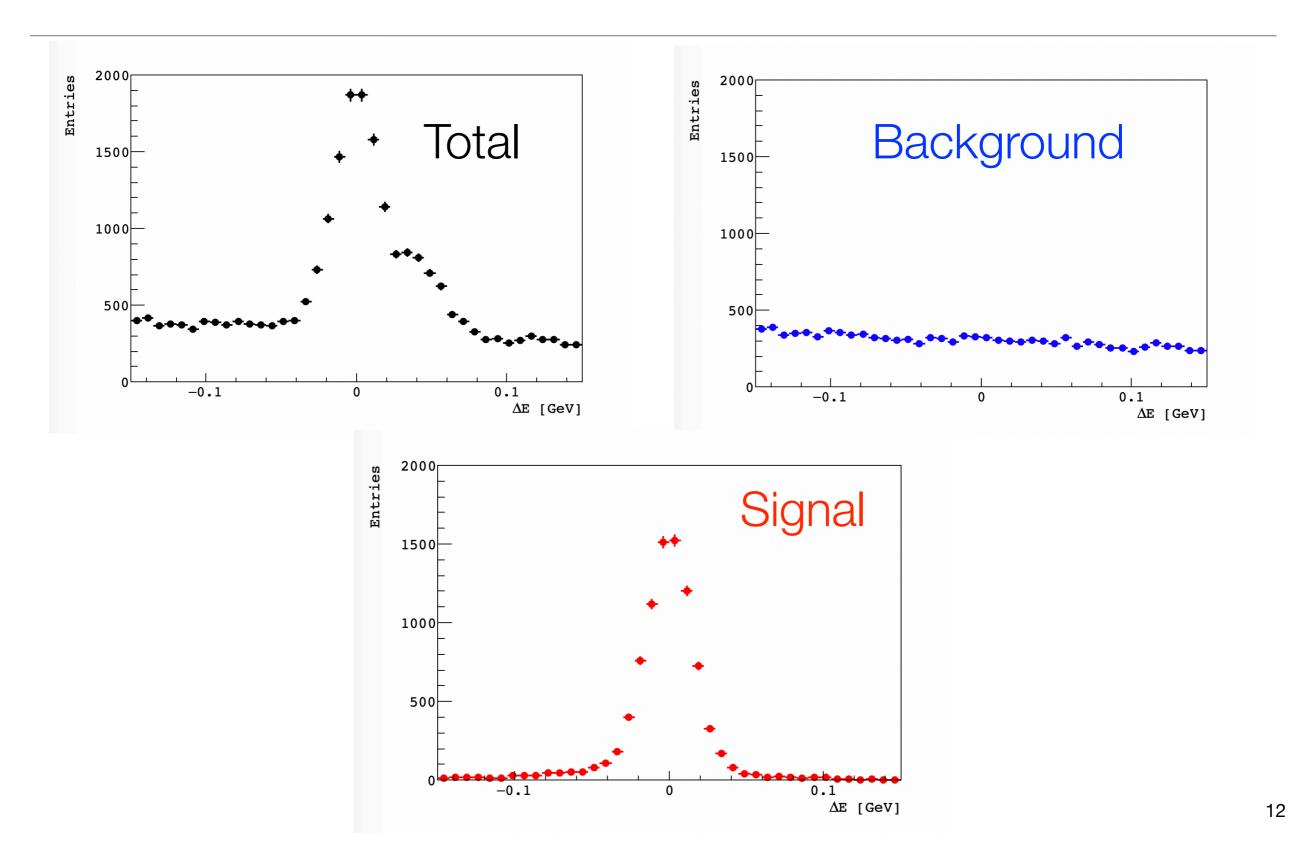
5.265


Let's see on simulated data

[root [3] simTree->Draw("B_m:B_de","bkg_killer>0.92","colz");

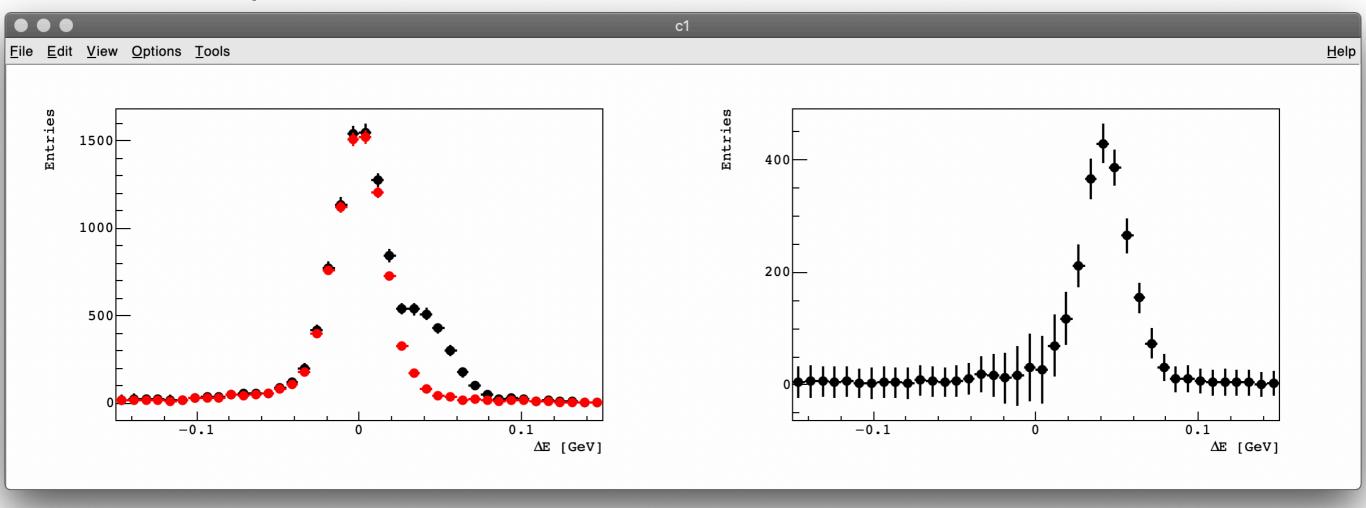
What's this shoulder?

