
Quantum Computing
1 - Introduction

Angelo Bassi

Suggested textbooks

Quantum Computation and Quantum
Information, by Michael Nielsen and
Isaac Chuang.

Quantum Computing – From Linear
algebra to Physical Realization, by
Mikio Nakahara and Tetsuo Ohimi

Lecture notes on Quantum Computing by Stefano Olivares:
https://sites.unimi.it/olivares/quantum-computing/

(especially for physical realization of quantum computers)

Introduction to Python:
https://github.com/mainaezio/TIF_2020_Introduction_to_Python

Snapshot of modern classical
computers

1936: “On computable
numbers, with an
application to the
Entscheidungsproblem”,
Alan Turing

1947: First transistor (Bell Labs)

1975: Altair
8800, one of
the first micro
computers

1958: First
integrated
circuit

1981: Osborne 1, first
true mobile computer 1989: first Macintosh

viii Los Alamos Science Number 27 2002

Richard Feynman
On quantum physics and computer simulation

. . . there is plenty of room to make [computers] smaller. . . . nothing that I can see in

the physical laws . . . says the computer elements cannot be made enormously smaller

than they are now. In fact, there may be certain advantages.

—1959

Might I say immediately . . . we always have had a great deal of difficulty in under-

standing the world view that quantum mechanics represents. . . . I cannot define the

real problem, therefore I suspect there’s not a real problem, but I’m not sure there’s no

real problem.

I mentioned . . . the possibility . . . of things being affected not just

by the past, but also by the future, and therefore that our probabili-

ties are in some sense “illusory.” We only have the information

from the past and we try to predict the next step, but in reality it

depends upon the near future . . .I’m trying to get . . . you people

who think about computer-simulation possibilities to . . . digest . . .

the real answers of quantum mechanics and see if you can’t invent

a different point of view than the physicists . . .

. . . the discovery of computers and the thinking about computers

has turned out to be extremely useful in many branches of human

reasoning. For instance, we never really understood how lousy our

understanding of languages was, the theory of grammar and all that

stuff, until we tried to make a computer which would be able to

understand language . . . I . . . was hoping that the computer-type

thinking would give us some new ideas . . .

. . . trying to find a computer simulation of physics seems to me to be an

excellent program to follow out. . . . the real use of it would be with quantum

mechanics. . . . Nature isn’t classical . . . and if you want to make a simulation of

Nature, you’d better make it quantum mechanical, and by golly it’s a wonderful

problem, because it doesn’t look so easy.

—1981

Feynman, R. 1959. There’s Plenty of Room at the Bottom. Talk given at the annual meeting of the American

Physical Society at Caltech. (Excerpt reprinted with permission from Caltech’s Engineering and Science.)

———. 1981. Simulating Physics with Computers. Keynote address delivered at the MIT Physics of

Computation Conference. Published in Int. J. Theor. Phys. 21 (6/7), 1982. (Excerpts reprinted with

permission from the International Journal of Theoretical Physics.)

Brief history of
quantum computing
1980s: Richard Feynman

• Classical computers are very
inefficient in simulating
quantum systems (eN)

• Computers are physical
objects

• Why not creating computers
following quantum laws?

• They will efficiently simulate
at least themselves, maybe
more, thus will be faster than
any classical computer

Brief history of quantum
computing

1980: Paul Benioff describes the first QM model of computation

1985: David Deutsch describes first universal QC

1992: Deutsch-Jozsa algorithm

1993: Simon’s algorithm

1994: Shor’s algorithm

1995: Monroe & Wineland realize the first quantum gate (CNOT)
with trapped ions

1996: Grover’s algorithm

1998: First realization of a quantum algorithm (Deutsch-Jozsa),
with NMR

1999: Nakamura and Tsai demonstrate superconducting qubits

2000: Fahri et al. propose Adiabatic Quantum Computation

2000: Raussendorf et al: One way (measurement based) quantum
computing

2001: Shor’s algorithm implemented to factorize 15

2014: Fahri et al. QAOA (Quantum Approximate Optimization
Algorithm)

2016: IBM Quantum Experience

2019: Quantum supremacy by Google (?)

2023: First tests of error correcting schemes (Google)

(from “Timeline of Quantum Computing”, Wikipedia)

The Rise of Quantum Computing
Companies

Source: The Quantum Insider Intelligence Platform

Physical realization of Quantum
Computers
Superconducting qubits: In superconductors, the basic charge carriers are
pairs of electrons (known as Cooper pairs), rather than single fermions as
found in typical conductors. These implement superconducting
electronic circuits using superconducting qubits as artificial atoms; the
two logic states are the ground state and the excited state.
Superconducting quantum computing devices are typically designed in
the radio-frequency spectrum, cooled in dilution refrigerators below 15
mK (millikelvins) and addressed with conventional electronic
instruments, e.g. frequency synthesizers and spectrum analyzers.

