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Complex linear algebra

The basic mathematical objects in Quantum Mechanics are state
vectors and linear operators (matrices). Because the theory is
fundamentally linear, and the probability amplitudes are complex
numbers, the mathematics underlying quantum mechanics is 
complex linear algebra.

Vectors are members of a complex vector space, or Hilbert space,
with an associated inner product.

It is important to remember that these abstract mathematical 
objects represent physical things, and should be considered 
independent of the particular representations they are given by
choosing a particular basis.

State vectors in quantum mechanics are written in Dirac notation.
The basic object is the ket-vector |ψ⟩, which (given a particular 
basis) can be represented as a column vector. The adjoint of a ket-
vector is a bra-vector ⟨ψ|, represented as a row vector.

If the vector |ψ⟩ is normalized, that means
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State vectors in quantum mechanics are written in Dirac
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Vectors



Inner and Outer Products. 

Given two vectors |ψ⟩ and |φ⟩,

the inner product between them is written

The inner product is independent of the choice of basis. ⟨φ|ψ⟩ is
called a bracket. Note that ⟨φ|ψ⟩ = ⟨ψ|φ⟩∗, and for a normalized 
vector ⟨ψ|ψ⟩ = 1. If two vectors are orthogonal then ⟨ψ|φ⟩ = 0.
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The inner product is independent of the choice of basis.
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It is also handy to write the outer product (also sometimes called a 
dyad):

A dyad |ψ⟩⟨φ| is a linear operator. As we shall see, it is common 
(and often convenient) to write more general operators as linear 
combinations of dyads.

〈φ|ψ〉 is called a bracket. Note that 〈φ|ψ〉 = 〈ψ|φ〉∗, and for
a normalized vector 〈ψ|ψ〉 = 1. If two vectors are
orthogonal then 〈ψ|φ〉 = 0.
It is also handy to write the outer product (also sometimes
called a dyad):

|ψ〉〈φ| =
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∗
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· · · αNβ
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A dyad |ψ〉〈φ| is a linear operator. As we shall see, it is
common (and often convenient) to write more general
operators as linear combinations of dyads.
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Orthonormal bases.

An orthonormal basis for an N -dimensional space has N vectors that 
satisfy

Orthonormal bases and the trace

It is normally most convenient to choose a particular ortho-
normal basis {|j〉} and work in terms of it. As long as one
works within a fixed basis, one can treat state vectors as
column vectors and operators as matrices. An orthonormal
basis for an N -dimensional space has N vectors that satisfy

〈i|j〉 = δij ,
N
∑

j=1

|j〉〈j| = Î .

The trace of an operator is the sum of the diagonal elements:

Tr{Ô} =
∑

j

〈j|Ô|j〉 =
∑

j

ajj .

A traceless operator has Tr{Ô} = 0.
– p. 9/31

It is normally most convenient to choose a particular orthonormal basis 
{| j⟩ }  and work in terms of it. As long as one works within a fixed basis, 
one can treat state vectors as column vectors and operators as 
matrices. 



Linear operators

A linear operator O transforms states to states such that

for all states |ψ⟩, |φ⟩ and complex numbers a, b. Given a choice of basis
{| j⟩}, an operator can be represented by a matrix

are called matrix elements. The operator can be written as a sum over 
outer products

Linear operators

A linear operator Ô transforms states to states such that

Ô(a|ψ〉+ b|φ〉) = aÔ|ψ〉+ bÔ|φ〉

for all states |ψ〉, |φ〉 and complex numbers a, b. Given a
choice of basis, an operator can be represented by a matrix

Ô =







a11 · · · a1N
... . . . ...

aN1 · · · aNN






≡ [aij ].

The matrix representation depends on the choice of basis.
We will only be dealing with orthonormal bases in this class.
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where

Matrix elements

Similar to an expectation value is a matrix element 〈ψ|Ô|φ〉
where |ψ〉 #= |φ〉. If |ψ〉 and |φ〉 are both members of the
orthonormal basis {|j〉} then

〈i|Ô|j〉 = aij ,

where aij is an element of the matrix representing Ô in the
basis {|j〉}. The operator can be written as a sum over
outer products,

Ô =
∑

ij

aij|i〉〈j|.
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Three operations on operators are of particular relevance in Quantum 
Mechanics: the trace, the commutator and the Hermitian conjugation.  



