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Modifying the Schrödinger equation
Another suggestion is that the collapse of the wave function is a real 
phenomenon. Cleary it cannot occur only during measurements; 
possibly, it is part of the quantum dynamics, but becomes dominant only 
during specific circumstances, such as measurements. 

This means that the unitary dynamics as expressed (at the non 
relativistic level) by the Schrödinger equation is not exact; it is an 
approximation of a nonlinear (and stochastic) dynamics. This is not new 
in physics. The linearity of Newton’s gravitational potential is a weak field 
approximation of a nonlinear dynamics as given by General Relativity. 

One interesting question is how to modify the Schrödinger equation in a 
nonlinear sense. Apparently there infinite ways of doing it. But then one 
can show that this not the case. The reason is the following.

1. A statistical mixture is a a collection {(|𝜓n>, pn)}n = 1,..N, where |𝜓n> are 
normalized states, not necessarily orthogonal to each other, and pn are 
positive numbers summing to 1. The idea is that the state of a system is 
described by |𝜓n> ; we do not know which one, we know only the 
probability distribution.  A statistical mixture can be associated the 
density matrix

2. Two statistical mixtures {(|𝜓n>, pn)}n = 1,..N and {(|𝜑m>, qm)}m = 1,..M are 
said to be equivalent if they give rise to the same density matrix:

⇢ =
NX

n=1

pn| nih n|
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We focus now to the cases when the  states |𝜓n>  are orthogonal to 
each other and, similarly, the states |𝜑m> are orthogonal to each other. 

3. Equivalent statistical mixtures can be created (ideally, instantly) at a 
distance, by exploiting entanglement. Suppose that Alice and Bob, who 
are arbitrarily far away from each other, share an entangled pure (for 
simplicity) state ρAB = |Ψ><Ψ|.

Alice decides to measure one of two possible observables OA
1 and OA

2, 
whose associate operators are:

It is easy to show that 

By the Born rule and collapse postulate, Bob will end up with having the 
state:

Born rule
Collapse 

Ô
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X
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This means that the two statistical mixtures 

are equivalent
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Being equivalent, the two mixtures cannot be distinguished. This is the 
essence of the no-signaling theorem, which will be discussed later in 
connection with nonlocality.

This is an experimental fact (up to experimental error), therefore any 
modification of QM must takes this into account. 

Given this, let us come back to our nonlinear dynamics. Assume that 
after Alice’s measurement, Bob waits a little bit for the nonlinear 
dynamics to build up, before performing a measurement. The state |𝜓n> 
changes into |𝜓F

n> , and likewise |𝜑n> changes into |𝜑F
n>. We assume 

the final states normalized (otherwise troubles would emerge in making 
sense of the wave function). Not that the probabilities pn and qm do not 
change because they are related to our ignorance about the true  state 
of the system

Then the two initially equivalent statistical mixtures need no remain 
equivalent any longer.  For example, consider the two equivalent 
statistical mixtures

{(| 1i, 1/2), (| 2i, 1/2)}, {(| +i, 1/2), (| �i, 1/2)}
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where |𝜓1> and |𝜓2> are orthogonal to each other and 

|𝜓±> = [|𝜓1> ± |𝜓2>]/√2. Suppose the nonlinear dynamics is such that 

| 1i ! | F
1 i

| 2i ! | F
2 i 6= | F

1 i
| +i ! | F

1 i
| �i ! | F

1 i
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Clearly, the initially equivalent mixtures loose their equivalence after 
some time. If they are not equivalent anymore, they can be distinguished 
by some measurement. Hence a faster-than-light protocol is possible.
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The faster-than-light effect here discussed, which is related to the 
collapse of the wave function and quantum nonlocality, has nothing to 
do with working with nonrelativistic QM. It would remain in relativistic 
QFT.

If we demand that faster-than-light is not possible, then the nonlinear 
dynamics must be such that the equivalence among statistical mixtures 
must be preserved over time. This poses a severe constraint. 

If the statistical equivalence is preserved over time, then one can define 
an evolution for the density matrix:

⇢0
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Decopmosition in 
two equivalent 
mistures

Dynamics 
preserves the 
equivalence 

The final mixtures 
identify a unique 
density matrix

⇢F
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The nonlinear dynamics for the state vector uniquely identifies a 
dynamics for the density matrix. A key property is that the dynamics 
for the density matrix is, by construction, linear.

Take ρ = λ1 ρ1 + λ2 ρ2 (convex combination of ρ1 and ρ2). Let us 
consider a decomposition, among the many possible ones, of the 
two density matrices ρ1 and ρ2 :

Then ρ admits the decomposition

⇢k =
X

n

pkn| k
nih k

n|, k = 1, 2
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Suppose that the states |𝜓k
n> evolve into |𝜓k,F

n>. Then the density 
matrix ρ evolves into (remember that any decomposition is good to 
compute the time evolution of the density matrix, because 
equivalence is preserve):

⇢F = �1
X

n

p1n| 1,F
n ih 1,F

n |+ �2
X

n

p2n| 2,F
n ih 2,F

n |

= �1⇢1,F + �2⇢2,F
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The conclusion is: to avoid faster-than-light signaling, the (nonlinear) 
dynamics for the state vector must be such that, at the density 
matrix level, the evolution is linear. 

The basic reason for the result is that ”ignorance propagates 
linearly”, i.e. if a system is initially either in state x with probability p 
and in state y with probability q, and if x evolves into X and y into Y, 
then the system will end up in state X with probability p and in state 
Y with probability q.

It is rather obvious that a deterministic nonlinear dynamics for the 
state vector cannot become linear at the density matrix level: these 
dynamics are excluded at the fundamental level. Extra degrees of 
freedom, in the form of stochastic terms are needed in order to 
wash out nonlinearities of the state vector’s dynamics at the density 
matrix level. This poses a strong constraint of the possible forms of 
the dynamics. 

