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Einstein’s boxes

We are in ‘20s - ‘30s of the previous century and a central question for
Einstein was the role of the wave function.

Specifically, when the wave function associated e.g. to an electron is in
the superposition of two different locations, what does it entail for the
electron?

Conception 1 [Incompleteness]: The electron, a point particle, is
somewhere in space, and the wave function does not specify where. It
only gives the probability of find it somewhere upon measurement. The
actual position of the electron, which becomes manifest in
measurements, is the missing piece of information and as such the wave
function represents and incomplete description of physical phenomena.
At best, it refers to an ensemble of electrons.

Conception 2 [Completeness]: The wave function describes everything
there is to know about the individual electron. When it is spread out in
space, there is no fact about the electron occupying a specific position in
space. The appearance of the electron upon measurement is a genuinely
stochastic event which is not triggered by anything pre-existing.

Einstein was against Completeness - essentially because he did not
accept the intrinsic statistical character of the theory [QUOTE FROM
SCHILPP] - and argued against it. In several of this arguments, he shows
that it violated locality. One of these arguments is called Einstein’s boxes.

Consider first a classical — very trivial — situation: a ball in a box. The box
is divided into two parts, which are separated from each other.



The ball is either on the left or on the right, but we do not know where
until we open one of the two boxes. Moral:

» Perfect correlations: if the ball is on the left box, it is not in the right

* Nothing mysterious going on: the ball was from the very beginning
in the box, where it is later found.

Now consider the quantum version of the classical situation. Consider a
box with a particle in it. In an ideal situation, after some time its wave
function is uniformly spread out all over the box. The box is divided into
two halves, without revealing in which half the particle ends up; the two
halves are brought far apart.

The shadow indicates the intensity of the wave function

A measurement of the particle’s position is performed on the left half
box and the particle, for example, is not found there. How do the two
conceptions describe such a situation?

Conception 1 [Incompleteness]: the particle was all the time on the left
side. The measurement simply revealed its pre-existing position. So
nothing special happens in this case, it is like in classical physics.

Conception 2 [Completeness]: before the measurement there is no fact
about the particle being on the left half or the right half of the box. The
measurement on the left changes the state of things on both sides:
after the measurement the particle is certainly not on the left, and is
certainly on the right.



In this second case there is a nonlocal effect occurring. On this
ground, Einstein rejects incompleteness.

Quote from Einstein: My way of thinking is now this: properly
considered, one cannot [refute the completeness doctrine, i.e.,
Conception 2, i.e., the YES view] if one does not make use of a
supplementary principle: the ‘separation principle. That is to say: ‘the
second box, along with everything having to do with its contents, is
independent of what happens with regard to the first box (separated
partial systems).” If one adheres to the separation principle, then one
thereby excludes the [YES] point of view, and only the [NO] point of
view remains, according to which the above state description is an
incomplete description of reality, or of the real states.

[NORSEN]

Quote from Heisenberg: ...one other idealized experiment (due to
Einstein) may be considered. We imagine a photon which is
represented by a wave packet built up out of Maxwell waves. It will
thus have a certain spatial extension and also a certain range of
frequency. By reflection at a semi- transparent mirror, it is possible to
decompose it into two parts, a reflected and a transmitted packet.
There is then a definite probability for finding the photon either in
one part or in the other part of the divided wave packet. After a
sufficient time the two parts will be separated by any distance
desired; now if an experiment yields the result that the photon is,
say, in the reflected part of the packet, then the probability of finding
the photon in the other part of the packet immediately becomes
zero. The experiment at the position of the reflected packet thus
exerts a kind of action (reduction of the wave packet) at the distant
point occupied by the transmitted packet, and one sees that this
action is propagated with a velocity greater than that of light
[NORSEN].

However, it is also obvious that this kind of action can never be
utilized for the transmission of signals so that it is not in conflict with
the postulates of the theory of relativity [NORSEN]



The EPR Argument

Einstein was probably the first to recognize that Quantum Mechanics is
potentially in tension with Special Relativity.

We present the EPR argument in the form considered by Bohm, which is
the one used by Bell for developing his inequalities, and which is closer
to experimental verification.

Consider to 1/2 spin particles generated by a common source in a singlet
state and moving apart from each other in opposite directions. At the
two ends, Alice and Bob perform spin measurements by using Stern-
Gerlach devices.

