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The Postulates of Quantum Mechanics

We have reviewed the mathematics (complex linear algebra) necessary to
understand quantum mechanics. We will now see how the physics of
guantum mechanics fits into this mathematical framework.

We are really defining the structure of a quantum theory. All physical
theories based on quantum mechanics share this common structure. Later
in the course, we will see how this mathematical structure is realized for

realistic systems. For now, we will use our simple example of the spin-1/2
particle to illustrate these ideas.

Postulate 1: State space

Every physical system has an associated Hilbert space H of some
dimension D, known as the state space of that system; and the system
is completely described by its state vector, which is a unit vector in the
state space.

If we choose a particular basis for the Hilbert space |j), j = 1,...,D,
a state can be written in the form

D
V) = Zozﬂj), Wherez aj* = 1.
j=1

J

In the case of spin-1/2, we can write any state in terms of the basis “spin
up” and “spin down” along the Z axis:

W) = a1] Tz)+ az| Lz).



The overall phase of the state has no physical meaning, so |{) and
e’?| ) represent the same physical state.

The choice of basis relates to possible measurements of the system.
As we will see, each basis is associated with a particular
measurement (or group of compatible measurements), and each
basis vector with a particular measurement outcome.

For spin-1/2 each basis is associated with a particular direction in
space along which the component of the spin could be measured.
So{| 1z), | Lz)} is associated with measurement of the
component of spin along the Z axis, with the basis vectors
corresponding to spin up or down.

Similarly the bases {| T™x ), | Lx )} and {| Tv), | Lv)} represent
other possible measurements.

Postulate 2: Unitary time evolution

The time-evolution of a closed system is described by a unitary
transformation,

[W(t2)) = U (t2, t1) [P(ta)),

where U is independent of the initial state.

In fact, the time-evolution of the state is given by the Schrodinger equation

Ldly) -
U W—H(m@,

where H(t) is an Hermitian operator (the Hamiltonian) that describes the
energy of the system. How does this relate to unitary transformations?



This is easiest to see if H is a fixed operator (i.e., constant in time). In that
case, a solution to Schrodinger’s equation is

[¥(ta)) = exp(—iH (ts — t1)/h) [ (t1)).
The operator -H(t2 - t1)/hbar is Hermitian, so the operator
Ulty, t1) = exp(—iH (t2 — t1)/h)

is unitary, as asserted.

Suppose there is a uniform magnetic field in the Z direction. Then states
with spin up and down along the Z axis have different energies. This is

represented by a Hamiltonian

A E A
H_< o 9 >_EOZ,
0 —Eg

where Eq is proportional to the strength of the magnetic field. If | )
= a|l Tz)+ 6] Lz)att= 0, then

[0(t)) = ae”FN 1) + gttt Lg).

This type of evolution is equivalent to a steady rotation about the Z

axis, called precession.



Examples

EXAMPLE 2.1 Let us consider a time-independent Hamiltonian

h

Suppose the system is in the eigenstate of o, with the eigenvalue +1 at time

t =0;
o) = (o)

The wave function [i(t)) (¢t > 0) is then found from Eq. (2.5) to be

() = exp (5 0.t ) [1(0)). (2.9)

The matrix exponential function in this equation is evaluated with the help
of Eq. (1.44) and we find

coswt/2 isinwt/2 1 coswt/2

vy = (6)=( ") ew
isinwt/2 coswt/2 isinwt/2

Suppose we measure the observable o,. Note that |¢(t)) is expanded in terms

of the eigenvectors of o, as

|(t)) = cos §t|az = +1) +isin %ﬂaz = —1).

wt/m
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The state oscillates among the two eigenstates. Why? What should happen to

not have the oscillation? What are the probabilities of outcomes of
measurements?



Next let us take the initial state

which is an eigenvector of o, (and hence the Hamiltonian) with the eigenvalue
+1. We find [¢(¢)) in this case as

coswt/2 isinwt/2\ 1 (1 ewt/2 (1
() =1 .. — = — : (2.11)
isinwt/2 coswt/2 ) /2 \ 1 V2 \1
Therefore the state remains in its initial state at an arbitrary ¢ > 0. This is an
expected result since the system at t = 0 is an eigenstate of the Hamiltonian.

EXERCISE 2.2 Let us consider a Hamiltonian
h
H = —§way. (2.12)

Suppose the initial state of the system is

oy = (1) 2.13)

(1) Find the wave function |¢(t)) at later time ¢t > 0.

(2) Find the probability for the system to have the outcome +1 upon mea-
surement of o, at ¢ > 0.

(3) Find the probability for the system to have the outcome +1 upon mea-
surement of o, at t > 0.



Now let us formulate Example 2.1 and Exercise 2.2 in the most general
form. Consider a Hamiltonian

h
H = —iw'ﬁ -0, (2.14)

where 7fi is a unit vector in R3. The time-evolution operator is readily ob-
tained, by making use of the result of Proposition 1.2, as

U(t) = exp(—iHt/h) = cosgt I+i(f-o)sin %t. (2.15)

o) = (o)

(1) = U@)[(0)) = (“?E,ﬁ/ f)z-:ﬂ?féi(t7§§2)>

The reader should verify that |¢(¢)) is normalized at any instant of time ¢ > 0.