The trace.

The trace of an operator is the sum of the diagonal elements:

Orthonormal bases and the trace

It is normally most convenient to choose a particular ortho-
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A traceless operator has Tr{O} = 0. The trace is independent of the choice
of basis. If {| j⟩ } and {|φk⟩} are both orthonormal bases, then

The trace also has the useful cyclic property:

This applies to products of any number of operators:

This invariance implies that Tr{|φ⟩⟨ψ|} =  ⟨ψ|φ⟩.

The trace is independent of the choice of basis. If {|j〉} and
{|φk〉} are both orthonormal bases, then

Tr{Ô} =
∑

j

〈j|Ô|j〉 =
∑

k

〈φk|Ô|φk〉.

The trace also has the useful cyclic property

Tr{ÂB̂} = Tr{B̂Â}.

This applies to products of any number of operators:

Tr{ÂB̂Ĉ} = Tr{ĈÂB̂} = Tr{B̂ĈÂ}.

This invariance implies that Tr{|φ〉〈ψ|} = 〈ψ|φ〉.
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The Commutator.

Matrix multiplication is noncommutative, in general. That is, in 
general AB differs from BA. Given two operators A and B the 
commutator is [A,B] = AB – BA. 

[A,B] = 0 if and only if a and B commute. Occasionally, one will 
encounter matrices that anticommute: AB = - BA. For example, the 
Pauli matrices anticommute with each other. In these cases, it is 
sometimes helpful to define the anticommutator:

The Commutator

Matrix multiplication is noncommutative, in general. That
is, in general ÂB̂ != B̂Â. Given two operators Â and B̂,
their commutator is [Â, B̂] ≡ ÂB̂ − B̂Â. [Â, B̂] = 0 if and
only if Â and B̂ commute.
Occasionally, one will encounter matrices that
anticommute: ÂB̂ = −B̂Â. For example, the Pauli
matrices anticommute with each other. In these cases,
it is sometimes helpful to define the anticommutator:

{Â, B̂} ≡ ÂB̂ + B̂Â.

If two normal operators Â and B̂ commute, it is possible
to find an eigenbasis which simultaneously diagonalizes
both of them. (The converse is also true.)
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Hermitian Conjugation.

One of the most important operations in complex linear algebra is 
Hermitian conjugation. The Hermitian conjugate O † is the complex 
conjugate of the transpose of an operator O. If in a particular basis

O = [a i j ] then      O †= [a j i * ]

Hermitian conjugation works similarly to transposition in real linear 
algebra: (AB)† = B †A †. When applied to state vectors, (|ψ⟩)† =  ⟨ψ|. 
Similarly, for dyads (|ψ⟩⟨φ|)† =  |φ⟩⟨ψ|.

Note that Hermitian conjugation is not linear, but rather is 
antilinear:

Hermitian Conjugation

One of the most important operations in complex linear
algebra is Hermitian conjugation. The Hermitian conjugate
Ô† is the complex conjugate of the transpose of an operator
Ô. If in a particular basis Ô = [aij ] then Ô† = [a∗ji].
Hermitian conjugation works similarly to transposition in
real linear algebra: (ÂB̂)† = B̂†Â†. When applied to
state vectors, (|ψ〉)† = 〈ψ|. Similarly, for dyads
(|ψ〉〈φ|)† = |φ〉〈ψ|.
Note that Hermitian conjugation is not linear, but rather
is antilinear:

(aÔ)† = a∗Ô†, (a|ψ〉)† = a∗〈ψ|.
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We now introduce the most relevant type of operators for Quantum 
Mechanics: normal operators, Hermitian operators, unitary 
operators, and projection operators.   



Normal operators.

A normal operator satisfies O †O = O O †. Operators are 
diagonalizable if and only if they are normal. That is, for normal O 
we can always find an orthonormal basis { |φj  ⟩}  such that

and any diagonalizable operator must be normal. This is called the 
spectral theroem.

These values λ j  are the eigenvalues of O and {|φj ⟩} the corresponding 
eigenvectors, O|φj ⟩ =  λ j  |φj ⟩. If O is nondegenerate—i.e., all the λ j  are 
distinct—then the eigenvectors are unique (up to a phase). Otherwise 
there is some freedom in choosing this eigenbasis.