The largest number of qubits is about 433 (IBM)

Companies:

1. IBM

2. Google

3. Intel

4. Rigetti

Trapped ions: the ions are suspended in free space using electromagnetic
fields. Qubits are stored in stable electronic states of each ion, and
quantum information can be transferred through the collective
quantized motion of the ions in a shared trap (interacting through the
Coulomb force). Lasers are applied to induce coupling between the qubit
states (for single qubit operations) or coupling between the internal
qubit states and the external motional states (for entanglement between
qubits).

The largest number of particles to be controllably entangled is about 20-
30 trapped ions.

Companies:

1. Quantinuum (2021 – Cambridge UK)

2. IonQ (2015 – Maryland USA)

3. Quantum Factory (2018 – Munich DE)

4. Alpine Quantum Technologies (2018 – Austria AT)

5. Oxford Ionics (2019 – Begbroke UK)

6. EleQtron (2020 – Siegen DE)

Neutral atoms: the atoms are trapped in optical lattices, and
manipulated with lasers. Qubits are encoded in the internal states.
To turn on interactions between qubits, researchers target a pair of
adjacent atoms with a laser pulse that excites one of them to a high-
energy state called a Rydberg state, in which a valence electron
orbits far from the nucleus. The Rydberg atom’s strong electric
dipole interactions prevent the laser from also exciting its neighbour,
an effect known as a Rydberg blockade, but it’s impossible to know
which of the atoms was excited. The result is a single excitation
shared between two qubits that can’t be described separately—the
characteristic feature of entanglement.

The largest number of particles to be controllably entangled is about
10 neutral atoms. Overall they can control hundred of atoms.

Companies:

1. Pasqual (2019 – Paris Region FR)

2. Atom Computing (2018 – Berkeley USA)

3. ColdQuanta (2007 – Boulder USA)

4. Quera Computing (2018 – Boston USA)

Photons: It is a type of quantum computing that uses photons as a
representation of qubits. The main advantages are simple
components, the ability to run a variety of quantum operations, and
most importantly, photonic quantum computers can perform at
room temperature, which reduces the size of the extreme cooling
systems.

Companies:

1. Xanandu Quantum Technologies (2016 – Canada)

2. ORCA Computing (2019 – London UK)

3. PsiQuantum (2015 – Silicon Valley USA)

4. TundraSystem Global (2014 – Cardiff UK)

5. Quandela (2017 – Paris FR)

6. QuiX Quantum (2019 – Enschede NL)

Cloud-based Quantum Computing

IBM Q Experience (superconducting qubits)

Xanadu (photonic quantum computer)

Forest by Rigetti Comuting (superconducting qubits)

Several simulators of quantum computers

Classical computation

Several models studied for the theory of classical computation

• Turing machines

• High-level programmable languages

• Boolean circuits

So far, the Boolean circuit model is by far the easiest model to
generalize to quantum computation, being the closest to physical
implementation. We will review it very briefly.

Boolean circuit model

Proposition: Any Boolean function

f: {0,1}n → {0,1}m

is computable by a Boolean circuit C using just AND, OR and NOT gates
(in other words, AND, OR, NOT are universal for classical computation)

INPUT OUTPUT

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

AND gate

The AND gate is a basic digital logic gate that implements logical conjunction -
it behaves according to the truth table to the right. A HIGH output (1) results
only if all the inputs to the AND gate are HIGH (1). If none or not all inputs to
the AND gate are HIGH, a LOW output results. The function can be extended to
any number of inputs.

Symbols

Implementations

Analytical representation

Alternatives

IC package

See also

References

There are three symbols for AND gates: the American (ANSI or 'military') symbol and the IEC
('European' or 'rectangular') symbol, as well as the deprecated DIN symbol. Additional inputs can
be added as needed. For more information see Logic Gate Symbols. It can also be denoted as
symbol "^" or "&".

MIL/ANSI Symbol IEC Symbol DIN Symbol

The AND gate with inputs A and B and output C implements the logical expression .
This expression also may be denoted as C=A^B or C=A&B.

Contents

Symbols

Implementations

INPUT
A B

OUTPUT
A + B

0 0 0

0 1 1

1 0 1

1 1 1

Porta OR

Da Wikipedia, l'enciclopedia libera.