Physics books are full of nonlinear deterministic Schrödinger’s 
equations, such as the Gross-Pitaevskij equation, or the Schrödinger 
Newton equation. These are phenomenological equations, which are 
very useful and valid within their domain of validity. They cannot be 
considered or promoted to fundamental equations, for the reasons 
explained here above. 
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Nonlinear stochastic Schrödinger 
equation

Which kind of dynamics can we write, considering the previous 
constraint? We assume that the dynamics is Markovian, which in general 
is a good working hypothesis. There has been quite an extensive work 
also with non-Markovian models, though. 

At the density matrix level, the dynamics is of the QDS type and by 
construction is completely positive, since it is defined at the wave 
function level. Therefore it is of the Lindblad type:

Then, mathematically speaking, the goal is to find a dynamics for the 
wave function which, at the density matrix level, reproduces the 
Lindblad equation.

Since the Lindblad equation consists of a unitary part, plus a non-unitary 
term, it is rather natural to look for an equation for the wave function 
which also consists of two parts: a unitary part (the standard 
Schrödinger dynamics) and a non unitary (nonlinear and stochastic) part. 

As a working model, we assume that the non unitary part occurs as a 
jump process, i.e. at random times. One can consider a continuous 
process, and there is an extended literature at this regard, based on 
stochastic differential equations for the wave function. We will not touch 
on this

A very natural model for a jump process is a Poisson process
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Chapter I

The Poisson Process

1. Three Ways To Define The Poisson Process

A stochastic process (N(t))t�0 is said to be a counting process if N(t) counts the total

number of ’events’ that have occurred up to time t. Hence, it must satisfy:

(i) N(t) � 0 for all t � 0.

(ii) N(t) is integer-valued.

(iii) If s < t, then N(s)  N(t).

(iv) For s < t, the increment N((s, t])
def
= N(t)�N(s) equals the number of events that have

occurred in the interval (s, t].

A counting process is said to have independent increments if the numbers of events that

occur in disjoint time intervals are independent, that is, the family (N(Ik))1kn consists

of independent random variables whenever I1, ..., In forms a collection of pairwise disjoint

intervals. In particular, N(s) is independent of N(s+ t)�N(s) for all s, t � 0.

A counting process is said to have stationary increments if the distribution of the number

of events that occur in any interval of time depends only on the length of the time interval.

In other words, the process has stationary increments if the number of events in the interval

(s, s+ t], i.e. N((s, s+ t]) has the same distribution as N((0, t]) for all s, t � 0.

One of the most important types of counting processes is the Poisson process, which can

be defined in various ways.

Definition 1.1. [The Axiomatic Way]. A counting process (N(t))t�0 is said to be

a Poisson process with rate (or intensity) �, � > 0, if:

(PP1) N(0) = 0.

(PP2) The process has independent increments.

(PP3) The number of events in any time interval of length t is Poisson distributed with mean

�t. That is, N((s, t])
d
= Poi(�t) for all s, t � 0:

P(N((s, t]) = n) = e
��t (�t)

n

n!
, n 2 N0.

If � = 1, then (N(t))t�0 is also called standard Poisson process.

Note that condition (PP3) implies that (N(t))t�0 has stationary increments and also that

EN(t) = �t, t � 0,

1

Chapter I

The Poisson Process

1. Three Ways To Define The Poisson Process

A stochastic process (N(t))t�0 is said to be a counting process if N(t) counts the total

number of ’events’ that have occurred up to time t. Hence, it must satisfy:

(i) N(t) � 0 for all t � 0.

(ii) N(t) is integer-valued.

(iii) If s < t, then N(s)  N(t).

(iv) For s < t, the increment N((s, t])
def
= N(t)�N(s) equals the number of events that have

occurred in the interval (s, t].

A counting process is said to have independent increments if the numbers of events that

occur in disjoint time intervals are independent, that is, the family (N(Ik))1kn consists

of independent random variables whenever I1, ..., In forms a collection of pairwise disjoint

intervals. In particular, N(s) is independent of N(s+ t)�N(s) for all s, t � 0.

A counting process is said to have stationary increments if the distribution of the number

of events that occur in any interval of time depends only on the length of the time interval.

In other words, the process has stationary increments if the number of events in the interval

(s, s+ t], i.e. N((s, s+ t]) has the same distribution as N((0, t]) for all s, t � 0.

One of the most important types of counting processes is the Poisson process, which can

be defined in various ways.

Definition 1.1. [The Axiomatic Way]. A counting process (N(t))t�0 is said to be

a Poisson process with rate (or intensity) �, � > 0, if:

(PP1) N(0) = 0.

(PP2) The process has independent increments.

(PP3) The number of events in any time interval of length t is Poisson distributed with mean

�t. That is, N((s, t])
d
= Poi(�t) for all s, t � 0:

P(N((s, t]) = n) = e
��t (�t)

n

n!
, n 2 N0.

If � = 1, then (N(t))t�0 is also called standard Poisson process.

Note that condition (PP3) implies that (N(t))t�0 has stationary increments and also that

EN(t) = �t, t � 0,

Only a reference value
Markovianity + time 
tranlaltion invariance

Two events are not
too close to eaxh
other

2

which explains why � is called the rate of the process.

In order to determine if an arbitrary counting process is actually a Poisson process, the

conditions (PP1–3) must be shown. Condition (PP1), which simply states that the counting

of events begins at time t = 0, and condition (PP2) can usually be verified directly from our

knowledge of the process. However, it is not at all clear how we could determine validity of

condition (PP3), and for this reason an equivalent definition of a Poisson process would be

useful.