If two normal operators A and B commute, it is possibleto find an 
eigenbasis which simultaneously diagonalizes both of them. (The 
converse is also true.)

Normal operators

A normal operator satisfies Ô†Ô = ÔÔ†. Operators are
diagonalizable if and only if they are normal. That is, for
normal Ô we can always find an orthonormal basis
{|φj〉} such that

Ô =
∑

j

λj |φj〉〈φj|, Tr{Ô} =
∑

j

λj ,

and any diagonalizable operator must be normal.
These values λj are the eigenvalues of Ô and {|φj〉} the
corresponding eigenvectors, Ô|φj〉 = λj |φj〉. If Ô is
nondegenerate—i.e., all the λj are distinct—then the
eigenvectors are unique (up to a phase). Otherwise
there is some freedom in choosing this eigenbasis.
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Hermitian operators.

One very useful class of operators are the Hermitian operators H 
that satisfy H = H † .  These are the complex analogue of symmetric 
matrices. They are obviously normal: H  †H = H2 = H H †. The 
eigenvalues of a Hermitian matrix are always real. 

An example are the Pauli matrices

– p. 7/31
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Wolfgang Pauli (1900–1958), ca.
1924. Pauli received the Nobel Prize
in physics in 1945, nominated by
Albert Einstein, for the Pauli
exclusion principle.

Pauli matrices

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices
which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma (σ), they are
occasionally denoted by tau (τ) when used in connection with isospin symmetries.

These matrices are named after the physicist Wolfgang Pauli. In quantum mechanics, they occur in the
Pauli equation which takes into account the interaction of the spin of a particle with an external
electromagnetic field. They also represent the interaction states of two polarization filters for
horizontal/vertical polarization, 45 degree polarization (right/left), and circular polarization (right/left).

Each Pauli matrix is Hermitian, and together with the identity matrix I (sometimes considered as the
zeroth Pauli matrix σ0), the Pauli matrices form a basis for the real vector space of 2 × 2 Hermitian
matrices. This means that any 2 × 2 Hermitian matrix can be written in a unique way as a linear
combination of Pauli matrices, with all coefficients being real numbers.

Hermitian operators represent observables in quantum mechanics, so the Pauli matrices span the space of observables of the complex 2-
dimensional Hilbert space. In the context of Pauli's work, σk represents the observable corresponding to spin along the kth coordinate axis in
three-dimensional Euclidean space 

The Pauli matrices (after multiplication by i to make them anti-Hermitian) also generate transformations in the sense of Lie algebras: the
matrices iσ1, iσ2, iσ3 form a basis for the real Lie algebra , which exponentiates to the special unitary group SU(2).[a] The algebra

generated by the three matrices σ1, σ2, σ3 is isomorphic to the Clifford algebra of ,[1] and the (unital associative) algebra generated by
iσ1, iσ2, iσ3 is effectively identical (isomorphic) to that of quaternions ( ).

All three of the Pauli matrices can be compacted into a single expression:

where the solution to i2 = -1 is the "imaginary unit", and δjk is the Kronecker delta, which equals +1 if j = k and 0 otherwise. This expression
is useful for "selecting" any one of the matrices numerically by substituting values of j = 1, 2, 3, in turn useful when any of the matrices (but
no particular one) is to be used in algebraic manipulations.

The matrices are involutory:

where I is the identity matrix.

The determinants and traces of the Pauli matrices are:

From which, we can deduce that each matrix σj has eigenvalues +1 and −1.

Algebraic properties
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It is easy to check that any 2 x 2 Hermitian matrix can be written as
a linear combination of the Pauli matrices and the identity
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Consider a 2 x 2 matrix
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where a, b, c, d are real numbers. Therefore we have  

Ô = aÎ + b�̂x + c�̂y + d�̂x
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Unitary Operators.

A unitary operator satisfies U †U = U U †= I. It is clearly a normal operator. 
All of its eigenvalues have unit norm; that is, |λ j  | =  1 for all j .  This 
means that

λ j  =  exp( i θj  )

for real 0 ≤  θj <  2π.

There is a correspondence between Hermitian and unitary 
operators: for every unitary operator U there is an Hermitian operator 
H such that

Û =  exp(iH).