La porta OR (dalla congiunzione inglese or, "o") è una porta logica digitale che
implementa la disgiunzione logica: essa si comporta come la tabella di verità a
destra. Quando entrambe le sue entrate (input) sono su 0 (zero) o su BASSA, la
sua uscita (output) è su 0 o su BASSA, mentre quando una sola delle sue entrate
è su 1 (uno) o su ALTA, la sua uscita sarà su 1 o su ALTA. In altre parole, la
funzione OR trova effettivamente il massimo tra due cifre binarie, proprio come
la funzione complementare AND (equivalente alla congiunzione "e") trova il
minimo.[1]

Simboli

Descrizione hardware e disposizione dei contatti

Linguaggio di descrizione dell'hardware

Implementazioni

Alternative

OR cablato

Note

Voci correlate

Altri progetti

Si usano tre simboli per le porte OR: il simbolo statunitense (ANSI o "militare") e il simbolo IEC
("europeo" o "rettangolare"), oltre al simbolo deprecato DIN.[2][3] Per una panoramica generale sui
simboli delle porte logiche vedi la voce Porta logica.

Simbolo MIL/ANSI Simbolo IEC simbolo DIN

Indice

Simboli

Descrizione hardware e disposizione dei contatti

INPUT OUTPUT

A NOT A

0 1

1 0

Inverter (logic gate)

In digital logic, an inverter or NOT gate is a logic gate which implements
logical negation. The truth table is shown on the right.

Electronic implementation

Digital building block

Analytical representation

Alternatives

Performance measurement

See also

References

External links

An inverter circuit outputs a voltage representing the opposite logic-level to
its input. Its main function is to invert the input signal applied. If the
applied input is low then the output becomes high and vice versa. Inverters
can be constructed using a single NMOS transistor or a single PMOS
transistor coupled with a resistor. Since this 'resistive-drain' approach uses
only a single type of transistor, it can be fabricated at a low cost. However, because current flows
through the resistor in one of the two states, the resistive-drain configuration is disadvantaged for
power consumption and processing speed. Alternatively, inverters can be constructed using two
complementary transistors in a CMOS configuration. This configuration greatly reduces power

consumption since one of the transistors is always off in both logic states.[1] Processing speed can
also be improved due to the relatively low resistance compared to the NMOS-only or PMOS-only
type devices. Inverters can also be constructed with bipolar junction transistors (BJT) in either a
resistor–transistor logic (RTL) or a transistor–transistor logic (TTL) configuration.

Digital electronics circuits operate at fixed voltage levels corresponding to a logical 0 or 1 (see
binary). An inverter circuit serves as the basic logic gate to swap between those two voltage levels.
Implementation determines the actual voltage, but common levels include (0, +5V) for TTL
circuits.

Contents

Electronic implementation

AND A∧B OR A∨B NOT ¬A

Example 1: NAND, NOR, XOR

INPUT OUTPUT

A B A NAND B

0 0 1

0 1 1

1 0 1

1 1 0

NAND gate

In digital electronics, a NAND gate (NOT-AND) is a logic gate which produces an output which is false only if
all its inputs are true; thus its output is complement to that of an AND gate. A LOW (0) output results only if all
the inputs to the gate are HIGH (1); if any input is LOW (0), a HIGH (1) output results. A NAND gate is made
using transistors and junction diodes. By De Morgan's theorem, a two-input NAND gate's logic may be
expressed as AB=A+B, making a NAND gate equivalent to inverters followed by an OR gate.

The NAND gate is significant because any boolean function can be implemented by using a combination of
NAND gates. This property is called functional completeness. It shares this property with the NOR gate. Digital
systems employing certain logic circuits take advantage of NAND's functional completeness.

The function NAND(a1, a2, ..., an) is logically equivalent to NOT(a1 AND a2 AND ... AND an).

One way of expressing A NAND B is , where the symbol signifies AND and the bar
signifies the negation of the expression under it: in essence, simply .

NAND gates with two or more inputs are available as integrated circuits in transistor-transistor
logic, CMOS, and other logic families.

Symbols

Hardware description and pinout

CMOS version

Availability

Implementations

Functional completeness

See also

References

External links

There are three symbols for NAND gates: the MIL/ANSI symbol, the IEC symbol and the deprecated DIN symbol sometimes found
on old schematics. For more information see logic gate symbols. The ANSI symbol for the NAND gate is a standard AND gate with
an inversion bubble connected.

MIL/ANSI Symbol IEC Symbol DIN Symbol

NAND gates are basic logic gates, and as such they are recognised in TTL and CMOS ICs.

The standard, 4000 series, CMOS IC is the 4011, which includes four independent, two-input, NAND gates.

These devices are available from most semiconductor manufacturers such as Fairchild Semiconductor, Philips or Texas
Instruments. These are usually available in both through-hole DIL and SOIC format. Datasheets are readily available in most
datasheet databases.

