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Complex linear algebra

The basic mathematical objects in Quantum Mechanics are state
vectors and linear operators (matrices). Because the theory is
fundamentally linear, and the probability amplitudes are complex
numbers, the mathematics underlying quantum mechanics is
complex linear algebra.

Vectors

Vectors are members of a complex vector space, or Hilbert space,
with an associated inner product.

It is important to remember that these abstract mathematical
objects represent physical things, and should be considered
independent of the particular representations they are given by
choosing a particular basis.

State vectors in quantum mechanics are written in Dirac notation.
The basic object is the ket-vector | ), which (given a particular
basis) can be represented as a column vector. The adjoint of a ket-
vector is a bra-vector ((/|, represented as a row vector.
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If the vector | () is normalized, that means
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Inner and Outer Products.

Given two vectors |¢) and | ),

aq b1
V) = : , o) = : ,

ay BN
the inner product between them is written

aq
(Glvy=Bi--B0) | & | =D B
an J
The inner product is independent of the choice of basis. (@ | ) is

called a bracket. Note that (@ |¢) = (¢ |@)*, and for a normalized
vector (¢ | ) = 1. If two vectors are orthogonal then (¢/|@) = O.

It is also handy to write the outer product (also sometimes called a
dyad):

ai aff - afly
[yl =| = B BN) =

aN anfB; - anfBy

A dyad |Y)X] is a linear operator. As we shall see, it is common
(and often convenient) to write more general operators as linear
combinations of dyads.



Orthonormal bases.

An orthonormal basis for an N -dimensional space has N vectors that
satisfy

N A
Glj) =0, DI =T
j=1

It is normally most convenient to choose a particular orthonormal basis
{1/)} and work in terms of it. As long as one works within a fixed basis,
one can treat state vectors as column vectors and operators as

matrices.



Linear operators
A linear operator O transforms states to states such that
O(aly) + b)) = aOly) + bO|¢)

for all states |¢), |@) and complex numbers g, b. Given a choice of basis
{|j)}, an operator can be represented by a matrix

aip - 1N
O == = [aij]
a1 -+ QAaNN
where

are called matrix elements. The operator can be written as a sum over
outer products

O =" aijli) (|
ij

The matrix representation depends on the choice of basis. We will only be
dealing with orthonormal bases in this class.

Three operations on operators are of particular relevance in Quantum
Mechanics: the trace, the commutator and the Hermitian conjugation.



The trace.

The trace of an operator is the sum of the diagonal elements:

{0} =Y (jlOl) = ayj.
J

J

A traceless operator has Tr{O} = 0. The trace is independent of the choice
of basis. If {|j)} and {]| @«)} are both orthonormal bases, then

k

Te{O} =) " (jlOlj) = Y _ (¢klOler)
J
The trace also has the useful cyclic property:
Tr{AB} = Tr{ BA}
This applies to products of any number of operators:
Tr{ABC} = Tt{CAB} = Tr{BC A}

This invariance implies that Tr{| @)@ |} = (¢ |®).

The Commutator.

Matrix multiplication is noncommutative, in general. That is, in
general AB differs from BA. Given two operators A and B the
commutator is [A,B] = AB — BA.

[A,B] =0 if and only if a and B commute. Occasionally, one will
encounter matrices that anticommute: AB = - BA. For example, the
Pauli matrices anticommute with each other. In these cases, it is
sometimes helpful to define the anticommutator:

A A AA A A

{A, B} = AB + BA.



Hermitian Conjugation.

One of the most important operations in complex linear algebra is
Hermitian conjugation. The Hermitian conjugate O'is the complex
conjugate of the transpose of an operator O. If in a particular basis

O=[aj] then Of=[ag

Hermitian conjugation works similarly to transposition in real linear
algebra: (AB)" = B'AT. When applied to state vectors, (|))"= (¢].

Similarly, for dyads (|¥)Xe[) = [@Xd].

Note that Hermitian conjugation is not linear, but rather is
antilinear:

(a0)T =a*0',  (al)' = a*(y].

We now introduce the most relevant type of operators for Quantum
Mechanics: normal operators, Hermitian operators, unitary
operators, and projection operators.



Normal operators.

A normal operator satisfies O'O = O O. Operators are
diagonalizable if and only if they are normal. That is, for normal O
we can always find an orthonormal basis { |¢; )} such that

0= Mloidesl, {0} =3

and any diagonalizable operator must be normal. This is called the
spectral theroem.

These values A; are the eigenvalues of O and {| ¢;)} the corresponding
eigenvectors, O|@j) = Aj |@;). If O is nondegenerate—i.e., all the A; are
distinct—then the eigenvectors are unique (up to a phase). Otherwise
there is some freedom in choosing this eigenbasis.

