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The axioms of Quantum Mechanics

States. A Hilbert space H is associated to a given physical system,
depending on its degrees of freedom. The state of the system is
represented by a normalized vector in H, called state vector. Given two
systems with associated Hilbert spaces H; and H,, to the composite
system the tensor product space H®H, is associated .

Dynamics. The state vector evolves according to the Schrodinger
equation.

Observables. Observable quantities are represented by self-adjoint
operators:

A=A

The possible outcomes on an experiment designed to measure the
observable are the eigenvalues |a,> of the associated operator.

Born rule. In measurements, out come are random and are distributed
with the Born rule:

Pla,] = [<a,|9>]?

where |i>represents the state of the system at the time of
measurement, and |a,> the eigenstate of the observable A associated to
the eigenvalue a,,.

State vector collapse. After a measurement, the state vector |y>
changes to |a,>. This is also called the von Neumann wave function
collapse postulate.

See book of Sakurai [to be completed].



Notes. In presenting the postulates, we assumed that the operator A has
only discrete eigenvalues, which are not degenerate. From the
fundamental point of view not much changes if the spectrum of the
operators is richer.

We also described what is called an ideal measurement, where the
outcome is perfectly and uniquely identified.



Observables as Operators

The fact that observable quantities, such as the position or the energy
of a particle, should be represented by such abstract objects as self-
adjoint operators, and that the possible values the observable can
take are the eigenvalues of the associated operator, calls for an
explanation.

In fact, this axiom can be derived by reconsidering the Born rule and
the von Neumann collapse, together with a proper understanding of
what happens in a (ideal) guantum measurement.

Consider the phenomenology on a measurement M, of a certain
variable A of a quantum system.

1. The measurement has outcomes, which we label as a,; they are
assumed to be discrete for the sake of simplicity. they occur randomly.

2. A measurement changes the initial state of the system; for example,
the statistics for the outcome of the measurement M, changes if
before it another measurement Mg is performed. Moreover, the
measurement selects a specific set of final states depending on the
outcomes; these state are such that, if considered as initial states for
another run of the same experiment, the outcome can be predicted
with certainty. Let us call |a,> the state of the system after the
measurement, whose outcome was a,

Therefore we have the association:
MA % {anz | an>}n

3. The Born rule states that if the initial state of the system is |Y>, the
probability to obtain outcome a, is equal to P[a,] = |<a,|y>]2.

As we see, so far we did not introduce self-adjoint operators.



We can easily characterize the states |a,>, which so far are arbitrary (but
normalized).

We invoke again reproducibility: When the same measurement is
(immediately) repeated, the outcome of the first measurement is
reproduced. Given the Born rule, then the states |a,>, are orthogonal.
Moreover, these state must span the entire Hilbert space, otherwise the
probability distribution given by the Born rule would not sum to 1. Hence
the states |a,>, form a basis of the Hilbert space associated to the system
being measured.

The spectral theorem then allows to associate an operator to the elements

{a,,|a,>}, according to:

A= Zan\anxan\

and this brings to the association of self-adjoint operators to
measurements on quantum systems:

M, = {a,, |a,> basis vector}, > A

Then, self-adjoint operators are a convenient way to collect the
information about an experiment on a quantum system. For example, the
average value of the observable is

(A) = anPlan) = > anl(an|)* = (4] Al¢)

and so on for all other statistical quantities.



We can then rephrase the axioms of QM as follows.

States. To each physical system a Hilbert space H is associated (the rest
as before).

Dynamics. The state vector evolves according to the Schrodinger
equation.

State vector collapse. After a measurement, the state vector |y>
changes to one among a set of selected states |a,>.

Born rule. Measurement outcomes are random and are distributed with
the Born rule:

Plan] = |<a,[y>]?

where |1> represents the state of the system at the time of
measurement. This implies that the states |a,> from a basis of the

Hilbert space.

Then we have the following theorem: the statistics of the outcomes of
the measurement is fully represented by the self-adjoint operator

A=) anlan){an|

Self-adjoint operators do not play any fundamental role in QM. But
they have a very important practical role.



Actually, canonical quantization is more than than simply assuming that
outcomes of measurements are represented by self-adjoint operators.
The basic properties of these operators are defined by the
correspondence rule between classical Poisson brackets and quantum
commutators of canonical variables:

Also the correspondence rule can be derived as a theorem, again by a
proper analysis of what a measurement is.

Le us first remind what conjugate variables are. Let us consider a one-
dimensional particle on unit mass, with Lagrangian

L:u%@=%Q+V@)

where X is its position. The conjugate momentum is:

oL

= — =2z
P="5i

x and p are canonical variables and satisfy the Poisson bracket
{x,pt=1

The key point for our discussion is that momentum is the time derivative
of the position, and therefore it is measured ad distance covered over
time.



Let us now move to the quantum case. In the following, we set A=1. We
assume the particle to be free

The position of the particle can take any value on the real line, therefore
the associated operator 2 has eigenvalues x € R and eigenvectors |x>,
which from a basis of the Hilbert space.