Contents

Symbols

Hardware description and pinout

CMOS version

Availability

INPUT OUTPUT

A B A NOR B

0 0 1

0 1 0

1 0 0

1 1 0

NOR gate

The NOR gate is a digital logic gate that implements logical NOR - it behaves
according to the truth table to the right. A HIGH output (1) results if both the
inputs to the gate are LOW (0); if one or both input is HIGH (1), a LOW output
(0) results. NOR is the result of the negation of the OR operator. It can also in
some senses be seen as the inverse of an AND gate. NOR is a functionally
complete operation—NOR gates can be combined to generate any other logical
function. It shares this property with the NAND gate. By contrast, the OR
operator is monotonic as it can only change LOW to HIGH but not vice versa.

In most, but not all, circuit implementations, the negation comes for free—
including CMOS and TTL. In such logic families, OR is the more complicated operation; it may use
a NOR followed by a NOT. A significant exception is some forms of the domino logic family.

The original Apollo Guidance Computer used 4,100 integrated circuits (IC), each one containing

only two 3-input NOR gates.[1]

Symbols

Hardware description and pinout

Availability

Implementations

Functional completeness

See also

References

There are three symbols for NOR gates: the American (ANSI or 'military') symbol and the IEC
('European' or 'rectangular') symbol, as well as the deprecated DIN symbol. For more information
see Logic Gate Symbols. The ANSI symbol for the NOR gate is a standard OR gate with an
inversion bubble connected.

MIL/ANSI Symbol IEC Symbol DIN Symbol

Contents

Symbols

Hardware description and pinout

=
INPUT OUTPUT

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

XOR gate

XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate
that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate
implements an exclusive or; that is, a true output results if one, and only one, of the inputs to the
gate is true. If both inputs are false (0/LOW) or both are true, a false output results. XOR
represents the inequality function, i.e., the output is true if the inputs are not alike otherwise the
output is false. A way to remember XOR is "must have one or the other but not both".

XOR can also be viewed as addition modulo 2. As a result, XOR gates are used to implement
binary addition in computers. A half adder consists of an XOR gate and an AND gate. Other uses

include subtractors, comparators, and controlled inverters.[1]

The algebraic expressions and both

represent the XOR gate with inputs A and B. The behavior of XOR is
summarized in the truth table shown on the right.

Symbols

Pass-gate-logic wiring

Analytical representation

Alternatives

More than two inputs

Applications

Uses in addition

Pseudo-random number generator

Correlation and sequence detection

See also

References

There are three schematic symbols for XOR gates: the traditional ANSI and DIN symbols and the IEC symbol. In
some cases, the DIN symbol is used with Å instead of ≢. For more information see Logic Gate Symbols.

ANSI XOR Schematic Symbol DIN XOR Schematic Symbol IEC XOR Schematic Symbol

The logic symbols Å, Jpq, and ⊻ can be used to denote an XOR operation in algebraic expressions.

C-like languages use the caret symbol ^ to denote bitwise XOR. (Note that the caret does not denote logical
conjunction (AND) in these languages, despite the similarity of symbol.)

Contents

Symbols

Pass-gate-logic wiring

XOR A⊕B

Example 2: Half adder

Note the elements of a circuit:

• Wires

• Gates

• Input on the left

• Output on the right

Size of a circuit = number of gates

DUPE gate: duplicates bits

=
sum

=
carry

Pronunciation: ex-or

NAND is universal

The number of fundamental gates can be reduced

Proposition: The NAND and DUPE gates are universal for computation

Truth Table

Input A Input B Output Q

0 0 1

0 1 1

1 0 1

1 1 0

A NAND gate is a universal gate, meaning that any other gate can be represented as a combination
of NAND gates.

A NOT gate is made by joining the inputs of a NAND gate together. Since a NAND gate is
equivalent to an AND gate followed by a NOT gate, joining the inputs of a NAND gate leaves only
the NOT gate.

Desired NOT Gate
NAND

Construction

Q = NOT(A) = A NAND A

Truth Table

Input A Output Q

0 1

1 0

An AND gate is made by inverting the output of a NAND gate as shown below.

Desired AND Gate NAND Construction

Q = A AND B
= (A NAND B) NAND (A NAND

B)

Making other gates by using NAND gates

NOT

AND

Truth Table

Input A Input B Output Q

0 0 1

0 1 1

1 0 1

1 1 0

A NAND gate is a universal gate, meaning that any other gate can be represented as a combination
of NAND gates.

A NOT gate is made by joining the inputs of a NAND gate together. Since a NAND gate is
equivalent to an AND gate followed by a NOT gate, joining the inputs of a NAND gate leaves only
the NOT gate.

Desired NOT Gate
NAND

Construction

Q = NOT(A) = A NAND A

Truth Table

Input A Output Q

0 1

1 0

An AND gate is made by inverting the output of a NAND gate as shown below.

