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Completing Quantum Theory

There is a curious analogy between Quantum Mechanics and classical
probability theory.

States. Quantum Mechanics assign a wave function to physical systemes,
probability theory a probability distribution.

Dynamics. In both cases it is linear: the Schrodinger equation in the first
case, the Liouville equation in the second case.

Measurements. In both cases outcomes are random, and after a
measurement the state changes suddenly: for Quantum Mechanics it is
von Neumann’s collapse, for probability theory it is the update of
information.

[METTERE MODELLO DI QUBIT “CLASSICO”, CON ANCHE STATI
“ENTANGLED”]

In this light, it becomes quite natural to consider the wave function as
expressing our knowledge about the state of the system, while the true
state of the system is given by other variables, which for historical
reasons have been called hidden variables.

In this new framework, macroscopic superpositions are not problematic
anymore, because they simply refer to our ignorance about the state of
the system: Schrodinger’s cat is always dead or alive, even is its wave
function is in a superposition of the two states. The collapse of the wave
function is not problematic anymore: it is not a physical process, it only
amounts to the change of our knowledge when we make a
measurement. One can hope to reconstruct Quantum Mechanics
without the measurement problem.

(See ref [1-8] of https://arxiv.org/pdf/1111.3328.pdf)



The formal structure of a hidden variable model we consider is the
following.

There are extra variables A which represent the true state of the system.
In a classical analogy with a gas, they would be the position and
velocities of all particles of the gas. They cannot be controlled with
arbitrary precision.

When we prepare a system in a quantum state ¥, what we mean is that
the hidden variables are distributed with some probability

Prv(A | P)

which depends in general on the state being prepared. It is analogous to
the classical case of an ideal gas at thermal equilibrium, prepared for
example with some definite temperature.

Suh a probability distribution characterizes the observer’s knowledge of
the system.

Measurements outcome are uniquely identified once the hidden
variables are given. We consider only the case of deterministic models
(nothing changes for a stochastic model). Assume that only discrete
outcomes a, are possible; the measurement outcome is denoted as

Onv(MIA) = a,

Then the probability of obtaining outcome a,, is given by:

PM (anly) = / 0A pure (A1)

Ay
with: A, = {\: Opv(M|N) = ay}

The hidden variable model reproduces Quantum Mechanics if:
M M
PHv(anhD) — IP)QM (@nW)

For any conceivable measurement M. 2



We give an example for a single % spin particle proposed by Bell (From
“On the Einstein-Podolski-Rosen paradox”, Physics 1, 195 (1964).)

First, some formulas regarding 1/2 spin states. By |n> we mean that the
spin is along the positive direction n.

nt o

Suppose the initial spin is along direction n:

\n>:cosg\a>—|—sing\—a> a

Then the probabilities of finding the particle with spin up or
down along direction a are:

6
Py (+|a,n) = cos? 2

And the expectation value of the spin measurement along
direction a is:

(0-a) = Pou(+|a,n) —Pou(—|a,n)
2 0 2 0

= oS8 — —sin“ — = cosf
2 2

It is easy to construct a hidden variable model for this situation. Suppose
the hidden variables A form a unit vector on the 3D unit sphere. To
prepare the spin in the quantum state |n> means that the hidden
variables are uniformly distributed on the hemisphere A - n > O:

for A\-n>0
else

1
o) = {



T Hemisphere on which A has a
v : \.\t/i non vanishing uniform
i Al disitrbution

The measurement interaction is such that the outcome of a spin
measurement along direction a (which can be either +1 or -1) is uniquely

identified by the relation:

Onv(al\,n) =sign\-a’ = +1

where @’ is another unit vector (coplanar to n and a) forming and angle
0" with respect to n such that

0’ = 7 sin? Q
2

Note that, according to the previous definition, the hidden variable is both A
and the state vector; this is an not accidental, as we will see. The probability
of getting outcome -1 in a spin measurement along direction a is:

P2 (—n) — / Dpae(Nn),  with: A = {A: Opv(ald,n) = —1}
20 . L,0
= 5= sin? 5= P8 (—n)
A-a’ >0
( - :
4 ' A-a <0
N — A :
g I Area of the yellow spherical
\/\/? A \\ K lune (fuso sferico) = 26’




A similar result holds for the probability of a positive outcome: the full
statistics of measurement outcomes for a 1/2 spin particle has been
recovered by averaging procedure over the distribution of the hidden
variables.

Bell: “So in this simple case there is no difficulty in the view that the
result of every measurement is determined by the value of an extra
variable, and that the statistical features of guantum mechanics arise
because the value of this variable in unknown”.