If two normal operators A and B commute, it is possibleto find an
eigenbasis which simultaneously diagonalizes both of them. (The
converse is also true.)

Hermitian operators.

One very useful class of operators are the Hermitian operators H
that satisfy H = H". These are the complex analogue of symmetric
matrices. They are obviously normal: HTH=H?=H H'. The
eigenvalues of a Hermitian matrix are always real.

An example are the Pauli matrices
(0 1 0_(0 — o‘:(l 0)
7\1 0 *“\i o0 o -1

It is easy to check that any 2 x 2 Hermitian matrix can be written as
a linear combination of the Pauli matrices and the identity



Consider a 2 x 2 matrix

Hemiticity requires

o=(55)=0=(5 %)

Therefore
a = a-+d
8 = b—ic
v = b+ic
0 = a—d

where a, b, ¢, d are real numbers. Therefore we have

O = al + b6, + c6, + déb,
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Unitary Operators.

A unitary operator satisfies UTU = U U= 1. It is clearly a normal operator.
All of its eigenvalues have unit norm; thatis, |A;| = 1 forallj. This
means that

Aj = exp(id)

forreal 0 < U; < 2m.

There is a correspondence between Hermitian and unitary
operators: for every unitary operator U there is an Hermitian operator
H such that

U= exp(iH).

(We will clarify what exp(iH) means shortly.)

A unitary operator is equivalent to a change of basis. This is easy to check:
if {|/)} is an orthonormal basis, then so is {U|/)}:

A A

(U1 (U15)) = (UT05) = {ilj) = &

For spin-1/2, the most general 2 x 2 unitary can be written (up to a
global phase)

U = cos(0/2)] + isin(0/2)7i - &
where n is again a real unit three-vector (nx, ny, n;) and sigma = (sigma,,

sigma,, sigma,). In the Bloch sphere picture, U is a rotation by 0 about the
axis n.



Orthogonal projectors.

An orthogonal projector P is an Hermitian operator that obeys

P2= P All the eigenvalues of P are either 0 or 1. The complement of a
projector 1-P is also a projector. Note that |{){¢| is a projector for
any normalized state vector | (). Such a projector is called one-
dimensional; a projector more generally has dimension d = Tr[P].

In dimension 2, any projector can be written in the form

P - (f+ﬁ.3) /2 = i) (Wl,

where n is a (real) unit three-vector (nx, ny, nz) (i.e.,, with n,? + n,? + n,?
= 1) and sigma are the three Pauli matrices .In the Bloch sphere picture, n
is the direction in space, and P the projector onto the state |yn) that is
spin up along that axis.

Operator space.

The space of all operators on a particular Hilbert space of dimension N is
itself a Hilbert space of dimension N2; sometimes this fact can be very
useful. If A and B operators, so is aB + bB for any complex a, b.

One can define an inner product on operator space. The most commonly
used one is (4, B) = Tr{A'B} (the Frobenius or Hilbert-Schmidt inner
product).

It is easy to see that (4, B) = (B, A)*,and (A, A) > O with equality only

for A= 0. With respect to this inner product, the Pauli matrices together
with the identity form an orthogonal basis for all operators on 2D Hilbert
space.

A linear transformation on operator space is often referred to as a
superoperator.



Functions of Operators.

It is common to consider a function of an operator f (O), where f is
ordinarily a function on the complex numbers, which is itself an
operator.

Suppose that f (x) is defined by a Taylor series: f (x) = co+ c1(x - xo)
+ c2(x — x0)2+ ---. For the operator version, we write

f(é) = C()j + Cl(o — :L‘oj) + CQ(O — 330f>2 +
In practice, only the case xo = 0 is of interest, in which case:
f(é) = Coj + Clé + 0202 +

For particular functions and operators, this series can sometimes be
summed explicitly. If O is normal, we simplify by writing O in diagonal
form:

O =2 Al e;
J
It is easy to show that

O™ = Aos)(o5]
J
And therefore

Z[ch] 65) ¢J|—Zf )67) (5]

In particular, for projectors, P" = P for all n greater or equal to 1. Then

f(P) = Coj+61p+62p+...
Cof:t60p+clp+62p—{—...
= fOU =P+ f1)P



For idempotent operators obeying O? = | (such as the Pauli matrices),
one can sum the even and odd term separately. In particular:

0202 9303 0*0* 9505
— + + 2 — ...