root [7] simTree->Draw("B_de","bkg_killer>0.92");

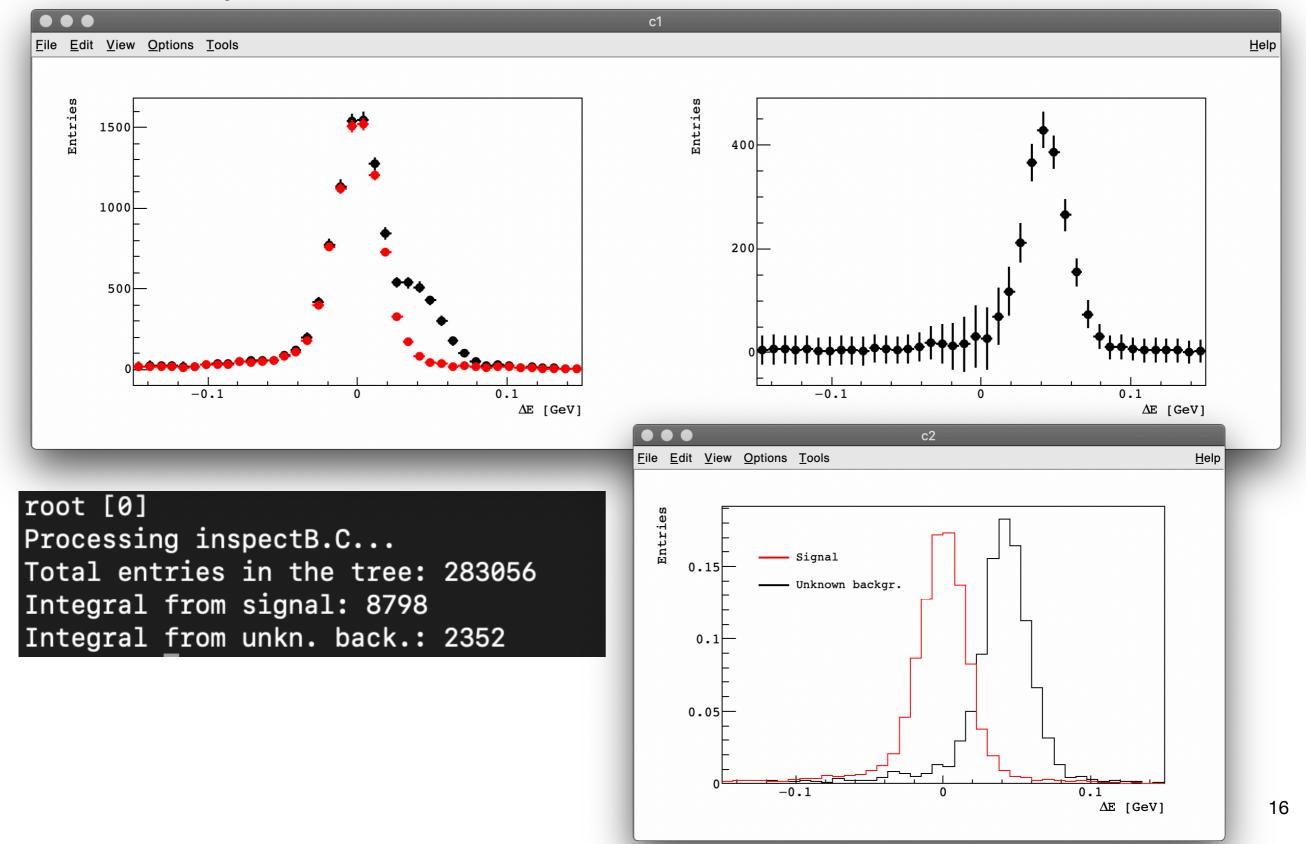


Background from other B decays

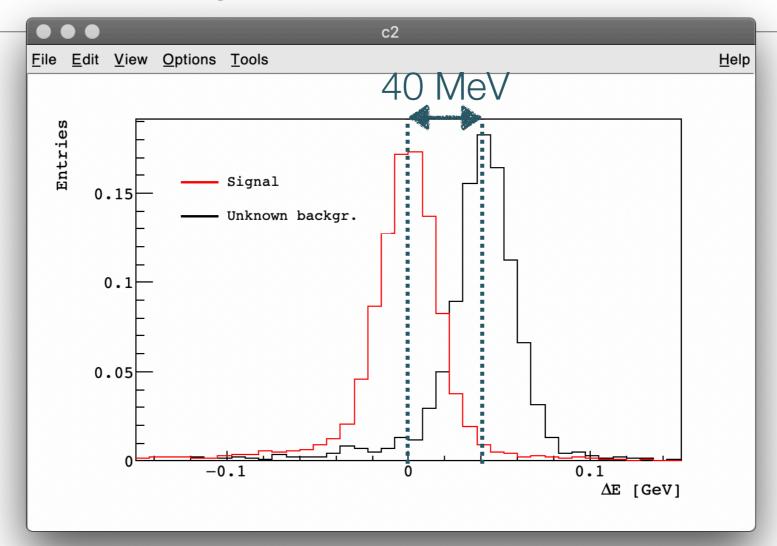
- bkg_killer is built to suppress events that are *not* $\Upsilon(4S) \to B\overline{B}$.
- Among $\Upsilon(4S) \to B\overline{B}$ events, there are B decays that are not signal, but that can be mis-reconstructed as our signal.
- For instance a pion in $B^0 \to \pi^+\pi^-$ decays can be mis-identified as kaon and be reconstructed as $B^0 \to K^+\pi^-$
- Let's check in simulation. We have a variable that flag real $B^0 \to K^+\pi^-$ signal candidates only.


```
#include "Riostream.h"
   #include "TFile.h"
   #include "TTree.h"
   #include "TCanvas.h"
   #include "TH1D.h"
                                A class to add legends in plot
   #include "TLegend.h"
                                 (search the reference class)
   using namespace std;
   void inspectB(){
11
       //open file and take the tree
12
       TFile* file = TFile::Open("simulation.root");
13
       TTree* tree = (TTree*) file->Get("simTree");
14
                                                          All quite standard now
15
       int tot_entries = tree->GetEntries();
16
       cout << "Total entries in the tree: " << tot_entries << endl;</pre>
17
18
       //link the variables with tree banches
19
       double B_de, bkg_killer;
20
       int isBkg, isSig;
21
       tree->SetBranchAddress("B_de",&B_de);
22
       tree->SetBranchAddress("isBkg",&isBkg);
23
       tree->SetBranchAddress("isSig",&isSig); TO Select only signal
24
       tree->SetBranchAddress("bkg_killer",&bkg_killer);
```

```
//define an histogram to look at deltaE distribution
27
       TH1D* h_de_tot = new TH1D("h_de_tot",";m(B) [GeV]; Entries",40,-0.15,0.15);
28
29
        //very very important to rember when manipulating histograms!!!
30
                                                                           IMPORTANT!!!
       h_de_tot->Sumw2();
31
32
       //clone the same histogram structure for signal, bkg, and unknown bkg
33
       TH1D* h_de_sig = (TH1D*) h_de_tot->Clone("h_de_sig");
34
       TH1D* h_de_bkg = (TH1D*) h_de_tot->Clone("h_de_bkg");
35
       TH1D* h_de_unknown = (TH1D*) h_de_tot->Clone("h_de_unknown");
36
37
       //loop over the entries
38
       for(int iEntry; iEntry<tot_entries; ++iEntry){</pre>
39
40
           tree->GetEntry(iEntry);
41
           //skip all candidates below the optimal cut point
43
           if(bkg_killer<0.92) continue;</pre>
44
45
           //fill the histograms
46
           h_de_tot->Fill(B_de);
47
           if(isBkg) h_de_bkg->Fill(B_de);
48
            else if(isSig) h_de_sig->Fill(B_de);
49
50
51
```