The spin part of the wave function reads:
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It is a fact that Alice and Bob, separately, will find with probability 1/2
the spin of their particle up, and with probability 1/2 the spin down,

along any direction. However, every-time Alice and Bob measure the
spin along the same direction, they will find always opposite results:

one particle has spin up and the other spin down.

The situation is similar to the case of the boxes.

Conception 1 [Incompleteness]: The spin of the particle(s) is a pre-
existing property and the measurement simply reveals that property.
There is nothing mysterious in the experiment, it is like in classical
physics.

Conception 2 [Completeness]: The wave function represents the most
accurate description of the physical system, and the system’s properties
emerge at the time of measurement. Then, Einstein concludes, the
theory is nonlocal: before Alice’s measurement, Bon had 1/2
probability to find the spin up or down along a given direction; after
Alice’s measurement - no matter how far apart - Bob’s outcome will be
perfectly anti-correlated.



As before, Completeness leads to non-locality, which is refused by

Einstein. The only other alternative is incompleteness, what we now call
hidden variables.

The EPR argument can be summarized as follows:
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Bell on the EPR Argument

From “On the Einstein-Podolski-Rosen paradox”, Physics 1, 195 (1964).
This is the first paper of the series about Bell’s inequalities.

Let us set up the framework and notation, which we will use also for the
later proof of Bell’s theorem. Let us consider the EPR situation in the
reformulation of Bohm: two spin 1/2 particles initially in a singlet state,
and freely moving arbitrarily far away from each other in opposite
directions.

Let a the direction along which the spin is measured by Alice (on the
left) and b the direction along which the spin is measured by Bob (on
the right).

Let A and B be the outcomes of the two measurements, which can be +1
(spin up) or -1 (spin down):

A=A@|p)=+1, B=B(b|Y)==1

Let

P(A | a, ) be the probability for Alice to obtain outcome A for a spin
measurement along direction a, and similarly

P(B | b, ) the probability for Bob to obtain outcome B for a spin
measurement along direction b, given that the initial two-spin state is .

Let also

P(AB | a,b, Y) be the joint probability for Alice to obtain outcome A in a
spin measurement along direction a, and for Bob to obtain outcome B in
a spin measurement along direction b, given that the initial two-spin
state is .



The Quantum Mechanical description of the singlet state
is the following. If Alice performs a measurement along
direction a, with probability 1/2 she will find outcome +1
and with probability 1/2 out come -1. Suppose the
outcome is +1. Then the state collapses to:

)| - a) b4

Now Bob performs a
measurement along direction b.
It holds:

0 0
la) COS §|b> + sin 5\—b>

0
| — a) sin%\b} — CoS 5\—b>

Therefore:
IP>QM(—|_ + ’aa b7 w)
IP)QM("’ - ’aabaw) =

These results can be summarized as:

1
Pou(ABla,b,y) = 1(1 — ABa - b)

where A and B denote the measurement outcome (+1).
The expectation value is

Equ(a, bly) Pou(+ + |a, b, ) + Pou(— —[a, b, )
_PQM(—i_ - |aa b7 w) - PQM(_ + |a7 b7 Z/))
—cosf=—-a-b




The question is: can we construct a hidden variable model which makes
the outcomes deterministic and at the same time reproduces quantum
probabilities for the singlet state?

Let A represent a unit vector uniformly distributed on the entire sphere
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Locality assumption. The outcome A of Alice’s measurement is uniquely
determined by the value of the hidden variable A, the state vector { and
the direction a of measurement, and nothing else; in particular, it does
not depend on the direction of measurement b chosen by Bob. Similarly
for Bob’s outcome B:

In particular we choose

Ay = +signa - A Py A
Bu = —sigmb-d MR
Then we have / \“\*__——/
Puv(+ + |a,b, ) = Puy(——l|a,b,y) = ﬁ% _ %
Puv(+ — |a,b,9)) = Puy(—+|a,b,¢) = i(% gy = % B %

and



This model reproduces the cases considered by EPR:

Puv(+ +|a,a,¢) = Pou(++|a,a,¢) = 0
Puv(— —la,a,v) = Pou(——la,a,v) = 0
Puv(+—la,a,9) = Pou(+—la,a,9) = 1/2
Puv(—+|a,a,v) = Pou(—+l|a,a,v) = 1/2