On the wave functions Y (x) = <x|>, the operator acts as a
multiplication operator:

since (x|z|y) = x(x|y) = xp(x)

Suppose that, as dictated by the Schrodinger equation, the dynamics is
linear and admits a wave solution:

wlat) = [ dpe(p)event

If w is independent of p, the wave packet does not move in space over
time, therefore the model is not physical. If w is linear in p: w = vp, then
any wave packet moves with velocity v, and as such the velocity is not a
dynamical variable (like the speed of light c). Therefore the interesting
case is when w is at least quadratic on p:

]‘2
wp:§

This is what is predicted by the Schrodinger equation, for a particle with
the Lagrangian L written before.



Therefore:

Pl t) = / dp c(p) e 7>—P"1/2)

The group velocity is v = p: a wave packet moves with a group velocity
equal to the velocity of a classical particle (of unit mass). But being the
dispersion relation quadratic in p, the dynamics is dispersive. Assuming
for simplicity that the initial wave packet is a Gaussian centered in the
origin (see book of Duerr for the general case), we have:
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P(z,0) =

Its Fourier transform is:

Y(k,0) = /%e—é(l)—po)

The wave function at time t is relatively easy to compute and the
solution can be found on textbooks. Here we are interested in its square
modulus, which reads
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This means that for t >> o?:

(x| ~ —L e~ @)

N,

Now, since the wave packet is initially centered in the origin, to say that
a particle has momentum p means that it has moved to x = pt. In other
words, we first measure the position of the particle at time t=0 (and we
find it in the origin), then after some time t we measure the position
again and we find it at x = pt, and we conclude that it had a momentum
p. We can compute such a probability density:

PV (lp,p+dp]) = P ([pt,pt+ da]) = |¢(pt,t)[>dz =
— L —02(p—p0)2d — i —02(p—p0)2d _
N = P
= |¢(p,0)|*dp

Therefore the distribution in momentum is equal to the square modulus
of the Fourier transform of the initial wave function at time O. This result
is not related to having used a Gaussian wave packet and can be proven in
a general case. But with this example we can easily appreciate the
different steps.

COMMENTO sul significato del limite t >> o?



We further have:

) = / dpplt(p, 0)]? = / dp ™ (p, 0)pis(p, 0)

_ / da " (z,0) {—i%] ¥(z,0)
= (tol|plvo)

with (remember we are in the position representation):

From which it also follows that

The argument can be extended to more complex situations. The
argument has been presented by position and momentum, but works
for any two canonical variables A and B such that B = A, which is true if
the Lagrangian is quadratic in A (in all physical situations, let aside the
electromagnetic case, which can be treated separately) and if the
Schrddinger equation is a second order differential equation with
respect to A.



The measurement problem

The measurement problem is the acknowledgement that the axioms of
QM are inconsistent because they assume two completely different
types of dynamics:

e The Schrédinger dynamics, which is linear and deterministic

* The collapse of the wave function, which is nonlinear and stochastic
without telling exactly when one applies in place of the other.

In a way, there is no surprise in the fact that these two dynamics are
present: the Schrodinger dynamics applies to well isolated system (like
two quantum particles) while the collapse of the wave function refers to
measurements, when a quantum system interacts with a large
macroscopic device. Therefore one might think that the collapse is a
simplified way of treating the system-device interaction, which is
ultimately described by the Schrédinger equation, or one of its
generalizations like the Dirac equation.

We show that this is not the case. Let us consider, in rather general
terms, a measurement process.

Microscopic system. For the sake of simplicity, we assume that it is
described by a finite dimensional Hilbert space H, of dimension N. Let
as call |a,> a basis of the space.

Macroscopic apparatus. It has a controllable degree of freedom, like the
position of a pointer, or of a needle, or some outcome on a screen,
together with many (mainly microscopic) uncontrollable/uncontrolled
degrees of freedom.



We label its (normalized) state vector as |A, o>, where A denoted the
controllable degree of freedom and a of the other degrees of freedom
(potentially also those of the surrounding environment, if needed).

We ask the device to have a ready state (pointer or needle set to O, or
empty screen) which we denote as |A,, a>, and at least N
macroscopically different states |A,, a> (n =1, ..., N) corresponding to
the n possible outcomes. By macroscopically different states we mean
the following. Let us call:

V., ={asuch that |A,, o> represents outcome n, which is
macroscopically different from all other outcomes}

We say that two outcomes A, and A, (n # m) are macroscopically
different if the two associated sate vectors are almost orthogonal

inf A, o) — A, > /92—
| A, @) €V, | A, BYEVim I ) — | Al = n

with n < 1. (n takes into account the possibility that wave functions
have tails).

Outcomes are
macroscopically different =
States from the two sets
are almost orthogonal

Qutcome n

Vim

Outcome m
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System-Apparatus interaction. The device is initially prepared in the
ready state |Ay, a>; we do not have control on the degrees of freedom
label by a, therefore we assume that they are distributed with some
probability IP(a). In other words, the state of the state of the apparatus
is described by a statistical mixture, typically represented by a density
matrix. Since the density matrix formalism is ambiguous when discussing
foundational issues (see later discussion), we keep working at the wave
function level.