Note that, to recover quantum probabilities of successive measurement,
i.e. the collapse of the wave function, the measurement process has to
change the distribution of the hidden variables. Measurements are
always invasive in a quantum context.



However, this probabilistic view of Quantum Mechanics is flawed: the
wave function cannot be considered simply as expressing our ignorance
about the true state of the system. The reason is the following.

Consider a classical particle in a box, whose position and momentum are
unknown. We consider two observable quantities:

* The energy E of the particle.

* Whether as particle is or is not in a sub-volume V of the box.

There is a clear sense in which E in a property of the system,
independent of our ignorance, while being or not being in V does
depend on our ignorance. In fact, suppose that we prepare the particle
so that it has definite energy E. Then the distribution pe(x,p|E) of
position and momenta (the hidden variables, in this case) is uniform
over all points in phase space such that H(x,p) = E, and zero elsewhere.
Let us call:

Dg ={(%,p) : pcL(z,p|E) # 0}

Then:

E#E/ = DEHDE/:@

This means that position and momentum identify uniquely the energy,
which the is a property of the system. In the same sense, temperature of
a gas is real, or pressure.

The same does not occur with the volume occupied by the particle: if

V NV £, then obviously also the domains of the associated probability
distributions and not disjoint. And in fact the position and momentum of
the particle do not uniquely identify the sub-volume occupied by the
particle: a particle can well be in two different (intersecting) sub-
volumes of the box simultaneously.

(rivedere def 4 e 5 di https://arxiv.org/pdf/0706.2661.pdf)



To summarize, given a property O, if

O+0" = DoNDo =0

We say that O is a real (ontic, non-epistemic) property of the system. If
the implication fails, then O is a subjective (epistemic) property.

Non-epistemic property

A
A
My HL
>
A
B Epistemic property
A ik >i

We can transfer this to the quantum case. Given the wave function 1,
we supplement it with additional variables, historically called A. The idea
is that when a quantum system is prepared in a state i, the hidden
variables —which we cannot control — are distributed with some
probability py(A).

Similar to the classical case, we say that the wave function is real if

VFE P = D¢HD¢:@

this means that the hidden variables uniquely identify the quantum
state, which is then a real property of the system, like the energy. If this
does not happen, the state is epistemic



We show that Y is ontic, according to the definition above (see
https://arxiv.org/pdf/1111.3328.pdf)

Consider a quantum particle and two preparation procedures: a single
slit and a double slit. Let Y5 be the wave function of the particle right
before detection at the screen, assuming that before it passed through a

single slit; similarly, let 1 be the wave function assuming that before it
passed through the double slit.

Probability # 0 I Probability O

s | e

There is (more than) one point on the screen where, if the state is 5
there is a non-zero probability of finding the particle, while if the state is
Y the probability is zero because of the interference between the two
terms of the wave function.

Assume that Y is epistemic, meaning that with some probability p the
value of the hidden variables A are such that they can refer to either 1)
or Pp. In those cases, the measuring device is uncertain which of the
four possible preparation methods was used, and on these occasions it
runs the risk of giving an outcome that quantum theory predicts should
occur with probability O.

Then the wave function is real. This poses a problem, because it does
not live in real space, but in configuration space (or more generally in
Hilbert space). We will come to that.



The conclusion is that the wave function is not a mere manifestation of
our ignorance about the true state of the system; it is part of the
fundamental description of the system.

This is ultimately the idea of de Broglie: to a particle (having a definite
position - the hidden variable) is associated a wave which conditions its
motion. The wave is real, it is not a statistical effect.

This is reason why in Bell’s example, the state vector was part of the
hidden variables.



Bohmian Mechanics

States. The state of a system of N particles is described by its wave
function Y = P(qy,...,.ay) = P(q), together with its actual
configuration Q defined by the actual positions Qg,...,Qy of its particles.

Dynamics. The theory is then defined by two evolution equations:
Schrodinger’s equation

L0
zﬁE—sz

for (t), where H is the nonrelativistic (Schrodinger) Hamiltonian,
containing the masses of the particles and a potential energy term, and
a first-order evolution equation for the actual configuration Q(t),

dQ h *0
dtk - mp Imzpw*f;b (Q17 Tt QN)

All the rest follows from these two axioms.

Example 1. Consider a free particle of mass m in a state given by a plane
wave (though technically it is not a proper state)

W(x,t) o el Px=wt)/h w=p?/2m

Then

Like for a classical particle
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Example 2. A less trivial case is when the particle is initially in a Gaussian
state.
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The Gaussian state expands over time.