Perfect anti-correlations are reproduced. However the quantum
probabilities for general directions a and b are not reproduced by the
hidden variable model. In particular:

0
Euv(a,b) = -1+ 2% # FEqu(a,blyp) = —cos

With a nonlocal model, it would be easy to reproduce the quantum
probabilities. It suffices for example to take

AHV = AHV(a7 b7 )‘7 ¢) — +Sign a’ -\
Biyv = Buv(b,\9Y) = —signb- A

where a’ is coplanar to a and b such that

/

0
1 —2— = cosb
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Where 6" is the angle between a’ and b. Then, following the
previous reasoning
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THE QUESTION is whether there exists a local hidden variable
model capable of accounting for quantum predictions; Bell with his
celebrated theorem gives a negative answer.

The logic of the 1964 Bell paper is the following

Lay Bell
+ inequalities

EPR

EPR argument

Bell’s thorem Bell’s contribution

The experimental violation of Bell’s inequalities implies that one of
the two hypotheses is wrong. Since singlet’s state correlations have
been confirmed in experiments, it is locality which must be
abandoned.
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Over the years, it seems that Bell’s theorem has been misunderstood
as follows

Locality

Bell
EPR : i
inequalities

+I

=+

So that the violation of Bell’s inequalities, given that Singlet’s correlations are
verified, imply that one can either give up locality or the existence of hidden
variables. This is summarized in the often cited supposed hypothesis of non-
local realism underlying Bell’s theorem. In this way one is allowed to give up

hidden variables (after all, they are hidden), and maintain locality of homage
to relativity.

This is a wrong way of presenting Bell’s theorem. In the Introduction to the
1964 paper, Bell himself was clear that: “It is the requirement of locality [...]
that creates the essential difficulty”. And in the paper entitled “Bertlmann’s
socks and the nature of reality”, footnote 10, he writes: “My own first paper
on the subject (...) starts with a summary of the EPR argument from locality
to deterministic hidden variables. But the commentaries have almost
universally reported that it begins with deterministic hidden variables”.

In the next section, we will present the modern version of Bell’s inequalities,
in the form provided in 1969 by Clauser-Holt-Horne-Shimony, without any
reference to hidden variables. It is a form which is particularly suitable for
experimental verification.

Note that the focus of Bell’s theorem has shifted from determinism / hidden

variables as in EPR to locality. The output of the EPR analysis did not go as
Einstein would have hoped.
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Bell’s Theorem

With reference to the EPRB setup, we derive Bell’s inequality in one of
its simplest formulations, which is close to the original formulation.

Let
Py (A(a) = - B(b) [{)

be the probability that, in a spin measurement performed by Alice along
direction a, and a spin measurement performed by Bob along direction
b, the outcomes are perfectly anti-correlated.

Note that the direction of measurements are different, and in this case
there si no need for the outcomes to be antic-correlated. Note also the
Bell is focussing on different directions, while the EPR argument
considers only same directions, where the singlet’s correlations are
more manifest.

Now, considering three different directions a, b and ¢ (we omit {):

Pyv(A(a) = —=B(b)) + Puy(A(b) = —B(c)) + Puy(A(c) = —B(a))
— = Puy(A(a) = A(b)) + Puv(A(b) = A(c)) + Puv(A(c) = A(a))
~ > Puy({A(a) = A(b)} U{A(b) = A(c)} U {(c) = A(a)})
= 1

EPR anti-correlations
Subadditivity of measures

The last equality holds because, being the LHV (local hidden variables)
dicotomic, at least one of the three cases holds true.

ad T + + + - - - _
b 4 + - - + + - -
+ - + - + - + _

Space of the

= subset where A(a) = a(b) hivven variables A,

divided into 8

= subset where A(b) = a(c) subsets

= subset where A(c) = a(a) 13



To summarize we have:

Puv(A(a) = =B(b)) 4+ Puv(A(b) = —B(c)) + Puv(A(c) = —B(a)) > 1

This is one version of Bell’s inequality.