Desired AND Gate NAND Construction

Q = A AND B
= (A NAND B) NAND (A NAND

B)

Making other gates by using NAND gates

NOT

AND

Truth Table

Input A Input B Output Q

0 0 0

0 1 0

1 0 0

1 1 1

If the truth table for a NAND gate is examined or by applying De Morgan's Laws, it can be seen
that if any of the inputs are 0, then the output will be 1. To be an OR gate, however, the output
must be 1 if any input is 1. Therefore, if the inputs are inverted, any high input will trigger a high
output.

Desired OR Gate NAND Construction

Q = A OR B
= (A NAND A) NAND (B NAND

B)

Truth Table

Input A Input B Output Q

0 0 0

0 1 1

1 0 1

1 1 1

A NOR gate is an OR gate with an inverted output. Output is high when neither input A nor input B
is high.

Desired NOR Gate NAND Construction

Q = A NOR B
= [(A NAND A) NAND (B NAND B)]

NAND

OR

NOR

Reversible Computation

Logical gates are not always reversible:

• NOT is reversible

• AND is irreversible

The laws of Physics are reversible, therefore if computation is
implemented physically, it should be written in terms of reversible
gates ➜ Universal reversible computation should be possible,
there should exists a universal set of reversible gates.

INPUT OUTPUT

A NOT A

0 1

1 0

Inverter (logic gate)

In digital logic, an inverter or NOT gate is a logic gate which implements
logical negation. The truth table is shown on the right.

Electronic implementation

Digital building block

Analytical representation

Alternatives

Performance measurement

See also

References

External links

An inverter circuit outputs a voltage representing the opposite logic-level to
its input. Its main function is to invert the input signal applied. If the
applied input is low then the output becomes high and vice versa. Inverters
can be constructed using a single NMOS transistor or a single PMOS
transistor coupled with a resistor. Since this 'resistive-drain' approach uses
only a single type of transistor, it can be fabricated at a low cost. However, because current flows
through the resistor in one of the two states, the resistive-drain configuration is disadvantaged for
power consumption and processing speed. Alternatively, inverters can be constructed using two
complementary transistors in a CMOS configuration. This configuration greatly reduces power

consumption since one of the transistors is always off in both logic states.[1] Processing speed can
also be improved due to the relatively low resistance compared to the NMOS-only or PMOS-only
type devices. Inverters can also be constructed with bipolar junction transistors (BJT) in either a
resistor–transistor logic (RTL) or a transistor–transistor logic (TTL) configuration.

Digital electronics circuits operate at fixed voltage levels corresponding to a logical 0 or 1 (see
binary). An inverter circuit serves as the basic logic gate to swap between those two voltage levels.
Implementation determines the actual voltage, but common levels include (0, +5V) for TTL
circuits.

Contents

Electronic implementation

INPUT OUTPUT

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

AND gate

The AND gate is a basic digital logic gate that implements logical conjunction -
it behaves according to the truth table to the right. A HIGH output (1) results
only if all the inputs to the AND gate are HIGH (1). If none or not all inputs to
the AND gate are HIGH, a LOW output results. The function can be extended to
any number of inputs.

Symbols

Implementations

Analytical representation

Alternatives

IC package

See also

References

There are three symbols for AND gates: the American (ANSI or 'military') symbol and the IEC
('European' or 'rectangular') symbol, as well as the deprecated DIN symbol. Additional inputs can
be added as needed. For more information see Logic Gate Symbols. It can also be denoted as
symbol "^" or "&".

MIL/ANSI Symbol IEC Symbol DIN Symbol

The AND gate with inputs A and B and output C implements the logical expression .
This expression also may be denoted as C=A^B or C=A&B.

Contents

Symbols

Implementations

This problem was studied in the ‘60s and ‘70s by Landauer e Bennett
in connection with thermodynamics.

They were considering whether it is possible to have circuits made
only of reversible gates, thus dissipating no energy. This was thought
to be an important issue at that time. In fact now supercomputers
needs heavy cooling systems. Yet it is not the most pressing one.

Reversible computation is important in the context of quantum
computation, because – as we will see – quantum circuits need to be
reversible in order to work properly.

Reversible gates - CNOT gate

Definition: A Boolean gate G is said to be reversible if it has the same
number of inputs and outputs, and its mapping is bijective.

Some important new reversible gates

CNOT =
x1

x2

x1

x1 ⊕ x2

x1 x2 x1 x1 ⊕ x2

input outpu
t

Control bit

Target bit

If the control bit is 0, the target bit is left unchanged, otherwise it is flipped

CCNOT gate

x1

x2

x1

(x1 ∧ x2) ⊕ x3

Control bit

Target bit

A NOT gate is applied to the target bit only if both
control bits are 1, otherwise it is left unchanged.
This is also called Toffoli gate.