A function f : R ! R is said to be o(h) (for h ! 0), if

lim
h!0

f(h)

h
= 0.

Definition 1.2. [By Infinitesimal Description]. A counting process (N(t))t�0 is

said to be a Poisson process with rate �, � > 0, if:

(PP1) N(0) = 0.

(PP4) The process has stationary and independent increments.

(PP5) P(N(h) = 1) = �h+ o(h).

(PP6) P(N(h) � 2) = o(h).

That the processes defined by 1.1 form a subclass of those defined by 1.2 is easily assessed,

but a proof of the reverse inclusion requires some work which we postpone to the end of this

section. However, the essence of the proof is disclosed by the following heuristic argument

based upon the Poisson limit theorem which states that

lim
n!1

B(n, ✓n)({k}) = Poi(✓)({k}), k 2 N0,

whenever ✓, ✓1, ✓2, ... are positive numbers such that n✓n ! ✓, as n ! 1 (+ [1, Satz 29.4]).

Plainly, we must only argue that (PP1) and (PP4–6) ensure N(t)
d
= Poi(�t) for all t > 0.

To see this subdivide the interval [0, t] into k equal parts where k is very large. Note that, by

(PP6), the probability of having two or more events in any subinterval goes to 0 as k ! 1.

This follows from

P(2 or more events in any subinterval)


kX

i=1

P(2 or more events in the ith subinterval)

= k o

✓
t

k

◆
= t

o(t/k)

t/k
! 0

as k ! 1. Hence, N(t) will (with probability going to 1) just equal the number of subintervals

in which an event occurs. However, by (PP4) this number will have a binomial distribution

with parameters k and pk = �t/k+ o(t/k). By letting k ! 1, we thus see that N(t) will have
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based upon the Poisson limit theorem which states that

lim
n!1

B(n, ✓n)({k}) = Poi(✓)({k}), k 2 N0,

whenever ✓, ✓1, ✓2, ... are positive numbers such that n✓n ! ✓, as n ! 1 (+ [1, Satz 29.4]).

Plainly, we must only argue that (PP1) and (PP4–6) ensure N(t)
d
= Poi(�t) for all t > 0.

To see this subdivide the interval [0, t] into k equal parts where k is very large. Note that, by

(PP6), the probability of having two or more events in any subinterval goes to 0 as k ! 1.

This follows from

P(2 or more events in any subinterval)


kX

i=1

P(2 or more events in the ith subinterval)

= k o

✓
t

k

◆
= t

o(t/k)

t/k
! 0

as k ! 1. Hence, N(t) will (with probability going to 1) just equal the number of subintervals

in which an event occurs. However, by (PP4) this number will have a binomial distribution

with parameters k and pk = �t/k+ o(t/k). By letting k ! 1, we thus see that N(t) will have
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Consider then what happens, at the density matrix level in an 
infinitesimal amount of time:

⇢(t+ dt) = (1� �dt)

✓
⇢(t)� i

~ [H, ⇢(t)]

◆
+ �dtT [⇢(t)]

<latexit sha1_base64="UR1jmeA1P/xKaDhrIrkpMp//+pk="></latexit>

No event → Schrödinger 
evolution

Event → collapse term

i.e.

d

dt
⇢(t) = � i

~ [H, ⇢(t)]� � (⇢(t)� T [⇢(t)])

<latexit sha1_base64="twm2HvjLBs4nKKSgZN4CpnEQZw0=">AAACUXicbZFLa9tAFIWv1eZROQ+3XXYz1ARsSIxkWpJNIaQbL12IHyAJMxqNrMGjBzNXASP0F7toV/0f2XTR0rGthjTphWEO57uXmTkTFlJodJwfLevFy739g8NXdvvo+OS08/rNVOelYnzCcpmreUg1lyLjExQo+bxQnKah5LNw9XnDZ3dcaZFnt7gueJDSZSZiwSgaa9FJfM/2Y0VZFdVVhLWvkryHffKJXJCdL+rKT0KqauKNzknDgw2W5piImp3H2PtLDLj1Hrp8JZYJ9m0/WHS6zsDZFnku3EZ0oanxovPNj3JWpjxDJqnWnusUGFRUoWCS17Zfal5QtqJL7hmZ0ZTroNomUpMz40QkzpVZGZKt+3iioqnW6zQ0nSnFRD9lG/N/zCsxvgoqkRUl8oztDopLSTAnm3hJJBRnKNdGUKaEuSthCTU5ovkE24TgPn3yczEdDtwPg49fht3rmyaOQ3gH76EHLlzCNYxgDBNg8BXu4Rf8bn1v/bTAsnatVquZeQv/lNX+AydQsGk=</latexit>

which is a special type of Lindblad equation, with: 

T [⇢(t)] =
X

i

�iLi⇢(t)L
†
i ,

X

i

�iL
†
iLi = 1

<latexit sha1_base64="P2wlfPe7SEEtguerlL4Y8nfoLAk="></latexit>

Going back to the wave function, the nonlinear process cannot be 
deterministic, otherwise the nonlinearity does not cancel at the density 
matrix level. So it has to be stochastic. Suppose that an initial state |ψ> 
is transformed into: 

| i ! |Fk( )i, with probability pk

<latexit sha1_base64="lmROVoX7qPwcXoqy/EpaqfYozS4="></latexit>

with |Fk(ψ)> normalized state vector. Then it must be: 