Quantum Mechanics contradicts this inequality; let us consider
three directions of intermediate angles 120°. Then

Pou(A(a) = =B(b)) = Pou(+ —la,b, 1) + Pou(— + |a, b, ¢))
= cos? g = %(1 + cos 6)

where theta as usual is the angle formed by the two unit vectors. With
our choice of directions we have:

The same holds for the other two probabilities. Therefore:
3
Pou(A(a) = —B(b)) + Pau(A(b) = —B(c)) + Pau(A(c) = —B(a)) = |

thus violating the inequality.

The moral is that there exists no local hidden variable model capable of
reproducing the predictions of Quantum Mechanics (with respect to the
singlet state). But since local hidden variables are a consequence of the
locality assumption, given the EPR correlations, it follows that there
exists no local theory capable of reproducing the quantum mechanical
predictions.

The experimental violation of Bell’s inequalities implies that no local
theory is capable of describing the physics of entangled (singlet) states:
Nature is nonlocal.



Bell’s Theorem - CHSH

Consider

P(4, B|a, b, 1)

This is the probability that in a measurement of spin of the left particle
along direction a the outcome is A, and in a measurement of spin of the
right particle along direction b the outcome is B. (p can also be O or 1, if
the theory is deterministic)

Ais the state of the two-particle system.

Classical mechanics: A = positions and momenta of the particles
Quantum mechanics: A = wave function

Bohmian mechanics: A = wave function and positions of the particles

We are not committing to any specific theory.

As before

P(Ala,A) =same as before, but with no measurement B
P(B|b,A) =same as before, but with no measurement A

The definition of conditional probability implies:

P(4,B|a,b,1) = P(4|B,a,b, ) - P(B|a,b, 1)



Bell’s definition of locality: When the two measurements are space-
like separated from each other, what happens on one side cannot
influence the other side.

P(A|B,a,b,1) = P(4|a, 1)

P(B|A,a,b,1) = P(B|b, 1) A B

Together with the rules of conditional probability, locality implies

P(4, B|a, b, 1) = P(4|a, 1) - P(B|b, 1)

Now we prove the theorem. Consider the expectation value, given A

E,(a,b) = P(+, +|a,b, 1) + P(—, —|a,b, 1) — P(+,—|a,b, 1) — P(—, +|a, b, 1)

which is the sum of agreements minus sum of disagreements. Then,
using Bell’s locality condition:

Ex(a,b) = [P(+]a, 1) — P(=[a, D][P(+|b, 1) — P(=|b, 1)]

and

E,(a,b) —E;(a,d) =
[P(+[a, 1) = P(—|a, V][(P(+|b, ) — P(—[b,1)) — (P(+|d, 1) — P(—|d, 1))]

— _
——

=1-2P(—|a,1) € [-1,+1]
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Therefore

|Ea(a,b) — Ex(a, d)| = |(P(+]b, 1) — P(=|b, 1)) — (P(+]d, 1) — P(=[d, D))|

~ N -
T~ T~

r S

|Ea(c,b) + E; (¢, d)| < |(P(+]b,4) — P(=|b, 1)) + (P(+]|d, 1) — P(—[|d, 1))|

~— v
-~ ——

r S

So:

|Ex(a,b) — E;(a,d)| + |Ex(c,b) + Ej(c,d)| < |r —s| + |r + 5]

Taking the square we have:
[l — s| + |r + s|]? = 2r? + 25% + 2|r? — 52|

which is either equal to 412 or to 4s?; in either case, it is less than or
equal to 4, sincer,s € [—1, +1]. So:

r—s|+|r+s| <2
So we end up with:
|Ex(a,b) — E3(a,d)| + |Ez(c,b) + Ex(c, d)| < 2

This is Bell’s inequality, which is the direct consequence of Bell’s locality
condition alone

P(4,B|a,b, 1) = P(4|a, 1) - P(B|b, 1)

3

|Ex(a,b) — E;(a,d)| + |Ex(c,b) + Ej(c,d)| < 2

16



Now always we have full control of the state A of the system. For
example, in Bohmian Mechanics we can reasonably control the wave
function {, but not the positions of all particles Therefore the above
inequalities, as they are, are not always testable.