CCNOT =

Control bit

x3

x2

Comments:

• With the same logic, one can build the CCCNOT = C3NOT gate and in
general the CnNOT gate.

• The CNOT and CCNOT are their own inverse. If applied twice, they
give the identity. This is not always the case.

Universal reversible gates

CCNOT can be used to simulate NAND and DUPE

x1

x2

x1

NAND(x1,x2)1

x2

1

x2

1

0

x2

x2

Garbage
GarbageAncilla

Ancilla Ancilla

Theorem: The CCNOT gate is universal, assuming that ancilla inputs and
garbage outputs are allowed. Any standard Boolen circuit can be
efficiently transformed into a reversible circuit.

Reversible circuit

So far ancillas were sometimes 0 sometimes 1. They can be initialized
to the same value, let’s say 1, by means of a NOT gate. A reversible
circuit computing f: {0,1}n → {0,1}m will then look as follows

x1

x2

xn

…

1
1
1

f(x)1

f(x)2

f(x)m

…
Input

Ancillas

Output

Garbage

Reversible circuit
computing f

The number of inputs and outputs is the same; the number of wires
never changes. In fact, we can stop thinking about wires and think
about each bit being carried in its own register, keeping its identity
throughout the computation.

Probabilistic (randomized)
computation

We can open to the possibility that the value of a bit is not known with
certainty

0 or 1
0 with probability p1
1 with probability p2

deterministic bit random bit

Note: the physics has not changed, we simply do not know the value of
the bit.

The mathematical model changes, though. There are some
computational tasks which we know how to provably solve efficiently
using randomized computation (like generating prime numbers) but
which we do not know how to provably solve efficiently using
deterministic computation.

However there should not be any fundamental difference between the
two models of computation, since they are based on the same physics.

We will introduce a new notation to deal with probabilistic
computation, which will bring us a bit closer to quantum computation.

1
0

0
1

p1

p2

|0>

|1>

p1|0> + p2|1>

0

1

0 with probability p1
1 with probability p2

Basic notation Vector notation Abstract (Dirac) notation

For finite probabilistic models, see

Van Kampen "Stochastic process in Physics and
Chemistry”, chapter V.2

https://arxiv.org/pdf/2209.14902 (section 4.3)

https://arxiv.org/pdf/1405.0303 (section 2)

https://arxiv.org/pdf/2209.14902
https://arxiv.org/pdf/1405.0303

Gates in the new notation: the
NOT gate

In the new notation, gates are represented by matrices

NOT =
0 1
1 0

For all other gates, we need to understand how to represent two and more bits.

1
0

1
0

0
1

0 1
1 0

0 = = 1=

0
1

0
1

1
0

0 1
1 0

1 = = 0=

0 1
1 0

=p1

p2

p1

p2

p2

p1

Then

Two (and more) random bits

With two bits, we have four possible states

1
0
0
0

=
1
0

1
0⊗00

0
1
0
0

=
1
0

0
1⊗01

0
0
1
0

=
0
1

1
0⊗10

0
0
0
1

=
0
1

0
1⊗11

Tensor product (we’ll come back on this soon)

Two-bit gates: the AND gate

AND =
1 1 1 0
0 0 0 1

1
0 = 0

Note: it is not a square matrix, because the
gate is not reversible

1
0
0
0

=00 =
1 1 1 0
0 0 0 1

1
0
0
0

1
0 = 0

0
1
0
0

=01 =
1 1 1 0
0 0 0 1

1
0
0
0

1
0 = 0

1
0
0
0

=10 =
1 1 1 0
0 0 0 1

0
0
1
0

0
1 = 1

0
0
0
1

=11 =
1 1 1 0
0 0 0 1

0
0
0
1

Two-bit gates: the CNOT gate

CNOT =

= 00

Note: it is a square matrix, because the gate is
reversible

1
0
0
0

=00 =

1
0
0
0

= 01

0
1
0
0

=01 =

1
0
0
0

= 11

1
0
0
0

=10 =

0
0
1
0

= 10

0
0
0
1

=11 =

0
0
0
1

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
0
0
0

0
1
0
0

0
0
0
1

0
0
1
0

A truly probabilistic gate

We introduce two new gates

COIN =

1 ½
0 ½

It has no input and a single bit output. It generates randomly either a 0 or a
1, with probability ½ each. It is like fair coin tossing.

$ ½
½

1COIN = 1$ =

If the input bit is 0, it is left unchanged. If it is 1, it is replaced by a COIN.