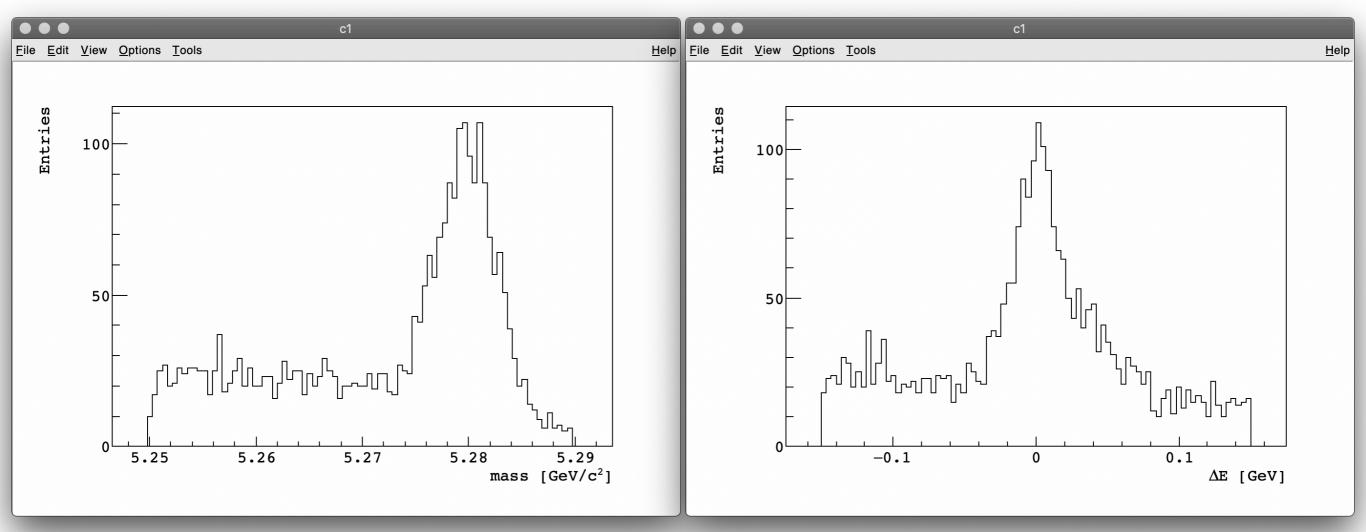


```
//subtract the background from the total
53
       h_de_tot->Add(h_de_bkg,-1);
54
       //subtract the signal
56
       h_de_unknown->Add(h_de_tot, h_de_sig, 1, -1);
57
59
       //draw the histograms
60
       TCanvas* c1 = new TCanvas("c1", "c1", 1200, 400);
61
       c1->Divide(2,1);
                                                   We are manipulating the bin contents
       c1->cd(1);
       h_de_tot->Draw();
                                                            of the histograms here.
       h_de_sig->SetLineColor(kRed);
       h_de_sig->SetMarkerColor(kRed);
                                                    Only with Sumw2 () the uncertainty
       h_de_sig->Draw("same");
                                                 on the bin content is properly calculated
       c1->cd(2);
68
       h_de_unknown->Draw();
70
       //compare signal and unknown background shapes
71
       TCanvas* c2 = new TCanvas("c2", "c2", 600, 400);
72
       h_de_unknown->DrawNormalized("histo");
73
       h_de_sig->DrawNormalized("histo same");
74
75
       //put a legend
76
       TLegend* leg = new TLegend(0.2, 0.65, 0.5, 0.8);
77
       leg->AddEntry(h_de_sig, "Signal", "L");
78
       leg->AddEntry(h_de_unknown, "Unknown backgr.", "L");
79
       leg->Draw();
       cout << "Integral from signal: " << h_de_sig->Integral() << endl;</pre>
82
       cout << "Integral from unkn. back.: " << h_de_unknown->Integral() << endl;</pre>
83
```