The evolution of the
trajectories depend on the
initial condition. Although the
particle is free, it does not
move along a straight line. It is
guided by the wave function,
which expands over time, and
carries the particle along.
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Example 3. Even more interesting is the case of a superposition of two
Gaussian states, which would be generated for example a the double slit
experiment.

11



The Bohmian version of the double slit experiment shows that it
perfectly legitimate to say that the particle has a definite position at any
time, and that it passes only through only one slit, as any particle would

do.

Determinism vs indeterminism: The Born rule. BM is a deterministic
theory: once the initial positions of the particles and the initial wave
function is known, their later values are uniquely determined.
Indeterminism arise because of ignorance about the initial positions of

the particles. The proof is the following.

Classical Hamiltonian system

The Hamiltonian H(g,p) guides the
motion.q={q,i=1,..3N}andp
={p,i=1,..3N}

_(9H ____8H
B 82%‘7 b= 0q;

i
The equations define a vector

field in phase space, generated by
the Hamiltonian H:

vi(q; p) E{ g }:{ ?ﬂ?gq }

which generates the Hamiltonian flow

TtH such that: (Qtapt) — TtH(Q7p)

Bohmian Mechanics

The wave function (g, t) guides
the motion of the particles. g = {qg;,
i=1,..3N}:

i = —1
< m . ¥(g,1) q=Q(t)

The equations define a vector
field in configuration space,
generate by the wave function

volgt) = L Y0@: 0

m (g,t)
which generates the Bohmian flow

Ttw such that: Q(t) = T;(Q)

Let us consider e vector field not depending explicitly on time; the
proof does not change if it does depend also on time. The flow
generated by the vector field is solution of the equation

dT;
dt

- U(Tt)7

Ty =1
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Consider a measure IP on Q = phase space or configuration space, which
admits a density p(w). Let us consider

Pi(A) = P(T; ' (4)) = P({w|Ti(w) € A})

p(w,t) is the density associated to IP,. It
satisfies the continuity equation, as we
now show.

The above definition can be generalized to

/f )P, (w /th ))dP(w)

where f is a test function. If f = 1,, then it reduces to the previous
relation. Having IP a density, we can also write

/ F(@)p(w, £)dw = / F(To(w))p(w) deo

We take the time derivative

/f(w)—apgi’t) dvw = /deliw) V(T (w)) plw)dw Time derivative
- /U(Tt(w)) -Vf(Ti(w))p(w)dw  Last Eq. page 12
= /v(w) -V f(w)p(w,t)dw 3rd Eq. page 13

= —/(V-v(w))f(w)p(w,t)dw Integration by parts

13



We arrive at the continuity equation

Ip(w, t)
ot

+ (V- v(w))p(w,t) =0

This equation must be satisfied by the density of any probability
measure. In the case of Bohmian Mechanics, let us consider

py(q,t) = |1p(g, t)|?

Then the continuity equation for the wave function (q,t) solution of
the Schrodinger equation coincides with the continuity equation for
the density py. This means that if particles’ positions are initially
distributed as |{(qg,0)|? then at any later time they will be distributed

as |P(q,t)|2

Quantum equilibrium hypothesis: particles are initially distributed as

[b(a,0)]%

This makes sure that the predictions of Bohmian Mechanics are
empirically equivalent to those of standard Quantum Mechanics, as
long as measurement outcomes can be reduced to position
measurements.

At this level, the wave function plays a double role:
e Dynamical: it guides the particles” motion.
e Statistical: it defines the probability distribution of particles’ position.

This calls for an explanation. It will be provided later in terms of
typicality.



The collapse of the wave function. In BM there is no collapse of the
wave function. Then one has to justify why the system’s wave function
unavoidably changes during a measurement and seems to collapse as
dictated by the von Neumann projection postulate.

The answer is in entanglement and the conditional wave function. For
simplicity consider a universe made of 2 particles, with positions X, and
Y.. Let Y(x,y, t) be the wave function for the whole system, solution of
the Schrodinger equation for a given initial condition.

BM naturally allows to associate a wave function to just one of the two
particles, sat that at X,, which is the conditional wave function

[qby(x, t) == (x, Y, t)]

which is nothing by {(x,y,t) conditioned on the other particle being at Y,.
The important facts about the conditional wave function are:

1. It guides the motion of the particle at X, since, according to the
guiding equation:

dt m ¢(ZL’, Y, t) =X, y=Y; m QSY (ZU7 t) =X,

So in this sense it is the wave function of the subsystem composed of
one of the two particles. Its knowledge suffices to determine the motion
of the particle

¢y(£€, t)

2. Itis not normalized. To normalize, just take ¢y (z,t) = ——————

oy (z, 2)
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3. In general, it satisfies a nonlinear differential equation with respect
to time, due to the time dependence of Y, which is also random
since Y, itself is a random variable (because of the initial conditions)

In general, it is very difficult to write explicitly the random differential
equation satisfied by the conditional wave function. Two cases of
interest can be easily understood.