(We will clarify what exp(iH) means shortly.)
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A unitary operator is equivalent to a change of basis. This is easy to check: 
if {| j⟩ }  is an orthonormal basis, then so is {U|j⟩}:

For spin-1/2, the most general 2 × 2 unitary can be written (up to a 
global phase)

where n is again a real unit three-vector (nx ,  ny,  nz  )  and sigma = (sigmax, 
sigmay, sigmaz). In the Bloch sphere picture, U is a rotation by θ about the 
axis n.

We have already seen that a unitary operator is
equivalent to a change of basis. This is easy to check: if
{|j〉} is an orthonormal basis, then so is {Û |j〉}:

(Û |i〉)†(Û |j〉) = 〈i|Û †Û |j〉 = 〈i|j〉 = δij.

For spin-1/2, the most general 2× 2 unitary can be
written (up to a global phase)

Û = cos(θ/2)Î + i sin(θ/2)#n · #̂σ,

where #n is again a real unit three-vector (nx, ny, nz) and
#̂σ = (X̂, Ŷ , Ẑ). In the Bloch sphere picture, Û is a
rotation by θ about the axis #n.

– p. 17/31

We have already seen that a unitary operator is
equivalent to a change of basis. This is easy to check: if
{|j〉} is an orthonormal basis, then so is {Û |j〉}:

(Û |i〉)†(Û |j〉) = 〈i|Û †Û |j〉 = 〈i|j〉 = δij.

For spin-1/2, the most general 2× 2 unitary can be
written (up to a global phase)

Û = cos(θ/2)Î + i sin(θ/2)#n · #̂σ,

where #n is again a real unit three-vector (nx, ny, nz) and
#̂σ = (X̂, Ŷ , Ẑ). In the Bloch sphere picture, Û is a
rotation by θ about the axis #n.

– p. 17/31



Operator space.

The space of all operators on a particular Hilbert space of dimension N  is 
itself a Hilbert space of dimension N 2; sometimes this fact can be very 
useful. If A and B operators, so is aB + bB for any complex a, b.

One can define an inner product on operator space. The most commonly 
used one is (A, B) ≡ Tr{A†B} (the Frobenius or Hilbert-Schmidt inner 
product).

It is easy to see that (A, B) =  (B, A)∗, and (A, A) ≥  0 with equality only
for A = 0. With respect to this inner product, the Pauli matrices together 
with the identity form an orthogonal basis for all operators on 2D Hilbert 
space.

A linear transformation on operator space is often referred to as a 
superoperator. – p. 10/31

Orthogonal projectors.

An orthogonal projector P is  an Hermitian operator that obeys 
P2 = P. All the eigenvalues of P are either 0 or 1. The complement of a 
projector 1–P is also a projector. Note that |ψ⟩⟨ψ| is a projector for 
any normalized state vector |ψ⟩. Such a projector is called one-
dimensional; a projector more generally has dimension d = Tr[P].

In dimension 2, any projector can be written in the form

  

where n is a (real) unit three-vector (nx ,  ny,  nz  )  (i.e., with nx
2 +  ny

2 +  nz
2 

=  1) and sigma are the three Pauli matrices .In the Bloch sphere picture, n
is the direction in space, and P the projector onto the state |ψn⟩ that is 
spin up along that axis.

Orthogonal projectors

An orthogonal projector P̂ is an Hermitian operator that
obeys P̂2 = P̂. All the eigenvalues of P̂ are either 0 or
1. The complement of a projector Î − P̂ is also a projector.
Note that |ψ〉〈ψ| is a projector for any normalized state
vector |ψ〉. Such a projector is called one-dimensional; a
projector more generally has dimension d = Tr{P̂}.
In dimension 2, any projector can be written in the form

P̂ =
(

Î + "n · "̂σ
)

/2 = |ψ!n〉〈ψ!n|,

where "n is a (real) unit three-vector (nx, ny, nz) (i.e., with
n2x + n2y + n2z = 1) and "̂σ = (X̂, Ŷ , Ẑ). In the Bloch sphere
picture, "n is the direction in space, and P̂ is the projector
onto the state |ψ!n〉 that is spin up along that axis.

– p. 14/31



Functions of Operators.

It is common to consider a function of an operator f (O), where f  is 
ordinarily a function on the complex numbers, which is itself an 
operator.