The output




```
//subtract the background from the total
53
       h_de_tot->Add(h_de_bkg,-1);
54
       //subtract the signal
       h_de_unknown->Add(h_de_tot, h_de_sig, 1, -1);
57
59
                                                         To compare shape of distributions,
       //draw the histograms
60
                                                         draw them normalised to the same
       TCanvas* c1 = new TCanvas("c1", "c1", 1200, 400);
61
       c1->Divide(2,1);
                                                            (unit) area in the same canvas
       c1->cd(1);
       h_de_tot->Draw();
                                                                (for proper uncertainties
       h_de_sig->SetLineColor(kRed);
                                                              also this requires Sumw2())
       h_de_sig->SetMarkerColor(kRed);
       h_de_sig->Draw("same");
       c1->cd(2);
68
       h_de_unknown->Draw();
69
70
       //compare signal and unkown background shapes
71
       TCanvas* c2 = new TCanvas("c2", "c2", 600, 400);
72
73
       h_de_unknown->DrawNormalized("histo");
       h_de_sig->DrawNormalized("histo same");
74
75
       //put a legend
76
       TLegend* leg = new TLegend(0.2, 0.65, 0.5, 0.8);
77
       leg->AddEntry(h_de_sig, "Signal", "L");
78
       leg->AddEntry(h_de_unknown,"Unknown backgr.","L");
79
       leg->Draw();
80
       cout << "Integral from signal: " << h_de_sig->Integral() << endl;</pre>
82
       cout << "Integral from unkn. back.: " << h_de_unknown->Integral() << endl;</pre>
83
```