Example 1

$
With probability ½ the input bit 00 and with
probability ½ it is 10. In the first case the CNOT
will leave in unchanged, in the second case it
will changed into 11.

|0>

In mathematical terms

½
½

1
0

⊗ =

½
0
½
0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

½
0
½
0

½
0
0
½

= = ½

1
0
0
0

+ ½

0
0
0
1

00 11

Example 2

$

|0>

½
½

1
0

⊗ =

½
0
½
0

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

½
0
½
0

1$

½
0
0
½

=

1 ½ 0 0
0 ½ 0 0
0 0 1 ½
0 0 0 ½

½
0
0
½

½
0
¼
¼

=

1 0
0 1

1 ½
0 ½

⊗

Using the Dirac notation (|0> ⊗ |0> = |00>, and same for others)

½ |00> + ½ |10> ➜ ½ |00> + ½ |11> ➜ ½ |00> + ½ (½ |10> + ½ |11>)

= ½ |00> + ¼ |10> + ¼ |11> = ½
0
¼
¼

Example 3

$

|0> 1$

½ |000> + ½ |100> ➜ ½ |000> + ½ |110>

 ➜ ½ |000> + ½ (½ |100> + ½ |110>) = ½ |000> + ¼ |100> + ¼ |110>

 ➜ ½ |000> + ¼ |100> + ¼ |111>

 ➜ ½ |000> + ¼ (½ |000> + ½ |100>) + ¼ (½ |011> + ½ |111>)

 = Τ5 8 |000> + Τ1 8 |100> + Τ1 8 |011> + Τ1 8 |111>

|0>

1$

Comment 1

We used the formalism of linear algebra for probabilistic computation
because “ignorance propagates linearly”.

If a physical system is either in state x with probability p or in state y with
probability q, and x evolves into X and y into Y, then at the end the
system will be in state X with probability p or in state Y with probability
q. In Dirac notation:

p|x> + q|y> ➜ p|X> + q|Y> = p T[|x>] + q T[|y>] = T[p|x> + q|y>]

The evolution operator T is linear, and can be represented by a matrix.

Comment 2

Measurements simply reveal the true state of the system, which was
unknown to us before the measurement. After the measurement, the
information about the state of the system changes, and with it the
probability distribution. With reference to the previous example

1. We measure the three bits and find 000:

Τ5 8 |000> + Τ1 8 |100> + Τ1 8 |011> + Τ1 8 |111> ➜ |000>

This happens with probability Τ5 8

2. We measure the first bit and find 0; this happens with probability
Τ5 8 + Τ1 8 = Τ3 4

Τ5 8 |000> + Τ1 8 |100> + Τ1 8 |011> + Τ1 8 |111> ➜
Τ5 8|000>+ Τ1 8 |011>

Τ3 4

 = Τ5 6 |000> + Τ1 6 |011>

We can call it “collapse” of the probability. It is not a real physical
phenomenon. It is Bayes rule: P(A|B) = P(B|A) P(A) / P(B). In our case:

P(|000>|“0”) = P(“0”||000>) P(|000>) / P(”0”) = 1 × Τ5 8 ÷ Τ3 4 = Τ5 6

Rules of probabilistic classical
computation

1. The state of a single probabilistic bit is given by a vector in R2, or in
Dirac notation:

|x> = p|0> + q|1>, with p,q ∈ ℝ, and p+q=1.

The coefficients give the probabilities for the bit to have that value.

States for multiple bits are constructed via tensor product of R2

Two bits: |xy> = |x> ⊗|y>

Three bits: |xyz> = |x> ⊗|y> ⊗|z>, and so on

Why tensor products, and not – for example – Cartesian product?

Take for example three bits. There are 8 possible configurations: 000,
001, 010, 011, 100, 101, 110, 111. The register can be in any of these 8
states, and the information propagates linearly (without interference
among the states), therefore they behave like linearly independent
states.

This means that one needs 8 basis states in the vector space, which is
what is provided by the tensor product, not by the Cartesian product.

Rules of probabilistic classical
computation

2. Gates are implemented by linear operators, i.e. matrices.

Gates can be either reversible (square invertible matrices) or
irreversible (for example rectangular matrices).

As we saw that computation can always be made reversible, without
loss of generality we can say that gates are implemented by linear
invertible operators (NxN invertible stochastic matrices).

Of course, they have to preserve probabilities.

3. Measurements are updates of information. The states changes
according to Bayes rule (“collapse” of the state)

As we will see, the rules of quantum computation are almost similar,
but with fundamental differences.