Suppose the initial state is

for example. Then we find

(2.16)



If |¢) is an eigenstate of H, |1 z) or | { z), the only effect is a change in
the global phase of the state which has no physical consequences:

W(t)) = e El/R 44y or etiEt/R)

Because of this, we call these stationary states. Similarly, we could
have a uniform field in the X direction or the Y direction. In these
cases, the Hamiltonians would be EoX or EoY, and the stationary

states would be the X or Y eigenstates.

If the Hamiltonian H(t) is not constant, the situation is more complicated;
but the time evolution in every case is still given by a unitary
transformation.

Controlling the Hamiltonian

A common situation in quantum information is when we have some
control over the Hamiltonian of the system. For instance, we could
turn on a uniform magnetic field in the Z direction, leave it on for a
time t, and then turn it off. In that case, the state will have evolved
by

[) — exp(i02)[4) = Ulw),

where 9= -Eot/hbar. Inthis case, we say we have “performed a
unitary transformation U on n the system.” The Hamiltonian has
the time dependence H (t) = f(t)E yZ, wheref(t) = 1forO< t

< 1t andf (t) = Ootherwise.



Postulate 3: Measurement

An observable is a measurable quantity, which is associated with an
Hermitian operator O = O™. In measuring an observable O,the possible
measurement outcomes are given by the eigenvalues Aj; these
occur with probabilities equal to the square of the amplitude

for that outcome, and the system is left in an eigenstate of O.

Suppose one is given a system in a state | ), and wishes to make a
measurement of an observable O. By the spectral theorem

M M
0= NPy S Py =1, PP =P
j=1 j=1
M < D and the projectors P; are a decompostion of the identity.

The outcome A; occurs with probability p; = (Y| P; |¢)
( P;), and the system is left in the (renormalized) state

W) = Pjle)/ /s
This is called Born’s Rule. The expectation value of the
measurement outcomes is (O) = (¢ | O|yY).

If M = D, sothe Pjare projectors | @;){¢;| onto eigen- vectors of
O, then we can write | () in the eigenbasis:

V) = ajle;).

Outcome A; occurs with probability p; = |a; |? and the system is
afterwards left in the state | @;).



Expectation values.

Given a state | () and an opertor O, we can calculate a number
(0) = (WlOw) = (wl (O1))

which is called the expectation value of Oin the state | (). Given a

particular choice of basis, we can express this number in terms of the
elements of O and | ¢):

(0) =) afaijay
i.j

As we will see, when O is Hermitian, its expectation value gives the
average result of some measurement on a system in the state | ().



Postulate 4: Composite systems

If a composite system is composed of subsystems A and B which
have associated Hilbert spaces Ha and Hg, then the associated Hilbert
space of the joint system is the tensor product space

Ha QHg .

Everything we have already learned about quantum mechanics generalizes
to the case where the system is part of a composite system. Let’s go
through them point by point.

Acting on a Subsystem

1. If subsystem Ais in state | () and subsystem B is in state | @), then the
joint system is in the product state |¢) @ |©).

2. If Upis a unitary transformation which acts on subsystem A, then
Ua® |

isthe corresponding unitary for the joint system. Similarly, if Us acts on B,

then IQ) Us is the unitary for the joint system.

(Ua® () ®10)) = (Uale))) @ |9).
(1@ Up)([v) @ |9) = [¥) © (Us|9)).

3. If Ais an observable for subsystem A, then AQ) listhe corresponding
observable for the joint system.

Note that AQ)/and IQ) B always commute, and therefore are compatible
observables. Physically, this means that measurements on different
subsystems can always be done simultaneously.



Treating Subsystems Jointly

While we can extend the results for single systems to composite
systems, there are many more possible states, evolutions and
measurements that are allowed.

Most states |W) of a composite system are not product states. For an
example with two spin-1/2 systems,
1 1

\/§|N> \/§I¢T>

is not a product state. For this joint state, we cannot assign well-
defined states to the subsystems. Such a joint state is called entangled.

W) =

A consequence of entanglement is that measurements on the
subsystems will in general be correlated.

Interactions

We can also perform joint unitaries U on both systems at once. If the
initial state is a product |¢) Q)| @), then after applying a joint unitary

the system will in general be entangled. Correlations are produced by
interaction between the spins.

For example, we might have a Hamiltonian of the form

A

H:E()ZA@Z.

The unitary operators exp(i9H) produced by this Hamiltonian will not
be product operators, even though H itself is a product operator. So
initial product states will evolve to become entangled.



Joint Measurements

Finally, we can measure observables O which are not product
operators. The measurement process follows the same rules we
have already seen: an eigenvalue of O will occur with some
probability, and the system will be left in the corresponding
eigenstate of O. However, since O is not a product operator, the
eigenstates of O will in general be entangled states.

This means that entanglement can be produced by joint
measurements even if the initial state |¢) @ |@) was a product.