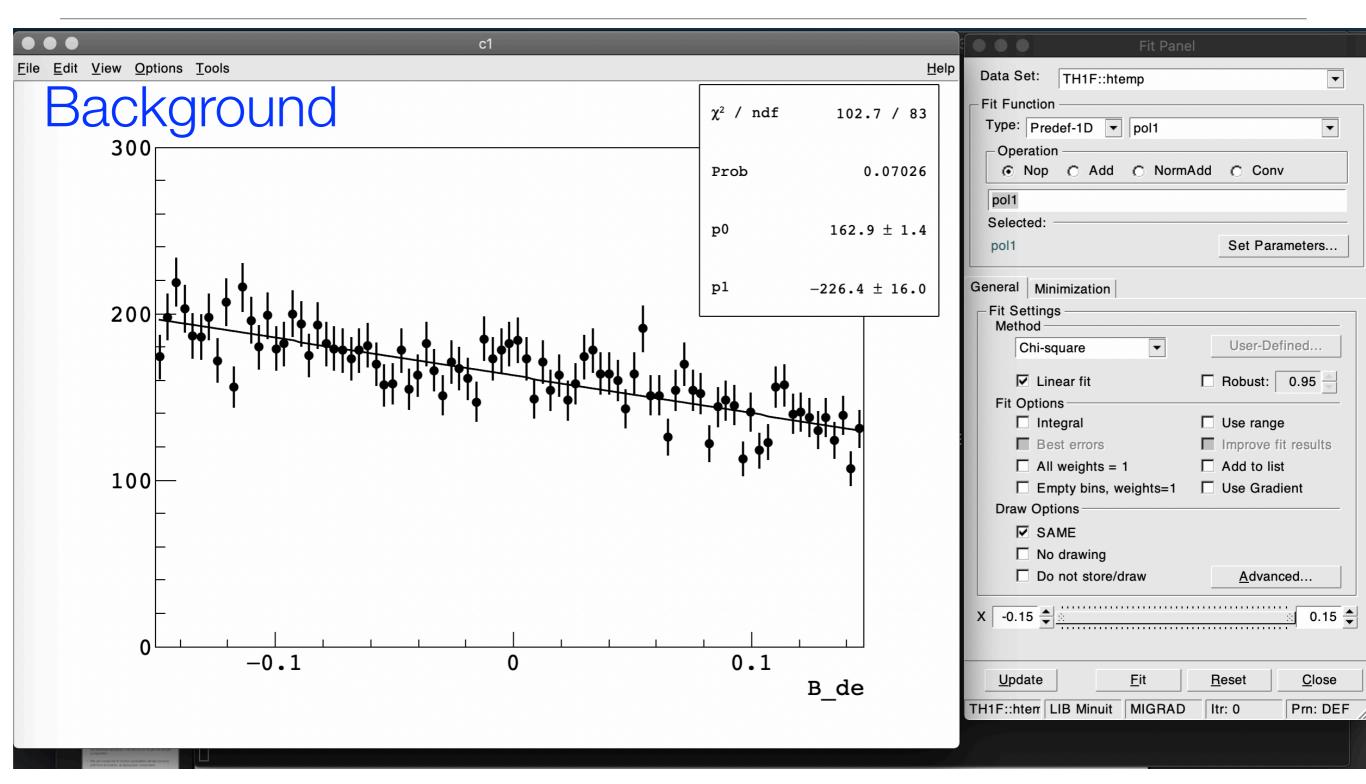
The output


Misidentified background

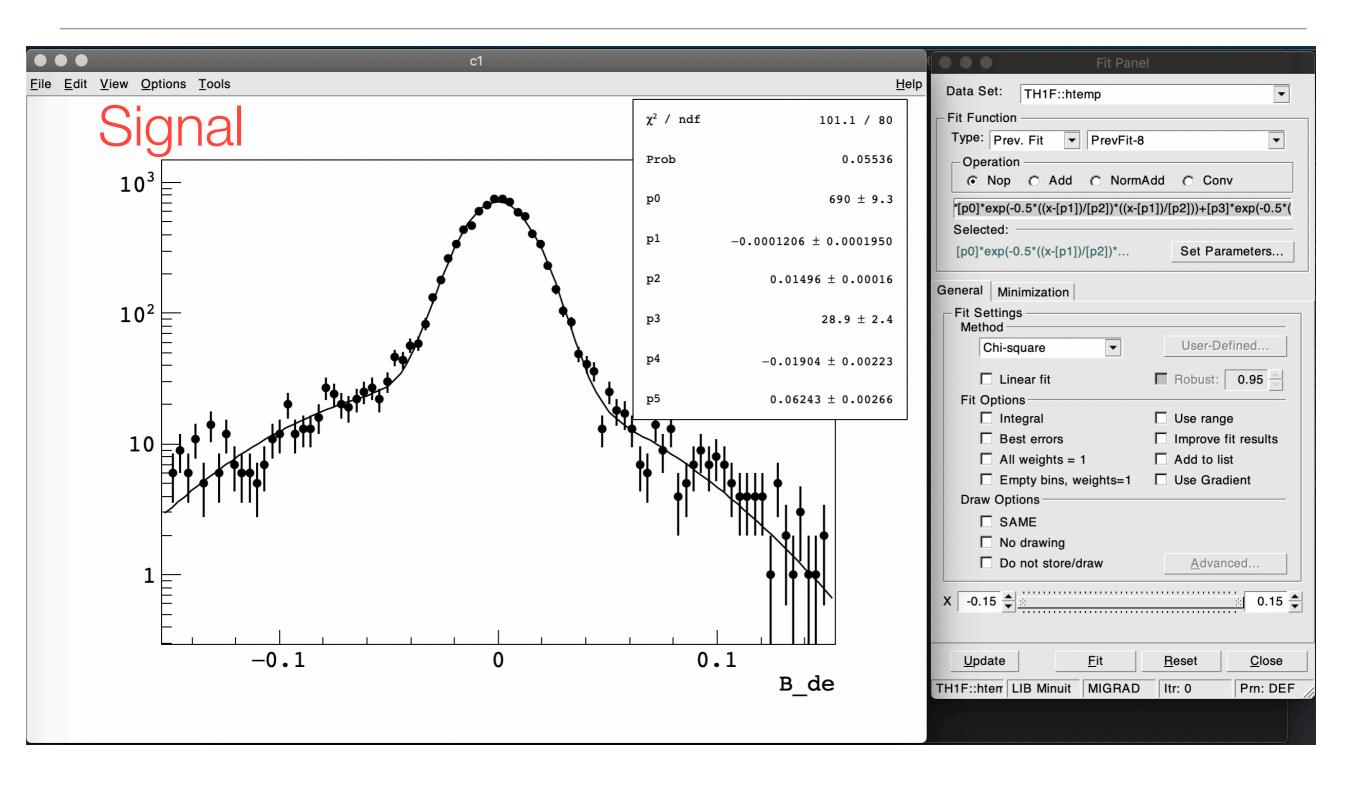
- Indeed, this is given by pion-to-kaon misidentification. If you calculate the shift in ΔE due to the different pion-kaon mass, you will find about $+40\,\mathrm{MeV}$.
- We can use a variable, built from PID detectors, to suppress this background.

Look at data

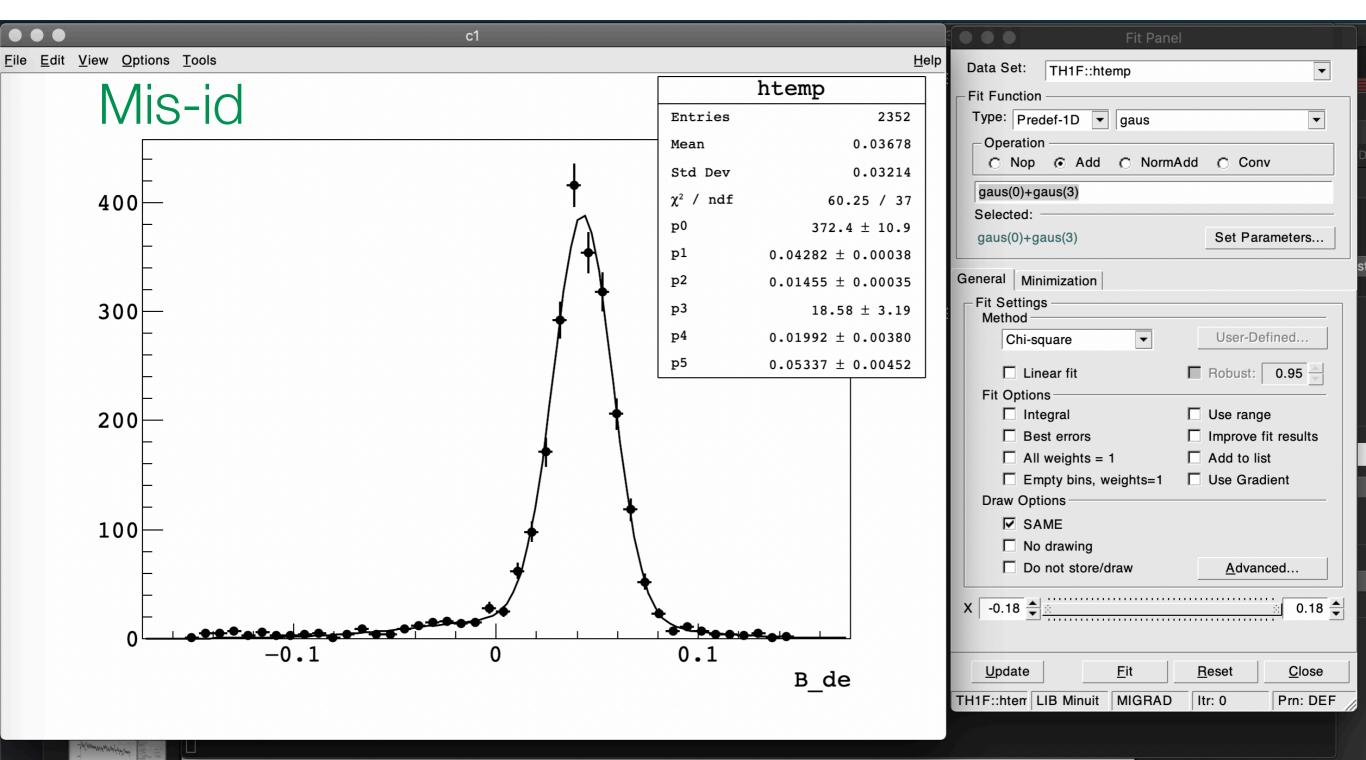
- Our original goal was to measure the signal yield in data.
- Let's take a look at data: check out M and ΔE distributions in data.root, after the cut bkg_killer>0.92.
- Put them in a ROOT file.