X

k

pk|Fk( )ihFk( )| =
X

i

Li| ih |L†
i

<latexit sha1_base64="32FMF57fri19j3VXmz7VlCoL7Y8="></latexit>

we have absorbed the coefficients 𝛾I into the Lindblad operators Li. The 
right hand and hand side of the equation represent two equivalent 
unravelings and by theorem 2.6 page 103 on Nielsen-Chuang
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Then, by dropping the tilde:

p
pk|Fk( )i =

X

i

ukiLi| i = L̃k| i

<latexit sha1_base64="svkL59igbq6bHOMRKlfcrJmhZo0="></latexit>

Theorem 2.6 New Lindblad term -
unitary freedom of the 
Lindblad equation 

|Fk( )i =
Lk| ip

pk

<latexit sha1_base64="noqsrW2hGHLj+jQNIMqkfRnRDY0="></latexit>

and since the left hand side is normalized, we arrive at the final result:

| i ! Lk| i
kLk| ik

, with probability pk = kLk| ik2

<latexit sha1_base64="iDBjKbrXh5ZefoYYLgajUgWWyFA="></latexit>

together with the constraint
X

k

L†
kLk = 1

<latexit sha1_base64="blUiLD/wnIQAyo5+SHst+TW1Gsw=">AAACCXicbZDLSsNAFIYn9VbjLerSzWARXJWkKLoRim5cuKhgL5DEMJlM0qGTCzMToYRu3fgqblwo4tY3cOfbOGmz0NYfBj7+cw5nzu9njAppmt9abWl5ZXWtvq5vbG5t7xi7ez2R5hyTLk5Zygc+EoTRhHQllYwMMk5Q7DPS90dXZb3/QLigaXInxxlxYxQlNKQYSWV5BnRs3RF57I3gjTe6dwIURYSXDC+gpTuuZzTMpjkVXASrggao1PGMLydIcR6TRGKGhLAtM5NugbikmJGJ7uSCZAiPUERshQmKiXCL6SUTeKScAIYpVy+RcOr+nihQLMQ49lVnjORQzNdK87+ancvw3C1okuWSJHi2KMwZlCksY4EB5QRLNlaAMKfqrxAPEUdYqvB0FYI1f/Ii9FpN66R5ettqtC+rOOrgAByCY2CBM9AG16ADugCDR/AMXsGb9qS9aO/ax6y1plUz++CPtM8fVfOYLg==</latexit>

which also ensures that the probabilities pk sum to 1. 

This is the general form of a collapse model, based on a discrete Poisson 
process. The collapse model then reads:

1. A wave function is associated to a physical system, as in standard 
QM.

2. The wave function evolves according to the Schrödinger equation, 
except that at random times it is subject to a random collapse as 
described above. 

For different systems, collapses occur independently (minimal choice). 
As for any theory, collapse models declare what there is, and how it 
changes in time. Everything lese follows from here. Note that a new 
parameter has been introduced, the collapse rate λ. The operators Li
identify the model; there can be different choices. 
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The GRW model
Since the problem with Quantum Mechanics is why we do not see 
objects delocalized in space, the assumption is that collapses occur in 
space. Therefore the discrete index k becomes a continuous index x, the 
point in space where the collapse occurs

Given a system on N particles, the collapse operator associated to the i-
th particle is taken equal to: 

L(i)(x) =
1

(⇡rC)3/4
exp


(qi � x)2

2r2C

�

<latexit sha1_base64="dFNud4A1SQiPL+vA86wbKhzeSaQ="></latexit>

where qi is the position operator of particle i. In the position 
representation, the action of the operator amounts to multiplying the 
wave function by a Gaussian.

A second parameter appears, the size rc of the Gaussian function; in 
total, we have two new parameters.  The rest of this section is meant to 
explain how the new dynamics works. 

Example 1. Collapse probability. Consider a particle in 1 dimension, 
whose state is delocalized in space

Collapse operator 

Collapse probability 

Possible Collapse point 
Possible 
collapse point 

Collapse operator 
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The collapse is more likely to occur where the the wave function is more 
appreciably different from 0. This is the ultimate reason for the 
recovering of the Born rule, which we haven’t talked about, so far.

Example 2. Large Gaussian. Consider a particle in a Gaussian state, 
centered in x = a with width r ≫ rc.  

The most probable collapse will occur around x = a. let as assume for 
simplicity that it occurs exactly in a.  

 (x) =
1

4
p
⇡r

e
(x�a)2

2r2 ! 1

N
e

(x�a)2

2r2c e
(x�a)2

2r2

' 1
4
p
⇡rc

e
(x�a)2

2r2c

<latexit sha1_base64="pQP8GsQxq+FLsSa1bYOhZRHQsdY="></latexit>

collapse

The initially spread out wave function has been localized in space, with 
resolution equal to rc. 

Example 3. Narrow gaussian. Consider a particle still in a Gaussian state, 
centered in x = a, with width r ≪ rc

a a
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collapse

a a

Now we have

The state hasn’t changed much.

Example 4. Now consider a particle whose state is the superposition of 
two Gaussian states, one centered in x = a and the other in x = -a, with 
2a ≫ rc, each having spread r ≪ rc.   

collapse

-a aa

+

-a

 (x) =
1

4
p
⇡r

e�
(x�a)2

2r2 ! 1

N
e
� (x�a)2

2r2c e�
(x�a)2

2r2

' 1
4
p
⇡rc

e�
(x�a)2

2r

<latexit sha1_base64="8RCg2zuNpvYj0U/3OGWxRt2Jtfk="></latexit>
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The collapse has roughly ½ probability to occur on the left at x = –a, and 
½ probability to occur on the right at x = a. Suppose it occurs no the 
right. Then:

 (x) =
1

N


e�

(x+a)2

2r2 + e�
(x�a)2

2r2

�
! 1

N 0 e
� (x�a)2

2r2c


e�

(x+a)2

2r2 + e�
(x�a)2

2r2

�

' 1

N 0


e
� 2a2

2r2c e�
(x+a)2

2r2 + e�
(x�a)2

2r2

�

<latexit sha1_base64="uGUhI4WYlcMmbii8Rh6Ber46jQQ=">AAADp3icrVLLjtMwFHUTHkN4dWDJxqI8WqGpkggEG6QRbBALGMS0U6nOVI5701qTOBnbgUZWPo2fYMff4LQRMC2wmislOTnH9j05uXGRcqV9/0fHca9cvXZ974Z389btO3e7+/fGKi8lgxHL01xOYqog5QJGmusUJoUEmsUpnMRnbxv95AtIxXNxrKsCoowuBE84o9pSs/3ONxLDggsD54JKSavaI4Xi/dUAv8YkkZSZoDYfakxSSPQUw6k52ND9FX6G6eA0rE2IpX3U2BIX9IMtnUi+WOoIP2mRbZh/bd5+9Xla//OEmSEaVtreuagwq+vmSO8ybRGRizKLQWJCPOtK8QzOt+3tBhHS/zm8ZGseATH//bNm3Z4/9NeFd0HQgh5q62jW/U7mOSszEJqlVKlp4Bc6MlRqzlKweZYKCsrO6AKmFgqagYrMes5q/Ngyc5zk0l5C4zX75w5DM6WqLLYrM6qXaltryL9p01InryLDRVFqEGzTKClTrHPcDC2ecwlMp5UFlEluvWK2pDYzbUfbsyEE25+8C8bhMHg+fPEp7B2+aePYQw/QQ9RHAXqJDtE7dIRGiDmPnPfOZ+fYHbgf3bE72Sx1Ou2e++hCufQnST8j1g==</latexit>

Where only the approximation r ≪ rc has been used. The Gaussian on 
the right has been exponentially suppressed, and is essentially pert of 
the tail of the Gaussian on the right.

Example 5. Now consider a particle whose state is the superposition of 
two Gaussian states, one centered in x = a and the other in x = -a, with 
2a ≪ rc, each having spread r ≪ rc.   

collapse

-a a

+

-a a

+

≃0

As before, the collapse is more likely to occur around x = -a or x = a. 
Suppose it occurs at x =a. The calculation is the same as before, since 
only the approximation r ≪ rc has been used :
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 (x) =
1

N


e�

(x+a)2

2r2 + e�
(x�a)2

2r2

�
! 1

N 0 e
� (x�a)2

2r2c


e�

(x+a)2

2r2 + e�
(x�a)2

2r2

�

' 1

N 0


e
� 2a2

2r2c e�
(x+a)2

2r2 + e�
(x�a)2

2r2

�

<latexit sha1_base64="uGUhI4WYlcMmbii8Rh6Ber46jQQ="></latexit>

≃ 1

Now however the Gaussian on the left is not exponentially suppressed: 
both terms of the superposition survive.    

The conclusion is that not all superposition states collapse; only those 
with spread larger than rc do collapse. The other ones are not 
appreciably affected (of course, they also change a bit, but not much). 
This is the physical meaning of the parameter rc.

We can summarize the situation in the following way

Hilbert space of the system

States with 
delocalization 
Δx ≪ rc

STABLE UNDER 
COLLAPSE

States with 
delocalization 
Δx ≫ rc

UNSTABLE UNDER 
COLLAPSE

collapse

These considerations suggest the numerical value one should attribute 
to rc: a mesoscopic distance, which kills macroscopic superpositions (Δx
≫ rc) but preserves microscopic ones (Δx ≪ rc), which have been tested 
experimentally with success. The number suggested in the literature is:

rc ≃ 10-5 cm
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Amplification mechanism
This is a crucial property of collapse models. So far we considered only 
what happens for one particle. Suppose we have two particles (the 
generalization to an arbitrary number of particles tis straightforward), 
which form a bounded system, like a diatomic molecule, an example of a 
rigid object. The composite system is in a superposition  state as in the 
picture 

-a

+

a
-a-δ -a+δ a-δ a+δ

1 2 1 2+

collapse

a
a-δ a+δ

1 2

The initial state of the two-particle system is:

r ≪ rc
2a ≫ rc
δ ≪ a

 (x, y) =
1

N


e�

(x+a+�)2

2r2 e�
(y+a��)2

2r2 + e�
(x�a+�)2

2r2 e�
(y�a��)2

2r2

�

<latexit sha1_base64="u24I7wZpRmb6YGobyhBF/x9oIYo="></latexit>

The collapse processes for the two particles are independent. Suppose 
that particle 1 (with coordinate x) suffers a collapse around x = a – δ. 
From what seen before, this occurs with probability about ½. 

-a
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The wave function changes into:

 (x, y) ! ' 1

N 0


e
� 2(a��)2

2r2c e�
(x+a+�)2

2r2 e�
(y+a��)2

2r2 + e�
(x�a+�)2

2r2 e�
(y�a��)2

2r2

�

<latexit sha1_base64="uRstO+iSSlLyIHpHYUIJFOayOXM="></latexit>

≃0

The first term of the superposition is exponentially suppressed. This 
means that the collapse for one particle has killed the superposition of 
the entire system.

This is the amplification mechanism: when we have a composite system, 
like a macroscopic object, in a macroscopic superposition (Δx ≫ rc) 
”here” plus “there” (what is called a Schrödinger’s cat state), then the 
collapse of one of its constituents cause the collapses of the entire wave 
function. Given that the collapse process for each constituent are taken 
to be independent, this means that:

• Collapse rate for one particle: λ

• Effective collapse rate for and N-particle object: Nλ

This allows to choose λ such that, for microscopic systems the collapses 
are rare and almost negligible for all practical purposes, while for 
macroscopic objects the amplification mechanism makes sure that their 
wave function is very rapidly localized. The original value suggested was

λ ≃ 10-16 s-1

For example, for a macroscopic object with N ≃ 2024 (Avogadro’s
number) particles, we have ΛMACRO = Nλ ≃ 1024 x 10-16 s-1 = 108 s-1. This
means that once every 10-8 s (almost immediately) there occurs a
collapse somewhere in the object, which kills the macroscopic
superposition, if present: macroscopic objects are always well localized
in space.



