
Quantum Computing
6 – Quantum Fourier

Transform and
Applications

Angelo Bassi

0

The discrete Fourier transform takes as input a vector of complex
numbers, x0 , . . . , xN −1 where the length N of the vector is a fixed
parameter. It outputs the transformed data, a vector of complex
numbers y0, ..., yN−1, defined by

The quantum Fourier transform 217

subgroup problem, a generalization of the phase estimation and order-finding problems
that has among its special cases an efficient quantum algorithm for the discrete logarithm
problem, another problem thought to be intractable on a classical computer.

5.1 The quantum Fourier transform

A good idea has a way of becoming simpler and solving problems other than
that for which it was intended.
– Robert Tarjan

One of the most useful ways of solving a problem in mathematics or computer science
is to transform it into some other problem for which a solution is known. There are a
few transformations of this type which appear so often and in so many different contexts
that the transformations are studied for their own sake. A great discovery of quantum
computation has been that some such transformations can be computed much faster on
a quantum computer than on a classical computer, a discovery which has enabled the
construction of fast algorithms for quantum computers.
One such transformation is the discrete Fourier transform. In the usual mathematical

notation, the discrete Fourier transform takes as input a vector of complex numbers,
x0, . . . , xN−1 where the length N of the vector is a fixed parameter. It outputs the
transformed data, a vector of complex numbers y0, . . . , yN−1, defined by

yk ≡ 1√
N

N−1
∑

j=0

xje
2πijk/N . (5.1)

The quantum Fourier transform is exactly the same transformation, although the
conventional notation for the quantum Fourier transform is somewhat different. The
quantum Fourier transform on an orthonormal basis |0〉, . . . , |N − 1〉 is defined to be a
linear operator with the following action on the basis states,

|j〉 −→ 1√
N

N−1
∑

k=0

e2πijk/N |k〉 . (5.2)

Equivalently, the action on an arbitrary state may be written
N−1
∑

j=0

xj |j〉 −→
N−1
∑

k=0

yk|k〉 , (5.3)

where the amplitudes yk are the discrete Fourier transform of the amplitudes xj . It is not
obvious from the definition, but this transformation is a unitary transformation, and thus
can be implemented as the dynamics for a quantum computer. We shall demonstrate
the unitarity of the Fourier transform by constructing a manifestly unitary quantum
circuit computing the Fourier transform. It is also easy to prove directly that the Fourier
transform is unitary:

Exercise 5.1: Give a direct proof that the linear transformation defined by
Equation (5.2) is unitary.

Exercise 5.2: Explicitly compute the Fourier transform of the n qubit state |00 . . . 0〉.

In the quantum Fourier transform, we do a DFT on the amplitudes
of a quantum state

The quantum Fourier transform 217

subgroup problem, a generalization of the phase estimation and order-finding problems
that has among its special cases an efficient quantum algorithm for the discrete logarithm
problem, another problem thought to be intractable on a classical computer.

5.1 The quantum Fourier transform

A good idea has a way of becoming simpler and solving problems other than
that for which it was intended.
– Robert Tarjan

One of the most useful ways of solving a problem in mathematics or computer science
is to transform it into some other problem for which a solution is known. There are a
few transformations of this type which appear so often and in so many different contexts
that the transformations are studied for their own sake. A great discovery of quantum
computation has been that some such transformations can be computed much faster on
a quantum computer than on a classical computer, a discovery which has enabled the
construction of fast algorithms for quantum computers.
One such transformation is the discrete Fourier transform. In the usual mathematical

notation, the discrete Fourier transform takes as input a vector of complex numbers,
x0, . . . , xN−1 where the length N of the vector is a fixed parameter. It outputs the
transformed data, a vector of complex numbers y0, . . . , yN−1, defined by

yk ≡ 1√
N

N−1
∑

j=0

xje
2πijk/N . (5.1)

The quantum Fourier transform is exactly the same transformation, although the
conventional notation for the quantum Fourier transform is somewhat different. The
quantum Fourier transform on an orthonormal basis |0〉, . . . , |N − 1〉 is defined to be a
linear operator with the following action on the basis states,

|j〉 −→ 1√
N

N−1
∑

k=0

e2πijk/N |k〉 . (5.2)

Equivalently, the action on an arbitrary state may be written
N−1
∑

j=0

xj |j〉 −→
N−1
∑

k=0

yk|k〉 , (5.3)

where the amplitudes yk are the discrete Fourier transform of the amplitudes xj . It is not
obvious from the definition, but this transformation is a unitary transformation, and thus
can be implemented as the dynamics for a quantum computer. We shall demonstrate
the unitarity of the Fourier transform by constructing a manifestly unitary quantum
circuit computing the Fourier transform. It is also easy to prove directly that the Fourier
transform is unitary:

Exercise 5.1: Give a direct proof that the linear transformation defined by
Equation (5.2) is unitary.