Let's make a fit of our data sample

- We will fit the ΔE distribution (why?).
- Of course, we cannot just select only signal as in simulation.
 We can "statistically disentangle" the components that make up the observed distribution. We will do a fit to get the sample composition.
- We can model the fit function (probability density function, pdf) from simulation, studying each component.
- Then we will apply our model to fit the data.


A note

- Fitting is a very large topic that would require several lessons.
- I'm sure you have some background: that you have seen already topics like parameter estimation, χ^2 , likelihood, pdf, and so on...
- Here we will see very simple fits to histograms (i.e. binned data) that enables us to achieve already some good results.
- Bear in mind that's not the full story at all!


Model the components using the FitPanel

Model the components using the FitPanel

Model the components using the FitPanel

Let's make the fit to data

- We have seen the possible function to fit each component
- In data, we have 10% of the statistic of the simulation:
 we can afford also simpler model.
 We will use just one Gaussian function to model the signal and the mis-id component
- We will build a model that is the sum of the 3 components
- We will do it in a macro (although we could do it online too!)

```
#incluae "ilegena.n
   #include "TStyle.h"
                             First part pretty standard now...
   using namespace std;
   void fitDeltaE(){
13
       const double min_de = -0.15;
       const double max_de = 0.15;
       //define an histogram to look at deltaE distribution
       TH1D* h_data = new TH1D("h_data",";#DeltaE [GeV]; Entries",40,min_de,max_de);
       //open file and take the tree
19
       TFile* file = TFile::Open("data.root");
       TTree* tree = (TTree*) file->Get("treeData");
21
22
       int tot_entries = tree->GetEntries();
       cout << "Total entries in the tree: " << tot_entries << endl;</pre>
       //link the variables with tree banches
       double B_de;
       double bkg_killer;
28
       tree->SetBranchAddress("B_de",&B_de);
29
       tree->SetBranchAddress("bkg_killer",&bkg_killer);
       //loop over the entries
       for(int iEntry; iEntry<tot_entries; ++iEntry){</pre>
34
           tree->GetEntry(iEntry);
           //skip all candidates below the optimal cut point
           if(bkg_killer<0.92) continue;</pre>
           //fill the histograms
           h_data->Fill(B_de);
```

```
//Let's define the PDF for the fit, using TF1
45
       //https://root.cern.ch/doc/master/classTF1.html
46
47
       //The total function that describes our observed distribution
48
                                                                               1 function
       TF1* pdf = new TF1("pdf", "gaus(0)+gaus(3)+pol1(6)", min_de, max_de);
49
50
       //signal gauss, normalisation constant
51
       pdf->SetParName (0, "N_{sig}");
52
       pdf->SetParameter(0, 100);
53
       //signal gauss, mean fixed
54
                                                  All settings on parameters.
       pdf->SetParName (1, "#mu_{sig}");
       pdf->FixParameter(1,
56
                                                   We fix parameters that
       //signal gauss, std dev fixed
57
       pdf->SetParName (2, "#sigma_{sig}");
                                                   we know already
       pdf->FixParameter(2,0.015);
       //mis-id gauss, normalisation constant
60
                                                   (from physics or simulation)
       pdf->SetParName (3, "N_{misid}");
61
       pdf->SetParameter(3, 10);
                                                   to ease the work of the fit.
62
       //mis-id gauss, mean fixed
63
                                                   The simplest the model,
       pdf->SetParName (4, "#mu_{misid}");
64
       pdf->FixParameter(4,0.042);
65
                                                   the better.
       //mis-id gauss, std dev fixed
66
       pdf->SetParName (5, "#sigma_{misid}");
67
       pdf->FixParameter(5,0.015);
68
       //background intercept and slope
69
       pdf->SetParName (6, "p_{0}^{bkg}");
70
       pdf->SetParName (7, "p_{1}^{bkg}");
```

It's all happening here with a very simple line!

```
//and now fit, in the range definined by the histogram (option R)
//option N = not draw (otherwise it draws a canvas with a plot by default)
cout << "\n First fit, fixing all possible parameters: \n\n";
h_data->Fit("pdf","RN");
```

- But plenty of options to do whatever we need...
- See the method Fit() in the reference guide.
- Note: Fit() works also for TGraph (Errors).

Value of the fit function (χ^2 here)

Algorithm used to obtain the results

```
First fit, fixing ll possible parameters:
                                            Important to check this!
FCN=27.8948 FROM MIGRAD
                           STATUS=CONVERGED
                                                 79 CALLS
                                                                   INTOT AR
                    EDM=9.01287e-23
                                       STRATEGY= 1
                                                        ERROR MATRIX ACCURATE
EXT PARAMETER
                                                 STEP
                                                              FIRST
                VALUE
                                  ERROR
                                                           DERIVATIVE
NO.
      NAME
                                                 SIZE
                                7.30230e+00
    N_{sig}
                 1.69595e+02
                                              1.84336e-02
                                                            9.63651e-13
    #mu_{sig}
                 0.00000e+00
                                  fixed
    #sigma_{sid}
                                    fixed
                    1.50000e-02
    N_{misid}
                                5.18582e+00
                                              1.26809e-02 -7.00404e-13
 4
                  4.55419e+01
    #mu_{misid
                                   fixed
                   4.20000e-02
    #sigma_{miiid}
                      1.50000e-02
                                      fixed
    p_{0}^{bkg
                   4.17642e+01
                                 1.24868e+00
                                               2.98156e-03
                                                             8.93671e-12
    p_{1}^{bkg}
                  -7.71166e+01
                                               3.07475e-02 -1.15545e-13
                                 1.19357e+01
```

The fit results

Value of the fit function (χ^2 here)