17

A way to represent this is:

N, number of 
particles

Micro world Meso world Macro world

Few particles, 
few collapses

Many particles, 
many collapses

Transition 
region

Yet, not always a system with a large number of particles is so heavily 
affected by the collapse process. Consider again the two particle system, 
now mimicking an ideal gas rather than a rigid object: the two particles 
are independent from each other, which is represented by a factorized 
wave function:

-a a
-a-δ -a+δ a-δ a+δ

1
2

1
2

+

r ≪ rc
2a ≫ rc
δ ≪ a

+

 (x, y) =
1

N


e�

(x+a+�)2

2r2 + e�
(x�a+�)2

2r2

�
⌦


e�

(y+a��)2

2r2 + e�
(y�a��)2

2r2

�

<latexit sha1_base64="QTCJfcopuhrPvJY6EJDzb9pY/og="></latexit>

-a a
-a-δ -a+δ a-δ a+δ

2
1

2

r ≪ rc
2a ≫ rc
δ ≪ a

+



Suppose again that particle 1 (with coordinate x) suffers a collapse 
around x = a – δ; once again, this occurs with probability about ½. The 
wave function changes to: 

 (x, y) ! ' 1

N


e
� 2(a��)2

2r2c e�
(x+a+�)2

2r2 + e�
(x�a+�)2

2r2

�
⌦

e�

(y+a��)2

2r2 + e�
(y�a��)2

2r2

�

<latexit sha1_base64="mTY0nd+l9q/qhoUFqoYjJpszkbQ="></latexit>

≃0

The collapse has localized the state of particle 1, but not that of particle 
2: there is no amplification mechanism. 

This shows that the amplification mechanism occurs only when the 
multi-particle wave function is in a specific state, an entangled state of a 
significant number of particles composing the system. In all other cases, 
the collapse remains ineffective.  

This is important, because there is an increasing number of experimental 
results with cold atoms, superconductivity, superfluidity, where a larger 
and larger number of particles are set in a collective quantum state. All 
these cases turn out to be sufficiently stable against the collapse, 
because none of them is a Schrödinger’s cat state of the form “here” + 
”there”.

Ironically, entanglement, which is considered the characteristic feature 
of QM, is what is needed to recover classicality. 

18
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The overall picture, which emerges from collapse models, is the 
following 

Microscopic 
systems 

Macroscopic 
objects

Macro superpositions

BECs, 
SQUIDs, 

superfluids
…

Unstable! Nλ large and Δx >> rC

Stable. λ too small
Stable. Already localized (Δ << rC)

Stable. No cat-like 
superposition 
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Testing collapse models
By changing the dynamics, collapse models make predictions, which 
differ from standard quantum mechanical predictions. 

The direct way to test these models is via interferometric experiments: 
one takes a system as massive as possible, in order to trigger the 
amplification mechanism,  and creates a superposition state, with Δx as 
large as possible, keeping at as long as possible.  

Prediction of 
quantum mechanics

(no environmental noise)

Prediction of 
collapse models

(no environmental noise)

If one detects quantum coherence, than QM is right and Collapse 
models are wrong; if on the other hand there is a loos of coherence 
even if environmental noises are kept low, than one has to wonder what 
is happening in the experiment.

Such experiment are difficult to perform: it is difficult to create large 
mass macroscopic superpositions, for a variety of reasons.   
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The alternative way is to test them non-interferometrically. Such kind of 
experiments are based on the following property of collapse models.

Consider again example 3 of one particle in a narrow Gaussian state. 
Before we said that the collapse is practically ineffective. There we 
assumed that the collapse occurs exactly at x=a, which is the point with 
the highest probability density. But also nearby point have a similar, 
though slightly smaller, probability density to be the collapse point.

Suppose then that the collapse occurs near a, as a+δ. Then, under the 
usual approximation r ≪ rc, we have: 

 (x) =
1

4
p
⇡r

e�
(x�a��)2

2r2 ! 1

N
e
� (x�a)2

2r2c e�
(x�a)2

2r2

' 1
4
p
⇡rc

e�
(x�a��0)2

2r , �0 =
r2

r2 + r2c
�

<latexit sha1_base64="Ne14zccmdKA349u8tTUfeCi8XiM="></latexit>

The shape an size of the wave function hasn’t changed significantly, but 
now the center has slightly moved, in this case to the right: its mean 
position has shifted. 

Since the probability that the collapse occurs exactly in x = a is zero, then 
every collapse causes a (slight) shift of the particle’s position → random 
motion 

Collapse modelsQuantum Mechanics
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The important point is that, while the collapse of the wave function is 
appreciable only when Δx ≫ rc, the random motion occurs also when 
the wave function is well localized in space. Therefore there is no need 
to create quantum superpositions in order to observe this effect. This 
experimental advantage can be used to test these models, via high-
precision position measurements, of microscopic or macroscopic 
systems.