Exercise 5.2: Explicitly compute the Fourier transform of the n qubit state |00 . . . 0〉.

where the amplitudes yk are the discrete Fourier transform of the
amplitudes xj. On the computational basis it reads

The Quantum Fourier Transform

The quantum Fourier transform 217

subgroup problem, a generalization of the phase estimation and order-finding problems
that has among its special cases an efficient quantum algorithm for the discrete logarithm
problem, another problem thought to be intractable on a classical computer.

5.1 The quantum Fourier transform

A good idea has a way of becoming simpler and solving problems other than
that for which it was intended.
– Robert Tarjan

One of the most useful ways of solving a problem in mathematics or computer science
is to transform it into some other problem for which a solution is known. There are a
few transformations of this type which appear so often and in so many different contexts
that the transformations are studied for their own sake. A great discovery of quantum
computation has been that some such transformations can be computed much faster on
a quantum computer than on a classical computer, a discovery which has enabled the
construction of fast algorithms for quantum computers.
One such transformation is the discrete Fourier transform. In the usual mathematical

notation, the discrete Fourier transform takes as input a vector of complex numbers,
x0, . . . , xN−1 where the length N of the vector is a fixed parameter. It outputs the
transformed data, a vector of complex numbers y0, . . . , yN−1, defined by

yk ≡ 1√
N

N−1
∑

j=0

xje
2πijk/N . (5.1)

The quantum Fourier transform is exactly the same transformation, although the
conventional notation for the quantum Fourier transform is somewhat different. The
quantum Fourier transform on an orthonormal basis |0〉, . . . , |N − 1〉 is defined to be a
linear operator with the following action on the basis states,

|j〉 −→ 1√
N

N−1
∑

k=0

e2πijk/N |k〉 . (5.2)

Equivalently, the action on an arbitrary state may be written
N−1
∑

j=0

xj |j〉 −→
N−1
∑

k=0

yk|k〉 , (5.3)

where the amplitudes yk are the discrete Fourier transform of the amplitudes xj . It is not
obvious from the definition, but this transformation is a unitary transformation, and thus
can be implemented as the dynamics for a quantum computer. We shall demonstrate
the unitarity of the Fourier transform by constructing a manifestly unitary quantum
circuit computing the Fourier transform. It is also easy to prove directly that the Fourier
transform is unitary:

Exercise 5.1: Give a direct proof that the linear transformation defined by
Equation (5.2) is unitary.

Exercise 5.2: Explicitly compute the Fourier transform of the n qubit state |00 . . . 0〉.

It is not obvious from the definition, but this transformation is a
unitary transformation, and thus can be implemented as the
dynamics for a quantum computer.

1

Since the output amplitudes are a linear combination of the input
amplitudes, it is a linear operator. Its form is easy to write down

First, we observe that the amplitudes α̃k are linear in
the original αj. So there is a linear operator F̂ which
implements the transform. We can write it in outer
product notation:

F̂ =
N−1
∑

j,k=0

e2πijk/N

√
N

|k〉〈j|.

It is easy to check that this does indeed produce the
correct transformation

|ψ〉 → |ψ̃〉.

All that remains is to check that F̂ is unitary.

– p. 3/20

It is easy to check that it is unitary
F̂ † =

∑

j,k

e−2πijk/N

√
N

|j〉〈k|

 , F̂ =

∑

j′,k′

e2πij′k′/N

√
N

|k′〉〈j′|

 ,

F̂ †F̂ =
1

N

∑

j,k,j′,k′

e2πi(j′k′−jk)/N |j〉〈j′|δkk′

=
1

N

∑

j,k,j′

e2πi(j′−j)k/N |j〉〈j′|

=
∑

j,j′

|j〉〈j′|δjj′ =
∑

j

|j〉〈j| = Î .

So F̂ is unitary.
– p. 4/20The Fourier transform lets us define a new basis: |x ⟩̃ = F |x⟩, where

{|x⟩} is the usual computaJonal basis. This basis has a number of
interesJng properJes. Every vector |x ⟩̃ is an equally weighted
superposiJon of all the computaJonal basis states:

The Fourier Basis

The Fourier transform lets us define a new basis:
|x̃〉 = F̂ |x〉, where {|x〉} is the usual computational basis.
This basis has a number of interesting properties.
Every vector |x̃〉 is an equally weighted superposition of
all the computational basis states:

|〈x̃|y〉|2 = 〈y|x̃〉〈x̃|y〉 = 〈y|F̂ |x〉〈x|F̂ †|y〉

=
e2πixy/N

√
N

e−2πixy/N

√
N

=
1

N
.

So if we think of the states |x〉 as being somehow the
most “classical,” then the states |x̃〉 are somehow as
“unclassical” as possible.