Degrees of freedom (number of bins — parameters)

```
First fit, fixing all possible parameters:
*******************
Minimize is Minuit2 / Migrad
Chi2
                                27.8948
NDf
                                     36
Edm
                            3.46384e-23
NCalls
Norm_{sig}
                                169.595
                                          +/-
                                                7.3023
#mu_{sig}
                                                                (fixed)
                         #sigma_{sig}
                                  0.015
                                                                (fixed)
Norm_{misid}
                                45.5419
                                          +/-
                                                5.18582
#mu_{misid}
                                                                (fixed)
                                  0.042
#sigma_{misid}
                                                                (fixed)
                                  0.015
p_{0}^{bkg}
                                41.7642
                                                1.24868
                                          +/-
p_{1}^{bkg}
                               -77.1166
                                          +/-
                                                11.9357
```

The fit results

Can play with parameters, to obtain more information from data

```
cout << "\n\n Let's try to release the signal std dev \n\n";
81
        pdf->ReleaseParameter(2); //signal gauss, std dev fixed
82
        h_data->Fit("pdf","RN");
83
84
        cout << "\n\n Update the mis-id std dev \n";</pre>
85
        cout << " And release also the mis-id mean \n";</pre>
86
        pdf->FixParameter(5, pdf->GetParameter(2)); //signal gauss, std dev fixed
87
        pdf->ReleaseParameter(4);
88
        //option L = binned likelihood fit
89
        cout << " and do a binned-likelihood fit, instead of a chi2 \n\n";
90
        h_data->Fit("pdf","LR");
91
```

• Can try also different fit methods, so in the last iteration we ask to fit with a binned-likelihood function, instead of the default χ^2

Update the mis-id std dev

```
Let's try to release the signal std dev
FCN=27.5849 FROM MIGRAD
                                                 110 CALLS
                            STATUS=CONVERGED
                                                                    111 TOTAL
                                                          ERROR MATRIX ACCURATE
                     EDM=4.36718e-08
                                        STRATEGY= 1
 EXT PARAMETER
                                                   STEP
                                                                FIRST
 NO.
       NAME
                 VALUE
                                   ERROR
                                                   SIZE
                                                             DERIVATIVE
    N_{sig}
                  1.66753e+02
                                 8.83060e+00
                                               1.79772e-02
                                                             -3.65160e-05
  1
     #mu_{sig}
                                   fixed
                  0.00000e+00
     #sigma_{sig}
                                   8.09241e-04
                    1.54440e-02
                                                  1.50628e-06
                                                              -3.72362e-01
    N_{misid}
                  4.45076e+01
                                 5.52977e+00
                                                1.26128e-02 -3.30067e-06
    #mu_{misid}
                   4.20000e-02
                                    fixed
     #sigma_{misid}
                                       fixed
                      1.50000e-02
     p_{0}^{bkg}
                   4.16391e+01
                                  1.26990e+00
                                                2.96553e-03
                                                              -8.98781e-05
     p_{1}^{bkg}
                  -7.64094e+01
                                  1.20082e+01
                                                              -9.12170e-06
                                                3.05822e-02
```

2nd fit results, releasing the sigma for the signal

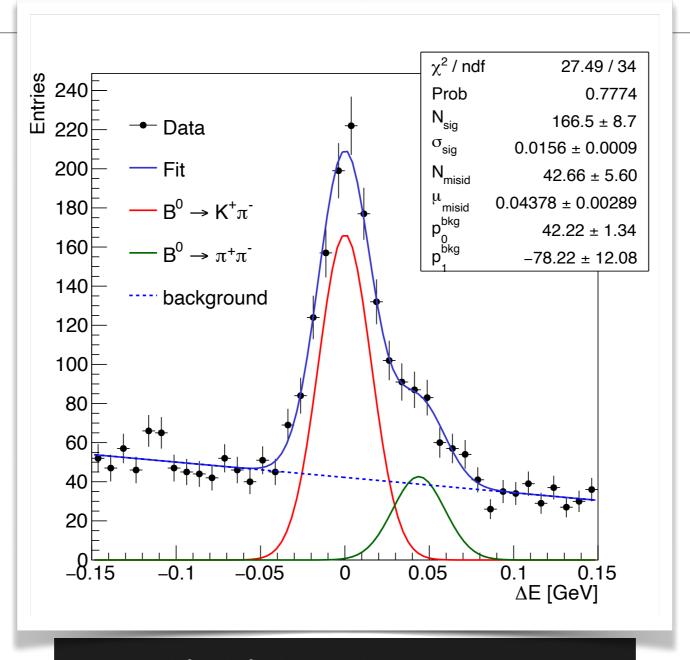
```
And release also the mis-id mean
and do a binned-likelihood fit, instead of a chi2
Info in <ICanvas::MakeDefCanvas>: created default TCanvas with name c1
FCN=13.7672 FROM MIGRAD
                                                                    149 TOTAL
                            STATUS=CONVERGED
                                                  148 CALLS
                     EDM=5.36238e-08
                                         STRATEGY= 1
                                                          ERROR MATRIX ACCURATE
 EXT PARAMETER
                                                   STEP
                                                                 FIRST
                  VALUE
       NAME
                                    ERROR
                                                   SIZE
                                                             DERIVATIVE
 NO.
     N_{sig}
                   1.66476e+02
                                                1.78671e-02
                                                             -3.46486e-06
  1
                                 8.69389e+00
     #mu_{sig}
                                    fixed
                   0.00000e+00
     #sigma_{sig}
                     1.56044e-02
                                    8.92083e-04
                                                  1.50313e-06
                                                                3.01092e-02
     N_{misid}
                                                              1.88504e-05
                   4.26560e+01
                                 5.59930e+00
                                                1.22986e-02
     #mu_{misid} 4.37828e-02
                                  2.89346e-03
                                                 6.25797e-06
                                                               6.01764e-02
     #sigma {misid}
                       1.54440e-02
                                       fixed
     p_{0}^{bkg}
                    4.22155e+01
                                  1.34014e+00
                                                               1.67546e-04
                                                 2.98857e-03
     p_{1}^{bkg}
                   -7.82222e+01
                                  1.20763e+01
                                                               4.01627e-06
                                                 3.05956e-02
                               ERR DEF= 0.5
```

3rd fit results, releasing also mis-id mean. Use the binned likelihood here.