Suppose that f (x ) is defined by a Taylor series: f (x ) = c0 + c1 (x − x 0)
+ c2(x − x 0)2 + · · · . For the operator  version, we write

In practice, only the case x0 = 0 is of interest, in which case:

For particular functions and operators, this series can sometimes be
summed explicitly. If O is normal, we simplify by writing O in diagonal
form:

It is easy to show that 

And therefore 

In particular, for projectors, Pn = P for all n greater or equal to 1. Then  

Functions of Operators

It is common to write a function of an operator f(Ô) (where
f is ordinarily a function on the complex numbers) which is
itself an operator. Usually f(x) is defined by a Taylor series:
f(x) = c0 + c1(x− x0) + c2(x− x0)2 + · · · . For the operator
version, we write

f(Ô) = c0Î + c1(Ô − x0Î) + c2(Ô − x0Î)
2 + · · ·

For particular functions and operators, this series can
sometimes be summed explicitly. For instance, for a nilpotent
operator Ô2 = 0, the series obviously truncates after the
first-order term (taking x0 = 0). For projectors, P̂n = P̂ for all
n ≥ 1. For idempotent operators obeying Ô2 = Î (such as the
Pauli matrices), one can sum the even and odd terms
separately.

– p. 19/31
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f(Ô) = c0Î + c1Ô + c2Ô
2 + . . .
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Ô =
X

j

�j |�jih�j |

<latexit sha1_base64="NBNFdTmTucpOOglQ2l/4ptgO0Gc=">AAACKHicbVDLSgMxFM3UVx1fVZdugkVwVWaKohux6MadFewDOkO5k6ZtbCYzJBmhtP0cN/6KGxFFuvVLzLSz0OqBkMM595DcE8ScKe04Uyu3tLyyupZftzc2t7Z3Crt7dRUlktAaiXgkmwEoypmgNc00p81YUggDThvB4Dr1G49UKhaJez2MqR9CT7AuI6CN1C5cei3b64PGt/gCeyoJ2w/Y4ybfAcPGXtxnqSJB9Dg1RnrhTB3bnt8uFJ2SMwP+S9yMFFGGarvw5nUikoRUaMJBqZbrxNofgdSMcDqxvUTRGMgAerRlqICQKn80W3SCj4zSwd1ImiM0nqk/EyMIlRqGgZkMQffVopeK/3mtRHfP/RETcaKpIPOHugnHOsJpa7jDJCWaDw0BIpn5KyZ9kEC06dY2JbiLK/8l9XLJPSmd3pWLlausjjw6QIfoGLnoDFXQDaqiGiLoCb2gd/RhPVuv1qc1nY/mrCyzj37B+voGvdylOA==</latexit>

Ô
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f(P̂ ) = c0Î + c1P̂ + c2P̂ + . . .

= c0Î ± c0P̂ + c1P̂ + c2P̂ + . . .

= f(0)[Î � P̂ ] + f(1)P̂
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For idempotent operators obeying O2 = I (such as the Pauli matrices),
one can sum the even and odd term separately. In particular:

As in the previous example, the most commonly-used function is 
the exponential

exp(x )  =  1 +  x  +  x 2/2! +  · · · ,

but others also occur from time to time:

cos(x )  =  1 −  x 2/2 +  x 4/4! −  · · ·

sin(x )  =  x  −  x 3/3! +  x 5/5! −  · · ·

log(1 +  x )  =  x  -  x 2/2 +  x 3/3 - · · ·
– p. 12/31

As an application, let a be n real, three-dimensional unit vector and θ a 
real number. Then 

(~n · ~�)2 = 1
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where we used the property of the Pauli matrices  

(~n · ~�)(~m · ~�) = (~n · ~m)Î + i(~n⇥ ~n) · ~�
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As such:

ei✓~n·~� = cos(✓)Î + i sin(✓)~n · ~�
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= Î + i✓Ô � ✓
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Show explicitly that the Hadamard transform on n qubits, H⊗n, may be written
as

H⊗n =
1√
2n

∑

x,y

(−1)x·y|x〉〈y|. (2.55)

Write out an explicit matrix representation for H⊗2.