00 _ T 0 _
e = IHi00 - —— i Al 51
. . 92A '03A 94A .05A
= I‘HQO_EI_ZﬁO_"ZI_HEO_'”
92 o . 0> 0 -
= cos(A)I +isin(h)O

As an application, let a be n real, three-dimensional unit vector and ¥ a
real number. Then

(7-0)* =1
where we used the property of the Pauli matrices

(7 &) - &) = (it -m)] +i(f x /) - &

As such:

N= =

€977 — cos(0)I + isin(0)7 - &

As in the previous example, the most commonly-used function is
the exponential

exp(x) = 1+ x+ x%/21+ -+,
but others also occur from time to time:

cos(x) = 1- x2/2+ x%/4!1- ..

sin(x) = x — x3/31+ x3/51- ...

log(1+ x) = x- x%/2+ x3/3----

-p.12/31



Exercise 2.34: Find the square root and logarithm of the matrix
4 3
S

Since the matrix is: 41 + 36

Then the eigenvectors are those of the Pauli matrix and the
eigenvalues equal to 4+3 =7 and 4-3 = 1. The eigenprojectors are:

S THTIRTE Y

SRR E
Therefore:

\/Z:f?PpLP_:H\\gi ﬁ;”

As a mater of fact, if one takes the square, the original matrix A is

recovered.

-p.13/31



Tensor products.

The tensor (or Kronecker) product is a way of combining two Hilbert
spaces to produce a higher dimensional space. Let | () be a state in a D1-
dimensional Hilbert space H1 and |¢) be a state in a D>-dimensional
Hilbert space H,. Then we define |¢) @ |@) to be a state inthe D 1D »-
dimensional space H1@H2. Such a state is called a product state. Any
state in this larger space can be written as a linear combination of
product states

) = i) @ |e)
0

where |(e) € H1 and |@e) € H».

What are the properties of this product?

(alv)) + bl¥)) @ |6) = alv) @ [d) + blY') @ ).
[¥) @ (al) +bl¢') = alv)) @ |6) + bly)) @ |¢).

We need also to define bra-vectors, and the inner product:

(1) @ [é)T = (] ® ().
(W@ (@ D([¥) @ |8)) = (&' |[¢)(d|9).

—-p.14/31



If {|/)1} is a basis for H1 and {| k),} is a basis for Hz then {|j); @ |k),} is
a basis for H1 @H2. Given two states in Hiand H»

D, D>
0) =Y ajli)y, 10) =) Brlk),
j=1 k=1

in terms of this basis

) @ 10) = ajBili)y ® k),

7,k

Generic states in H1&H2 are not product states:
= " tinli) ® k)
J:k

Operator Tensor Products.

If A'is an operator on H1 and B on H 2, we construct a similar product to
get a new operator AQBon H1 @H 2. Its properties are similar to tensor
products of states:

(aA+bA"Y® B =aA® B+bA @ B.
A® (aB+bB)=aA® B+bA® B
(Ag B = At @ BT.

(A B)(A' @ B') = AA' ® BB'.
Tr{A® B} = Tr{A}Tr{B}.

—-p.15/31



We can also apply these tensor product operators to tensor product states:

(A® B)(|[v) ® |¢)) = Ajp) ® B|g).
(V] ® (¢)(A® B) = (b|A® (4| B.

A general operator on H1 @QH 2 is not a product operator, but can be written
as a linear combination of product operators:

OZZAg@Bg.
14

Tensor products play an important role in quantum mechanics!
They describe how the Hilbert spaces of subsystems are
combined.

Matrix representation.

What does the matrix representation of a tensor product look like? If
|) has amplitudes (a1, - -+, apq) and |@) has amplitudes (61, - - -,
Bp, ), the state |¢) @ |@) in H1 @ H2 is represented as a D1D»-
dimensional column vector:

( a1 \

al) al@
V) ® |¢) = &2!@ = | a18p,
ap,|6) e
\ op,Bp, |
Example
1 x2 2
1 27 | ix3 | |3
[ 2 ] = [ 3 ] Tloax2 | 7|4
2 x3 6



Similarly if A= [a;] and B=[b;] then

A

a1B -+ aip,B
AR B = :
apllB CLD1D1B
Example

10 0 0 10 0 O
PO 0100 Aa 01 0 0

I®I= ZQ1 =
© 0010 |’ ® 00 -1 0
0 001 00 0 -1
0100 0 0 0 —
A 1 0 00 A - 0O 0 ¢ O

foX = , XY =
® 0 001 0 —2 0 O
0010 1 0 0 O

For brevity, | ) &) is often written |)| ) or even |Pep). One can
similarly condense the notation for operators; but one should be very
careful not to confuse AQB with AB.

-p.17/31



Example: Two Spins

Given two states in the Z basis,

(YY) = ai| T)+ az| L) and [@) = 61| T)+ 62] )
we can write

V) @) = a1B61] TT)Y+ a162] T )+ a281| LT+ a262] L U).
A general state of two spins would be
|WY = t11] )Y+ tz] TO)Y+ ta] T+ 2] L)

As a column vector this is

t11

t21
t22