Note that this effect is an unavoidable feature of any model which 
collapses the wave function in space. It is another way of saying that the 
collapse, being nonlinear, requires random terms in order to generate a 
linear evolution at the density matrix level, in order to avoid 
superluminal signaling.  
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Density matrix
From the previous analysis, the one particle Lindblad equation for the 
GRW model is:

d

dt
⇢(t) = � i

~ [H, ⇢(t)]� � (⇢(t)� T [⇢(t)])

T [⇢(t)] =

Z
d
3
xL(x)⇢(t)L(x)

<latexit sha1_base64="j8hp1eTrY1PTdDUixV4Ih53RJZ0="></latexit>

In the position representation is reads

d

dt
⇢(x,y, t) = � i

~ [H, ⇢(x,y, t)]� �

 
1� e

� (x�y)2

4r2C

!
⇢(x,y, t)

<latexit sha1_base64="Msox7dSMRq5Jn4fAxX43hC9bjsU="></latexit>

Note that the Lindblad terms determine the decay of the off-diagonal 
elements of the density matrix (in position) es an effect of the collapse. 
Their strength is: 

⇤(�x) = �

✓
1� e

��x2

4r2C

◆
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|�x| ⌧ rC
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|�x| � rC
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• Quadratic increase for small Δx: good for experiments

• Saturation for |Δx| ≫ rc: it does not help experimentally to create too 
delocalized states, much larger than rc.
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The density matrix can also be written in the form

d

dt
⇢(t) = � i

~ [H, ⇢(t)]� �

2
[L(x), [L(x), ⇢(t)]]
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Remembering that L(x) is function of the position operator q,  and 
considering the case of a free particle, one can quite easily derive the 
following results for the average position and momentum;

hqit = hqiSCH

t

hpit = hpiSCH

t
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where ”SCH” refers to the pure Schrödinger evolution, without the 
collapse. On the average, the (free) particle moves like in standard 
quantum  mechanics. For the variances we have:

�q2t = h(q� hqi)2it = �q2(SCH)
t +

�~2
6r2

C
m2

t3

�p2t = h(p� hpi)2it = �p2(SCH)
t +

�~2
2r2

C

t
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Both the variance in position as well as in momentum increase over time; this 
is an effect of the underlying random process. The physical picture is the 
following:

t
Initial state First collapse Second collapse

Green =  pure Schrödinger spread

�q2
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�q2
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In particular, for the kinetic energy we have:

hEit = hEiSCH

t +
�~2
4r2

C
m
t
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There is a linear increase of the mean energy, sourced by the collapse 
process. It is a form of violation of energy conservation. 

All these results are useful to quantify the predictions of collapse models 
to be tested experimentally.  

For a N-particle system, being the collapse events related to each 
particle independent from each other, the Lindblad equation reads:  

d

dt
⇢(t) = � i

~ [H, ⇢(t)]� �

NX

n=1

(⇢(t)� Tn[⇢(t)])

<latexit sha1_base64="sxAL1hUzg2Ds5zm3WXuTkPjcZ9g="></latexit>

where for simplicity we assumed that the collapse rate λ is the same for 
all particles, and Tn[.] is the collapse operator for the n-th particle. 

By writing the explicit expression for Tn[.], moving to the center-of-mass 
(Q) and internal ({ri}) coordinates, and taking the partial trace over the 
internal coordinates, one finds that 

Tr({ri})(Tn[⇢]) = TQ[Tr
({ri})(⇢)] = TQ[⇢Q], ⇢Q ⌘ Tr({ri})(⇢)

<latexit sha1_base64="57WUb/Uvq89mUwocgDNTWKgwXHI=">AAACeXicfVFNb9QwEHVCoSV8bdsjHAZWRbsIrZJ+CC6VKrhw7Eq7baU4RI7X27XqOFl7UrGK8h/623rrH+mFC94PVdACI1l68+bN2H6TlUpaDMMbz3+09vjJ+sbT4NnzFy9ftTa3TmxRGS6GvFCFOcuYFUpqMUSJSpyVRrA8U+I0u/g6r59eCmNloQc4K0WSs3Mtx5IzdFTauqJxQFH8wHpgmu91h9ZgUkmbbtMZpDqmZlIkXTiEQdqH+B9CmKu6yZ3KZWk/+Qh0Oq3YCJY5UDGt5CX8d0ZAk7TVDnvhIuAhiFagTVZxnLau6ajgVS40csWsjaOwxKRmBiVXogloZUXJ+AU7F7GDmuXCJvXCuQZ2HDOCcWHc0QgL9veOmuXWzvLMKXOGE3u/Nif/VosrHH9OaqnLCoXmy4vGlQIsYL4GGEkjOKqZA4wb6d4KfMIM4+iWFTgTovtffghOdnvRfu+gv9s++rKyY4O8Ju9Ih0TkEzki38gxGRJObr033o733vvpv/U7/oel1PdWPdvkj/D3fgH0+L2N</latexit>

where ρQ is the (reduced) density matrix for the center of mass. 
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the center-of-mass motions of the composite systems decouple and, moreover, that the equation of
motion for the center of mass is formally identical to the equation prescribed by the theory for
the description of a single particle. Here we want to investigate whether it is possible to obtain
the nonpurely-Hamiltonian dynamics for macroscopic particles described in the previous subsections
from a modi!cation of the standard quantum dynamics for their microscopic constituents. If such
a modi!cation leaves practically unaltered the behaviour of microscopic systems as accounted for
by quantum mechanics we can say we have laid the foundations of a possible uni!ed description
able to account for both the quantum and the classical behaviours of microscopic and macroscopic
systems, respectively.
In Section 6.1 we have assumed that the localization process T [ · ] occurs individually for each

constituent of a many-particle system. We consider now a system of N particles in one dimension.
Assuming that the accuracy of the localizations is the same for all constituents, the evolution equation
for the composite system is

d
dt

!(t) =− i˝ [H; !(t)]−
N
∑

i=1

"i(!(t)− Ti[!(t)]) ; (6.39)

where

Ti[!(t)] =
√

#
$

∫ +∞

−∞
dx e−(#=2)(qi−x)2!e−(#=2)(qi−x)2 ; (6.40)

qi being the position operator for the ith particle of the system (throughout the subsection, we will
keep working in 1 dimension).
It is worthwhile to illustrate the physical consequences of the above equation for the important

conceptual problem of the possible occurrence of linear superpositions of states corresponding to
di"erent locations of a macroscopic object. Such a situation occurs, for instance, in the quantum
theory of measurement, in connection with possible macroscopically di"erent pointer positions. With
reference to such a case we consider the linear superposition  = 1+ 2 of two states corresponding
to two di"erent pointer positions. We remark that in the case under discussion there is a macroscopic
number N of particles which are located in macroscopically di"erent positions when the state is  1 or
 2 (to be precise, in our model this means located at a distance larger than 1=