Suppose that the two particles are intendent from each other, in the
sense that the initial composite wave function is factorized and the
Hamiltonian does not contain interaction terms. Then:

w(xayvo) — ¢1<x70) ®¢2<y70) — w(xayvt) - ¢1(x7t) ®¢2(y7t)

where 1 and {4 are solution of the 1-particle Schrédinger equation. In
this case the normalized conditional wave function {y(x,t) coincides with
P1(x,t), which satisfies the linear Schrodinger equation. The motion of
the first particle is insensitive of the other one.

Opposite to this case, suppose that we have a measurement situation.
The particle at X is the quantum systems, and that at Y is the pointer of a
measurement device. The initial wave function is

¢(937 Y, O) — [QL¢1,L($) + QR¢1,R(x)] X wQ,ready(y)

Meaning that the particle’s initial wave function is in a superposition of a
left and right state (well separated), while the pointer’s wave function is
in a ready state. The measurement interaction is such that the wave
function changes, after some time, to

¢($7 Y, O) — lb(v% Y, t) - O‘qubl,L(m) ® 77b2,L(/y) + O‘R¢1,R($) Y ¢2,L (y)



which is an entangled state, where the pointer-s wave function is
correlated to the particle’s wave function.

4 )

LIJ1 L LIJ1 R LIJ2,ready

Measurement
+ process in

guantum

mechanics

LIJ1,L ® LIJ2,L LIJ1,R ® LIJ2,R

\_ J

Suppose that the initial conditions are such that at the end of the
measurement Y belongs to the support of W, |, which is assumed to be
disjoint from that of W, ;. Then the conditiona wave function for the
particle, given that the point is on the left, is

Pyer(z,t) = a1 L(2)he (V)

which upon normalization becomes

Vyer(z,t) = 1,.(z)

17



The particles conditional wave function, which initially was in a
superposition of two different states, has collapses depending on the

pointer’s position, in accordance to the von Neumann collapse
postulate.

We can compute the probability for Y to belong to L, the support of W, .
This is:

Rven = [ _av [ axisxvop

= L2 Yo (Y2 | dX |1y o (X)]?
o /md e >|/R 0 (X)

= ‘O‘LF

which is the born rule. The whole phenomenology of quantum
experiments is recovered.

In BM, the conditional wave function behaves exactly like the system’s
wave function of standard quantum mechanics, both when the system is
isolated (Schrédinger’s evolution) and when it is subject to a
measurement (collapse of the wave function).

The difference is that this double behavior is not postulated: it is derived
by considering the conditional wave function as "part” of the global
wave function, which always satisfies the Schrodinger’s equation and
never collapses.



SUMMARY

1. In BM the wave function of isolated systems evolves according to
the Schrodinger’s equation and particles are guided in their motion
by the wave function.

2. During (ideal) measurements (treating the device also as a quantum
system, and conditioning e.g. over the position of its pointer, which
makes the outcome of the measurement) the system’s (conditional)
wave function collapses randomly as prescribed by the von
Neumann projection postulate, and with a probability given by the
Born rule.

The Born rule and the collapse of the wave function are explained within
the theory, not assumed.



Nonlocality in BM. This is a manifestly nonlocal theory. This should be
quite evident, but it can be explicitly seen with the following example.

First of all, we notice that in BM, trajectories in configuration space do
not cross.

. . Interferernce of the two
® o parts of the wave
‘ + . . function, makes the
. trajectories bounch away
from each other
o_o ‘o
@

If they did, there would be two values of the velocity field at that point,
which cannot be. Then, consider the following initially entangled state:

w>=é<|A>lfB>z+|A'>l|B'>2>.

with two mirrors of the left, which deflect the motion of the particle.
The state evolves as follows

particle 1 particle 2

To respect the correlation, the trajectories must evolve es indicated in
the picture, with an “intersection” on the left. This is not a problem,
because this is a representation in 3D space; in configuration space
there is no crossing.

20



Suppose now we place similar mirrors on the right. Trajectories must
evolve as follows:

particle 1 particle 2

They cannot cross on both sides, otherwise it would amount to a
crossing in configuration space. Therefore, to keep the quantum
correlations, they can cross in neither side.

We see that the effect of having placed mirrors in the right has altered
the trajectories on the left, no matter how far the two sides are. It is
Bell’s nonlocality fully displayed.

This poses a problem in connection to special relativity, which still has to
be resolved.