Let's try to release the signal std dev

```
**************
Minimizer is Minuit2 / Migrad
Chi2
                                27.5849
NDf
Edm
                            2.12854e-06
NCalls
                         =
Norm_{sig}
                                166.751
                                          +/-
                                                8.83072
                         =
                                                                (fixed)
#mu_{sig}
#sigma {sig}
                              0.0154444
                                          +/-
                                                0.000809264
Norm_{misid}
                                44.5125
                                          +/-
                                                5.5298
                         =
#mu_{misid}
                                  0.042
                                                                (fixed)
                         #sigma_{misid}
                                                                (fixed)
                                  0.015
                         =
p_{0}^{bkg}
                                41.6391
                                          +/-
                                                1.2699
p_{1}^{bkg}
                                                12.0082
                               -76.4184
***************
Minimizer is Minuit2 / Migrad
MinFCN
                                13.7672
Chi2
                                27.5343
                         =
NDf
                                     34
                             エ・サンとンピーレレ
Luin
NCalls
                                    135
                         Norm_{sig}
                                166.467
                                          +/-
                                                8.69358
                         =
#mu_{sig}
                                                                (fixed)
                         =
#sigma_{sig}
                              0.0156043
                                          +/-
                                                0.000892089
                         =
Norm_{misid}
                                42.6549
                                          +/-
                                                5.5993
                         =
#mu_{misid}
                                          +/-
                              0.0437792
                                                0.00289365
                         (fixed)
#sigma_{misid}
                              0.0154444
p_{0}^{bkg}
                         42.2166
                                          +/-
                                                1.34017
p {1}^{bkg}
                               -78.2235
                                                12.0766
```

2nd fit results, releasing the sigma for the signal


3rd fit results, releasing also mis-id mean. Use the binned likelihood here.

```
//draw the result
93
        gStyle->SetOptStat(0);
        gStyle->SetOptFit(1111);
95
        TCanvas* c1 = new TCanvas("c1", "c1", 600, 600);
96
97
        h_data->SetMinimum(0);
98
        h_data->SetMarkerColor(kBlack);
99
        h_data->SetMarkerStyle(8);
100
        h_data->SetMarkerSize(0.8);
101
        h_data->SetLineColor(kBlack);
102
03
        h_data->Draw("err");
104
        //just to draw each component separately...
06
        //the signal
107
        TF1* pdf_sig = new TF1("pdf_sig", "gaus", min_de, max_de);
80
        pdf_sig->SetParameters(pdf->GetParameter(0),
109
                                 pdf->GetParameter(1),
110
                                pdf->GetParameter(2));
111
        pdf_sig->SetLineColor(kRed);
12
        pdf_sig->SetLineWidth(2);
13
        pdf_sig->Draw("same");
114
115
        //the mis-id B->pipi
116
        TF1* pdf_misid = new TF1("pdf_misid", "gaus", min_de, max_de);
117
        pdf_misid->SetParameters(pdf->GetParameter(3),
118
                                   pdf->GetParameter(4),
```

Just nice drawing of the results...

```
c1->SaveAs("myFit.pdf");
                                     Can also save the canvas to a pdf!
        c1->SaveAs("myFit.C");
144
145
        //Get now what we wanted to know!
146
        double binW = h_data->GetXaxis()->GetBinWidth(1);
147
        cout << "\n\n From this fit model, \n";</pre>
148
        cout << "Candidate in data histogram: " << h_data->Integral() << endl;</pre>
149
        cout << "Total candidates from fit : " << pdf->Integral(min_de,max_de)/binW << endl;</pre>
150
                                              : " << pdf_sig->Integral(min_de,max_de)/binW << endl;</pre>
        cout << "Signal B->Kpi candidates
151
                                              : " << pdf_misid->Integral(min_de,max_de)/binW << endl;</pre>
        cout << "Mis-id B->pipi candidates
152
        cout << "Background candidates</pre>
                                              : " << pdf_bkg->Integral(min_de,max_de)/binW << endl;</pre>
153
154
        return; Retrieve the information we want: the yield of the components
155
```

We made it!

From this fit model,
Candidate in data histogram: 2777
Total candidates from fit : 2777.01
Signal B->Kpi candidates : 868.211
Mis-id B->pipi candidates : 220.176
Background candidates : 1688.62

Exercises (3rd lesson)

- 1. Compute the signal efficiency, $\epsilon = S(\text{selected})/S(\text{total})$, for each cut bkg_killer. Draw a graph to show the efficiency as a function of the cut value, drawing also the error on the efficiency (that you need to calculate): use the class <u>TGraphErrors</u>.
- 2. What do you expect for the M distribution of the mis-id background? Draw it, by subtracting from the total distribution the signal and that of the non-B background (like we did for ΔE). Compare its distribution with that of the signal.
- 3. There is a variable K_pid in the tuples that gives the probability of a candidate kaon to be a real kaon. Draw its distribution: compare that of the signal (isSig==1) with that of the mis-id background (isSig!=1 && isBkg!=1).
- 4. Instead of using DrawNormalized(), scale to 1 the histogram integral using the Scale() method of TH1 (check the integral value) and normal Draw() method.

Exercises (3rd lesson)

- 5. Find a cut value for K_pid, by maximising the $S/\sqrt{S+B}$, where S and B are the signal and mis-id background in the ΔE region [-60,60] MeV.
- 6. Apply the full selection to the simulation and data samples (data.root), and draw the resulting distributions of M and ΔE .

NB: make sure all numbers and text in plots are well visible, by adjusting size of fonts, labels...

More exercises (4th lesson)

- 7. Make the likelihood scan for $\sigma_{
 m sig}$
- 8. Check "a posteriori" that the cut bkg_killer>0.92 is the optimal cut. What happen if you apply a tighter cut (>0.98) or a looser cut (>0.8)?
- 9. Couldn't we make the optimisation of the cut by fitting the data directly?