Preview of Quantum Computation

Beam splitters (BS) are optical devices, which split the path of a photon in
two: once a photon has entered, there is ½ probability that it goes one
way, and ½ probability that it goes the other way. It is a probabilistic gate.

|0>

|0>

|1>

|1>

If we associate the value of the bit
to the path of the photon (instead
of the voltage as in standard
computers), then we have

|0> ➜ ½ |0> + ½ |1>

|1> ➜ ½ |0> + ½ |1>

Whatever the input state, it generates an equal weighted distributions
of 0 and 1. The matrix representation is:

½ ½
½ ½

BS

p
q

$= |x> ➜ ½ |0> + ½ |1>

In fact:
½ ½
½ ½ =

½
½ since p+q=1

Then

This is equivalent to the following
circuit

Since

Preview of Quantum Computation

But now we can do the following optical construction:

BS =

½ ½
½ ½

|0>

|1>

|1>

|0>

mirror

mirror

BS BS

½ ½
½ ½

½ ½
½ ½=

In a classical picture (coin tossing), this makes perfectly sense

|0> ➜ |0>

|1> ➜ |1>

How is this possible? The answer is
that photons are quantum: they
cannot be thought as particles which
follow one path or the other. They are
more like waves, which split in two,
interfere and then recombine

But this is not what happens. What happens it:

|0>

|1>

|1>

|0>

mirror

mirror

Preview of Quantum Computation

We will see how this is described by quantum mechanics, but the
essence is the following: how can we destroy probabilities?

We have to justify

|0> ➜ ½ |0> + ½ |1> ➜ |0>

Instead of

|0> ➜ ½ |0> + ½ |1> ➜ ½ |0> + ½ |1>

first BS

first BS

second BS

second BS

We destroy probabilities with negative (in general, complex) numbers.
But what does it mean to have negative probabilities? The solution of
QM is:

Bit ➜ p|0> + q|1> with p,q ∈ ℝ+ and p+q=1

changed into

Qubit ➜ a|0> + b|1> with a,b ∈ ℂ and |a|2 + |b|2 = 1

probabilities

Probabilities
(they remain always positive)

amplitudes

Preview of Quantum Computation

The BS is mathematically described by

BS = H Hadamard gate H =
1 1
1 -1

𝟏

𝟐

Then

H
|0> ➜ ൗ𝟏 𝟐

 |0> + ൗ𝟏 𝟐
 |1>

|1> ➜ ൗ𝟏 𝟐
 |0> - ൗ𝟏 𝟐

 |1>

In both cases,
probabilities are 50% of
getting the value 0 or 1

!!!

But now

1 1
1 -1

𝟏

𝟐

What happens physically is that the photon behaves like a wave. There
can be constructive interference, which mathematically is expressed by
amplitudes adding, and destructive interference, which mathematically
is expressed by amplitudes subtracting. This is the role of negative
numbers.

BS =BS
1 1
1 -1

𝟏

𝟐
=

1 0
0 1

After the second BS, the bit takes the initial value

Preview of Quantum Computation

The surprising thing is that if we measure the photon right after the
first BS and before it enters the second one, we will not find it half here
and half there, as it would happen with classical waves. It will always be
either here or there, and the wave behaviour is destroyed.

Understanding what this means brings into the foundations of quantum
mechanics, which is beyond the scope of the present course.

Quantum Computation

|0>

|0>

mirror

mirror

1. Initialize the state 2. Create the
superposition of all states
Like parallel processing

3. Compute the function (trivial one, in the example)

4. Make the state
interfere so that the
correct answer has
higher probability

5. Read the
output

The essence of a quantum computation is the following

The art of quantum computing is to make the different terms of the
superposition interfere in such a way to maximize the correct answer, in
a number of steps which is smaller than for any classical algorithm .

This is the
difficult part

	Slide 1: Quantum Computing 1 - Introduction
	Slide 2: Suggested textbooks
	Slide 3: Snapshot of modern classical computers
	Slide 4: Brief history of quantum computing
	Slide 5: The Rise of Quantum Computing Companies
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Cloud-based Quantum Computing
	Slide 10: Classical computation
	Slide 11: Example 1: NAND, NOR, XOR
	Slide 12: NAND is universal
	Slide 13: Reversible Computation
	Slide 14: Reversible gates - CNOT gate
	Slide 15: Universal reversible gates
	Slide 16: Probabilistic (randomized) computation
	Slide 17: Gates in the new notation: the NOT gate
	Slide 18: Two (and more) random bits
	Slide 19: Two-bit gates: the AND gate
	Slide 20: A truly probabilistic gate
	Slide 21: Example 2
	Slide 22: Example 3
	Slide 23: Comment 2
	Slide 24: Rules of probabilistic classical computation
	Slide 25: Rules of probabilistic classical computation
	Slide 26: Preview of Quantum Computation
	Slide 27: Preview of Quantum Computation
	Slide 28: Preview of Quantum Computation
	Slide 29: Preview of Quantum Computation
	Slide 30: Preview of Quantum Computation
	Slide 31: Quantum Computation