2.1.8 Operator functions
There are many important functions which can be defined for operators and matri-
ces. Generally speaking, given a function f from the complex numbers to the com-
plex numbers, it is possible to define a corresponding matrix function on normal ma-
trices (or some subclass, such as the Hermitian matrices) by the following construc-
tion. Let A =

∑

a a|a〉〈a| be a spectral decomposition for a normal operator A. Define
f (A) ≡

∑

a f (a)|a〉〈a|. A little thought shows that f (A) is uniquely defined. This pro-
cedure can be used, for example, to define the square root of a positive operator, the
logarithm of a positive-definite operator, or the exponential of a normal operator. As an
example,

exp(θZ) =
[

eθ 0
0 e−θ

]

, (2.56)

since Z has eigenvectors |0〉 and |1〉.

Exercise 2.34: Find the square root and logarithm of the matrix
[

4 3
3 4

]

. (2.57)

Exercise 2.35: (Exponential of the Pauli matrices) Let "v be any real,
three-dimensional unit vector and θ a real number. Prove that

exp(iθ"v · "σ) = cos(θ)I + i sin(θ)"v · "σ, (2.58)

where "v ·"σ ≡
∑3

i=1 viσi. This exercise is generalized in Problem 2.1 on page 117.

Another important matrix function is the trace of a matrix. The trace of A is defined
to be the sum of its diagonal elements,

tr(A) ≡
∑

i

Aii. (2.59)

The trace is easily seen to be cyclic, tr(AB) = tr(BA), and linear, tr(A + B) =
tr(A)+tr(B), tr(zA) = z tr(A), where A and B are arbitrary matrices, and z is a complex
number. Furthermore, from the cyclic property it follows that the trace of a matrix
is invariant under the unitary similarity transformation A → UAU †, as tr(UAU †) =
tr(U †UA) = tr(A). In light of this result, it makes sense to define the trace of an operator
A to be the trace of any matrix representation of A. The invariance of the trace under
unitary similarity transformations ensures that the trace of an operator is well defined.
As an example of the trace, suppose |ψ〉 is a unit vector and A is an arbitrary op-

erator. To evaluate tr(A|ψ〉〈ψ|) use the Gram–Schmidt procedure to extend |ψ〉 to an

Since the matrix is: 4Î + 3�̂x
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Then the eigenvectors are those of the Pauli matrix and the 
eigenvalues equal to 4+3 = 7 and 4-3 = 1.  The eigenprojectors are:
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�
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As a mater of fact, if one takes the square, the original matrix A is 
recovered.



Tensor products.

The tensor (or Kronecker) product is a way of combining two Hilbert 
spaces to produce a higher dimensional space. Let |ψ⟩ be a state in a D1-
dimensional Hilbert space H 1  and |φ⟩ be a state in a D2-dimensional 
Hilbert space H2. Then we define |ψ⟩ ⊗ |φ⟩ to be a state in the D 1 D 2-
dimensional  space H 1⊗ H2. Such a state is called a product state. Any 
state in this larger space can be written as a linear combination of 
product states

where |ψℓ⟩ ∈ H 1  and |φℓ⟩ ∈ H2.

Tensor products

The tensor (or Kronecker) product is a way of combining
two Hilbert spaces to produce a higher dimensional space.
Let |ψ〉 be a state in a D1-dimensional Hilbert space H1 and
|φ〉 be a state in a D2-dimensional Hilbert space H2. Then
we define |ψ〉 ⊗ |φ〉 to be a state in the D1D2-dimensional
space H1 ⊗H2. Such a state is called a product state. Any
state in this larger space can be written as a linear
combination of product states

|Ψ〉 =
∑

!

α!|ψ!〉 ⊗ |φ!〉

where |ψ!〉 ∈ H1 and |φ!〉 ∈ H2.

– p. 23/31
What are the properties of this product?

We need also to define bra-vectors, and the inner product:

What are the properties of this product?

(a|ψ〉+ b|ψ′〉)⊗ |φ〉 = a|ψ〉 ⊗ |φ〉+ b|ψ′〉 ⊗ |φ〉.

|ψ〉 ⊗ (a|φ〉+ b|φ′〉) = a|ψ〉 ⊗ |φ〉+ b|ψ〉 ⊗ |φ′〉.

We need also to define bra-vectors, and the inner product:

(|ψ〉 ⊗ |φ〉)† = 〈ψ|⊗ 〈φ|.