Suppose the microscopic system is in the state |a,>. The joint initial state
is:

la,> ® |Ag, a>, adistributed with prob. P(a)

The measurement interaction is unitary and maps the initial state in
some final state

lap> ® |Ag, > = |Fa, a>

So, far, any physical interactions behave like that. But here we are
considering special cases called measurement processes. What we
demand is that the interaction is such that the device measures the
observable to which, according the previous discussion, the operator
having {|a,>, n =1, .., N} as eigenstates is associated; and it does so with
sufficient accuracy. This means that |F, a,,, a> should correspond, most
of the times, to outcome n. Formally, if we define

Jp =Ha:|F ay,a) € V,}

then:
P(J,) >1—¢

with € a suitably small number.



From this it follows that

Jnm = Jn O Jm = P(Jpm) >1— 2

Now we can state the measurement problem. Suppose that the
microscopic system is initially prepared in the superposition of e.g. two
states |a,> and |a,>, for some fixed n and m. The by linearity of the
interaction:

1

V2

1
—=llan) + lam)] @ [Ao, ) = |F,an + am, )

V2

[F, an, @) + |F, am, )]

The question is: does |F, a,+ a,,, o> correspond to some measurement
outcome? The answer is that, in most cases, it does not. Thake a € J, ,
which is highly probable. Then:

|||F’an+am70‘>_|F>amO‘>|| = ||(1/\/§—1)|F,an,CX>+1/\/§|F,CLm,C)¢>H
< 1-1/V2+1/V2=1

This means that |F, a,+ a,,, o> does not belong to V, because it violates
the orthogonality condition stated before, and as such it does not
correspond to outcome n; by a similar argument one proves it it does
not correspond to outcome m, and more generally to any macroscopic
definite state.

This is essentially the Schrodinger’s cat paradox, rephrased by taking into
account the complexity of the macroscopic device (or of the cat), which
does not help in changing the conclusion: the Schrédinger’s dynamics is
not capable of taking into account the collapse of the wave function; if
this is removed from the theory, then microscopic superpositions easily
turn into macroscopic superpositions, which are not part of our
experience.



It is our conviction that a reinterpretation of the wave function (many
worlds, consistent histories, model interpretations, relational
approaches) does not suffice to solve the measurement problem. We
believe that this problem indicates that the theory needs to be
modified/replaced. In the following, we present two attempts in this
direction.
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Decoherence does not solve the
measurement problem

The previous argument has shown that the quantum-to-classical
transition, which is ensured by the collapse of the wave function, cannot
be explained within the standard quantum formalism.

Yet, very often it is claimed that decoherence, i.e. the interaction of a
system with its environment, provides such an explanation: microscopic
systems can be isolated from the surrounding environment and show a
guantum behavior; macroscopic object cannot and therefore behave
classically.

There is truth in this; yet decoherence alone in not capable to solve the
measurement problem. The reason is the following.

Superposition state Localized states

+1 1 e )
1

V) = S lIL) + | R)] 50% |L), 50% |R)

Density matrix ( in the |L>, |R> basis)

) 20 1)

—_

DO | —
N
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In the language of the density matrix, to pass from a delocalized state to
a localized state, one has to find a mechanics that changes a non
diagonal density matrix (in the position representation) into a diagonal
one.

Decoherence does the job! Therefore we have:

1. Take a delocalized state
(Schrodinger’s cat)

2. Write the state as a density
matrxi (in position)

3. Turn on decoherence and
compute the reduced density
matrix for the system

4. Interpret the result as

representing a localized state 50% [L),  50% |R)

The problem is that le last step is wrong. The reason is that the
association between statistical mixtures and statistical operators is not

1-to-1 but many-to-1:

50% L), 50% |R)

0
| ) 50% |L), 50% |R)

(0




Not only it is not legitime to associate a specific statistical mixture to a
given density matrix, without further information. In this case, the
specific association is wrong.

Consider two particles in a singlet state; suppose one of the two is lost.
Then we have to trace over the degrees of freedom of the lost particle in
order to have the reduced density matrix of the remaining one. The
reduced density matrix (in the spin basis) is (1/2)l, as the one
encountered before. Can we conclude that the particle has a definite
spin’?

The answer is no: if we were capable of recovering the other particle, we
can perform a Bell test to check that the two share an entangled state.
And in an entangled state none of the particles has a definite spin,
according to the standard doctrine.

Similarly, in the case of a macroscopic object interacting with the
environment, in principle we could do a Bell test involving the system
and the particles of the environment: the conclusion —in the
Schrodinger equation is correct — is that they share an entangled state.
The system is not localized somewhere. Of course it is practically
impossible to perform such a test, but here we are not worried about
that. The important thing it that the test is not forbidden by the rules of

QM.

The conclusion is very simple: due to the interaction with the
environment, the system’s wave function becomes rapidly entangled
with it. The entanglement is such that, if a measurement (a quantum
measurement with all the interpretative problems it carry along) is
performed, one does not see interference in position. But the wave
function does not corresponds to that of a localized object.

As we anticipated, decoherence is an important physical phenomenon.
But, alone, it does not explain the emergence of a classical world from a
gquantum one.