√
#). If a spontaneous

localization process takes place for one of such particles, this particle is constrained to be either in
the spatial region which it occupies when the state is  1, or in the one corresponding to  2. The
linear superposition is consequently transformed into a statistical mixture of states  1 and  2. Since
the number of di"erently located particles is N , the reduction of states  1 and  2 occurs with a rate
which is ampli!ed by a factor N with respect to the one, "i, which characterizes the elementary
spontaneous localizations.
The model yields therefore a natural solution to the puzzling situation originating from the oc-

currence of linear superpositions of di"erently located states. These considerations, however, do not
exhaust the problems to be discussed. In fact, we must still check that the modi!cation of the dy-
namics for the microscopic constituents does not imply physically unacceptable consequences for
the dynamics of the system as a whole. Actually, according to the previous discussions, we would
like to have for the macroscopic object a dynamical equation of the type considered in Section 6.3.
To discuss this point, let us introduce the center of mass and relative motion position operators Q
306 A. Bassi, G.C. Ghirardi / Physics Reports 379 (2003) 257–426

and rj (j = 1; 2; : : : ; N − 1), related to the operators qi by

qi = Q +
N−1
∑

j=1

cijrj : (6.41)

Eq. (6.39), when the Hamiltonian H can be split into the sum of the center of mass and internal
motion parts HQ and Hr acting in the respective state spaces, reads

d
dt

!(t) =− i˝ [HQ; !(t)]−
i
˝ [Hr; !(t)]−

∑

i

"i(!(t)− Ti[!(t)]) ; (6.42)

where the operator Ti[!] can now be written as

Ti[!] =
√

#
$

∫ +∞

−∞
dx e−(#=2)[Q+

∑N−1
j=1 cijrj−x]2!e−(#=2)[Q+

∑N−1
j=1 cijrj−x]2 : (6.43)

The dynamical evolution of the center of mass of the system is described by the statistical operator

!Q = Tr(r)[!] ; (6.44)

obtained by taking the partial trace on the internal degrees of freedom of the statistical operator !
for the complete N -particle system. Taking the r trace of the operation Ti[!] one gets

∫

dr1 : : : drN−1

√

#
$

∫ +∞

−∞
dx e−(#=2)[Q+

∑N−1
j=1 cijrj−x]2

·〈r1 : : : rN−1|!|r1 : : : rN−1〉e−(#=2)[Q+
∑N−1

j=1 cijrj−x]2 ; (6.45)

so that, by shifting the integration variable x by the amount
∑

j cijrj, one !nds

Tr(r)(Ti[!]) = TQ[Tr(r)(!)] ; (6.46)

where

TQ[ · ] =
√

#
$

∫ +∞

−∞
dx e−(#=2)(Q−x)2 [ · ]e−(#=2)(Q−x)2 : (6.47)

If one takes the r trace of Eq. (6.42) one then gets
d
dt

!Q(t) =− i˝ [HQ; !Q]−
∑

i

"i(!Q − T [!Q]) : (6.48)

We have thus shown that the equation describing the reduced dynamics of the center of mass has
exactly the same form of Eq. (6.8), the parameter " being replaced by the sum of the "i’s for
the individual constituents of the many-body system. This is a direct consequence of the formal
property (6.46).
It is worthwhile stressing that the non-Hamiltonian term in Eq. (6.48) is directly generated by the

analogous terms of Eq. (6.39) and is not due to the elimination of the internal degrees of freedom.
In fact, if within the standard formalism one considers a composite system with an Hamiltonian H=
HQ+Hr , the reduced dynamics for the center of mass motion is necessarily Hamiltonian, and therefore
it allows for the occurrence of linear superpositions of widely separated states of the center of mass.
To avoid this, one could couple the system to some other system whose dynamics is then eliminated

and integrating over x

Assuming also that the total Hamiltonian splits into a term HQ for the 
center of mass, plus a term H{ri} for the internal degrees of freedom, we 
arrive at the following equation for the center of mass coordinate

d

dt
⇢Q(t) = � i

~ [HQ, ⇢Q(t)]�N�(⇢Q(t)� TQ[⇢Q(t)])
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which is the equation for one particle, with the collapse rate amplified N 
times. It is the mathematical manifestation of the amplification 
mechanism.  
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The equation for the internal degrees of freedom depends very much on 
the internal structure. For a crystalline structure, typical of rigid objects, 
by working with the phonon formalism, one can show that phonon 
states are excited over time, since the systems warms up subject to the 
collapse.  

Open questions:

• The origin of the collapse: is it an intrinsic feature of Nature, or is it 
caused by some agent? Which agent? Penrose suggests it might be 
gravity.

• What is the role of the wave function? It is not a field in 3D space, 
therefore it does not allow for a naïve interpretation as 
representing the stuff in 3D space. 

FURTHER MATERIAL
• QUMPL and measurement process
• CLS equation
• DP model
• Experimental bounds
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