Solution: let us separate A = (u, v), where u are controllable and v are

uncontrollable degrees of freedom. The physically measurable quantity
IS:

E,(a,b) = [ B (a b)p(v)dv

Probability distribution; it reflects our ignorance

Given
|Ex(a,b) — Ez(a,d)| + [Ex(c,b) + Ej(c, d)| < 2
We have
|Eﬂ(a; b) _ Eﬂ(at d)l + |E[,L(CJ b) + E[,L(C) d)l S

< [ dvpW)|IEuy (@, b) — Eyy (@ d)| + |Equyy(c,b)
+ E(u,v) (C, d)l]

<2fdvp(v) =2

The inequality still holds.



Application to QM

As we have seen:
EQM(a7 b|,¢) = — COS t9a,b
Then:

|Ex(a,b) — Ez(a,d)| + [Ex(c,b) + Ex(c, d)| =

= |cosB,p — c0sO, 4| + |c0SO¢p + cOSO 4|

Let us choose the four angles as in the picture

C
\F< )\ d o |
2\ 2 _+_
/2
=2V2>2

The inequality is violated: QM is nonlocal.

The source of the nonlocality is in the collapse of the wave function.
Since the wave function is real and since the collapse changes it at a
distance, then there is a nonlocal effect.

Experiments showed that the inequalities are violated, therefore we
conclude that Nature is nonlocal



Conspiracy theories

Bell’s proof worked because we considered the distribution of the hidden
variables independent from the settings a and b

p(A) # p(A, a,b)

But if it does depend on the settings, it is easy to recover Quantum
probabilities from LHV. Consider the same LHV proposed by Bell, with
now

p(A\) = p(\,a,b) = M if sign(\ - a) = sign(A - b)
1 —cos6 : : :
- - 7 if sign(\ - a) # sign(\ - b)

where, again, theta is the angle between a and b.

1 —cosf 1 —cosf
80 ) 29 = 4 = IPDQM(—i_ + \a, b7 @D)

Puv(+ + |a, b, ) =

and similarly for the other probabilities. We are capable of recovering
guantum probabilities from a local model.



There are essentially two ways of satisfy the condition

p(A) = p(A,a,b)

The above condition implies that the distribution of the hidden variables
depend on the choice of the settings. The are basically two way for this
to happen:

* Retro-causation: the choice of the settings in the future influence the
distribution of the hidden variables in the past.

* Super-determinism: the settings were decided in the first place,
together with the hidden variables.

The first situation implies that the future can influence the past; the
second assumption denies free will in experiments: everything is pre-
determined.

Both assumptions are demanding and given that they are put forward
only to escape the conclusions of Bell’s theorem, it is much simpler to
accept that Nature is nonlocal.



No signalling theorem

Quantum nonlocality cannot be used to send information faster than
the speed of light. Actually measurements cannot send information

at all
@ @

We have two systems A and B, which in general share an entangled
state p4p. They are apart from each other. Arbitrary measurements
can be performed on each of them.

Alice performs a measurement of an observable A with eigen-
projectors PA. The state at Bob’s side changes to:

(P ® IP)pap(Pf ® IP)
- php = A B
PAB = PaB %Tf[(Pn @ I7)pag] T(PE® IB)pas]

‘ Born rule ‘ Von Neumann collapse

Then the average value of measurements Bob performs are given by:

=Y (P @ IB)pap (P ® IB)

08y = Tr((I* @ 0B)p. ] = Y Trl(A @ OB)P2 @ IP)p,n(PA® IB)] Cyclicity of trace
AB n AB\" n

v

= Z Tr((I* ® OF)(PA @ IP)*p, 5] |dempotent
= ) (I ® 0°)(PL @ IP)pyy) Linearity of trace +
n Projectors sum to 1

~_

= Tr[(" ® 0%)p,5] = (0P)
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The value Bob gets is the same before and after Alice’s measurement.
Bob does not see any difference in the statistics of the outcomes of his
measurements. There is no quantum operation (= unitary evolution or
measurement) Alice can do, that allows her to send information to Bob.

If one looks at the reason why it is so, it ultimately rests on the fact that

(B @ I")pap(Bf ® 1)
S = A& [B — v(pA & B Ay B
PAB ~ PaB %TT[(Pn & 17)papl TPEQ 1P pag] %(Pn Q@ I")pap(Py’ ® 17)

‘ Born rule ‘ Von Neumann collapse

In measurements, the Born rule and the von Neumann collapse are just
the right recipes that avoid superluminal communication.

This calls for an explanation.
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