(〈ψ′|⊗ 〈φ′|)(|ψ〉 ⊗ |φ〉) = 〈ψ′|ψ〉〈φ′|φ〉.
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(〈ψ′|⊗ 〈φ′|)(|ψ〉 ⊗ |φ〉) = 〈ψ′|ψ〉〈φ′|φ〉.
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If {| j⟩1}  is a basis for H 1  and {|k⟩2} is a basis for H2 then {| j⟩1 ⊗ |k⟩2} is 
a basis for H 1  ⊗ H2. Given two states in H 1 and H2

in terms of this basis

Generic states in H 1⊗ H2 are not product states:

If {|j〉
1
} is a basis for H1 and {|k〉

2
} is a basis for H2 then

{|j〉
1
⊗ |k〉

2
} is a basis for H1 ⊗H2. Given two states in H1

and H2

|ψ〉 =
D1
∑

j=1

αj |j〉1, |φ〉 =
D2
∑

k=1

βk|k〉2,

in terms of this basis

|ψ〉 ⊗ |φ〉 =
∑

j,k

αjβk|j〉1 ⊗ |k〉
2
.

Generic states in H1 ⊗H2 are not product states:

|Ψ〉 =
∑

j,k

tjk|j〉1 ⊗ |k〉
2
.

This is only a product if t = α β for some set of numbers – p. 25/31
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tjk|j〉1 ⊗ |k〉
2
.
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Operator Tensor Products.

If Â is an operator on H 1 and B on H 2, we construct a  similar product to 
get a new operator Â ⊗ B̂ on H 1 ⊗ H 2. Its  properties are similar to tensor 
products of states:

Operator Tensor Products

If Â is an operator on H1 and B̂ on H2, we construct a
similar product to get a new operator Â⊗ B̂ on H1 ⊗H2. Its
properties are similar to tensor products of states:

(aÂ+ bÂ′)⊗ B̂ = aÂ⊗ B̂ + bÂ′ ⊗ B̂.

Â⊗ (aB̂ + bB̂′) = aÂ⊗ B̂ + bÂ⊗ B̂′.

(Â⊗ B̂)† = Â† ⊗ B̂†.

(Â⊗ B̂)(Â′ ⊗ B̂′) = ÂÂ′ ⊗ B̂B̂′.

Tr{Â⊗ B̂} = Tr{Â}Tr{B̂}.

– p. 26/31
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We can also apply these tensor product operators to tensor product states:

A general operator on H 1 ⊗ H 2 is not a product operator, but  can be written 
as a linear combination of product operators:

Tensor products play an important role in quantum mechanics! 
They describe how the Hilbert spaces of subsystems are 
combined.

We can also apply these tensor product operators to tensor
product states:

(Â⊗ B̂)(|ψ〉 ⊗ |φ〉) = Â|ψ〉 ⊗ B̂|φ〉.

(〈ψ|⊗ 〈φ|)(Â⊗ B̂) = 〈ψ|Â⊗ 〈φ|B̂.

A general operator on H1 ⊗H2 is not a product operator, but
can be written as a linear combination of product operators:

Ô =
∑

!

Â! ⊗ B̂!.

Tensor products play an important role in quantum
mechanics! They describe how the Hilbert spaces of
subsystems are combined.
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Ô =
∑

!
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Matrix representation.

What does the matrix representation of a tensor product look like? If 
|ψ⟩ has amplitudes (α1 , · · · , αD 1 )  and |φ⟩ has  amplitudes (β1 , · · · , 
βD 2 ) , the state |ψ⟩ ⊗ |φ⟩ in H 1 ⊗ H 2 is  represented as a D1D2-
dimensional column vector:

Matrix representation

What does the matrix representation of a tensor product
look like? If |ψ〉 has amplitudes (α1, · · · ,αD1

) and |φ〉 has
amplitudes (β1, · · · ,βD2

), the state |ψ〉 ⊗ |φ〉 in H1 ⊗H2 is
represented as a D1D2-dimensional column vector:

|ψ〉 ⊗ |φ〉 =











α1|φ〉

α2|φ〉
...

αD1
|φ〉











=



























α1β1
α1β2
...

α1βD2

α2β1
...

αD1
βD2



























.
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to a convenient matrix representation known as the Kronecker product. Suppose A is
an m by n matrix, and B is a p by q matrix. Then we have the matrix representation:

nq
︷ ︸︸ ︷

A ⊗ B ≡











A11B A12B . . . A1nB
A21B A22B . . . A2nB
...

...
...

...
Am1B Am2B . . . AmnB





























mp . (2.50)

In this representation terms like A11B denote p by q submatrices whose entries are
proportional to B, with overall proportionality constant A11. For example, the tensor
product of the vectors (1, 2) and (2, 3) is the vector

[

1
2

]

⊗
[

2
3

]

=









1× 2
1× 3
2× 2
2× 3









=









2
3
4
6









. (2.51)

The tensor product of the Pauli matrices X and Y is

X ⊗ Y =
[

0 · Y 1 · Y
1 · Y 0 · Y

]

=









0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0









. (2.52)

Finally, we mention the useful notation |ψ〉⊗k, which means |ψ〉 tensored with itself k
times. For example |ψ〉⊗2 = |ψ〉 ⊗ |ψ〉. An analogous notation is also used for operators
on tensor product spaces.

Exercise 2.26: Let |ψ〉 = (|0〉 + |1〉)/
√
2. Write out |ψ〉⊗2 and |ψ〉⊗3 explicitly, both

in terms of tensor products like |0〉|1〉, and using the Kronecker product.

Exercise 2.27: Calculate the matrix representation of the tensor products of the Pauli
operators (a) X and Z; (b) I and X ; (c) X and I. Is the tensor product
commutative?

Exercise 2.28: Show that the transpose, complex conjugation, and adjoint operations
distribute over the tensor product,

(A ⊗ B)∗ = A∗ ⊗ B∗; (A ⊗ B)T = AT ⊗ BT ; (A ⊗ B)† = A† ⊗ B†.(2.53)

Exercise 2.29: Show that the tensor product of two unitary operators is unitary.

Exercise 2.30: Show that the tensor product of two Hermitian operators is Hermitian.

Exercise 2.31: Show that the tensor product of two positive operators is positive.

Exercise 2.32: Show that the tensor product of two projectors is a projector.

Exercise 2.33: The Hadamard operator on one qubit may be written as

H =
1√
2

[

(|0〉 + |1〉)〈0| + (|0〉 − |1〉)〈1|
]

. (2.54)

Example



Similarly, if Â =  [aij] and B̂ =  [bij] then

For brevity, |ψ⟩ ⊗ |φ⟩ is often written |ψ⟩|φ⟩ or even |ψφ⟩. One can 
similarly condense the notation for operators; but one should be very 
careful not to confuse A ⊗B with AB.

Similarly, if Â = [aij ] and B̂ = [bij ] then

Â⊗ B̂ =







a11B̂ · · · a1D1
B̂

... . . . ...
aD11B̂ · · · aD1D1

B̂






.

For brevity, |ψ〉 ⊗ |φ〉 is often written |ψ〉|φ〉 or even |ψφ〉. One
can similarly condense the notation for operators; but one
should be very careful not to confuse Â⊗ B̂ with ÂB̂.
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Similarly, operators on two spins can be written as linear
combinations of tensor products of the Pauli matrices and
the identity. For instance,

Î ⊗ Î =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











, Ẑ ⊗ Î =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











,

Î ⊗ X̂ =











0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0











, X̂ ⊗ Ŷ =











0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0











.
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Example: Two Spins

Given two states in the Z basis, 
|ψ⟩ =  α1| ↑⟩ +  α2| ↓⟩ and |φ⟩ =  β1| ↑⟩ +  β2| ↓⟩ 

we can write

|ψ⟩ ⊗ |φ⟩ =  α1 β1 | ↑↑⟩ +  α1 β2| ↑↓⟩ +  α2β1 | ↓↑⟩ +  α2β2| ↓↓⟩.

A general state of two spins would be

|Ψ⟩ =  t11| ↑↑⟩ +  t12| ↑↓⟩ +  t21| ↓↑⟩ +  t22| ↓↓⟩.

As a column vector this is

Example: Two Spins

Given two states in the Z basis, |ψ〉 = α1| ↑〉+ α2| ↓〉 and
|φ〉 = β1| ↑〉+ β2| ↓〉, we can write

|ψ〉 ⊗ |φ〉 = α1β1| ↑↑〉+ α1β2| ↑↓〉+ α2β1| ↓↑〉+ α2β2| ↓↓〉.

A general state of two spins would be

|Ψ〉 = t11| ↑↑〉+ t12| ↑↓〉+ t21| ↓↑〉+ t22| ↓↓〉.

As a column vector this is

|Ψ〉 =











t11
t12
t21
t22











.
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