– p. 5/20

From the point of view of physics, the relaJonship of this basis to
the computaJonal basis is analogous to that between the
momentum and posiJon bases of a parJcle.

Recall that the Hadamard transform could also turn computaJonal
basis states into equally weighted superposiJons of all states. But it
leO all amplitudes real, while the amplitudes of |x ⟩̃ are complex. 2

3

In matrix representation:

27/02/23, 15:18Quantum Fourier transform - Wikipedia

Page 2 of 5https://en.wikipedia.org/wiki/Quantum_Fourier_transform

In case that is a basis state, the quantum Fourier Transform can also be expressed as the map

Equivalently, the quantum Fourier transform can be viewed as a unitary matrix (or quantum gate) acting on quantum
state vectors, where the unitary matrix is given by

where . We get, for example, in the case of and phase the transformation matrix

Most of the properties of the quantum Fourier transform follow from the fact that it is a unitary transformation. This can
be checked by performing matrix multiplication and ensuring that the relation holds, where is the
Hermitian adjoint of . Alternately, one can check that orthogonal vectors of norm 1 get mapped to orthogonal vectors of
norm 1.

From the unitary property it follows that the inverse of the quantum Fourier transform is the Hermitian adjoint of the
Fourier matrix, thus . Since there is an efficient quantum circuit implementing the quantum Fourier
transform, the circuit can be run in reverse to perform the inverse quantum Fourier transform. Thus both transforms can
be efficiently performed on a quantum computer.

The quantum gates used in the circuit of qubits are the Hadamard gate and the phase gate , here in terms of

with the -th root of unity. The circuit is composed of gates and the controlled version of

Properties

Unitarity

Circuit implementation

27/02/23, 15:18Quantum Fourier transform - Wikipedia

Page 2 of 5https://en.wikipedia.org/wiki/Quantum_Fourier_transform

In case that is a basis state, the quantum Fourier Transform can also be expressed as the map

Equivalently, the quantum Fourier transform can be viewed as a unitary matrix (or quantum gate) acting on quantum
state vectors, where the unitary matrix is given by

where . We get, for example, in the case of and phase the transformation matrix

Most of the properties of the quantum Fourier transform follow from the fact that it is a unitary transformation. This can
be checked by performing matrix multiplication and ensuring that the relation holds, where is the
Hermitian adjoint of . Alternately, one can check that orthogonal vectors of norm 1 get mapped to orthogonal vectors of
norm 1.

From the unitary property it follows that the inverse of the quantum Fourier transform is the Hermitian adjoint of the
Fourier matrix, thus . Since there is an efficient quantum circuit implementing the quantum Fourier
transform, the circuit can be run in reverse to perform the inverse quantum Fourier transform. Thus both transforms can
be efficiently performed on a quantum computer.

The quantum gates used in the circuit of qubits are the Hadamard gate and the phase gate , here in terms of

with the -th root of unity. The circuit is composed of gates and the controlled version of

Properties

Unitarity

Circuit implementation

! = e2⇡i/N

<latexit sha1_base64="WhlH4EdWcrQUm6TIibNBCkMn5RQ=">AAACBXicbVDLSsNAFJ3UV42vqEtdDBbBVU2Kohuh6MaVVLAPSGKZTG/boZMHMxOhhG7c+CtuXCji1n9w5984bbPQ1gMXDufcO3PvCRLOpLLtb6OwsLi0vFJcNdfWNza3rO2dhoxTQaFOYx6LVkAkcBZBXTHFoZUIIGHAoRkMrsZ+8wGEZHF0p4YJ+CHpRazLKFFaalv7nmt6cQg9gi8w3GcVL2GY4eObken5batkl+0J8DxxclJCOWpt68vrxDQNIVKUEyldx06UnxGhGOWgn0wlJIQOSA9cTSMSgvSzyRUjfKiVDu7GQlek8ET9PZGRUMphGOjOkKi+nPXG4n+em6ruuZ+xKEkVRHT6UTflWMV4HAnuMAFU8aEmhAqmd8W0TwShSgdn6hCc2ZPnSaNSdk7Kp7eVUvUyj6OI9tABOkIOOkNVdI1qqI4oekTP6BW9GU/Gi/FufExbC0Y+s4v+wPj8ATM1lnc=</latexit>

In particular, for 1 qubit:

27/02/23, 15:18Quantum Fourier transform - Wikipedia

Page 2 of 5https://en.wikipedia.org/wiki/Quantum_Fourier_transform

In case that is a basis state, the quantum Fourier Transform can also be expressed as the map

Equivalently, the quantum Fourier transform can be viewed as a unitary matrix (or quantum gate) acting on quantum
state vectors, where the unitary matrix is given by

where . We get, for example, in the case of and phase the transformation matrix

Most of the properties of the quantum Fourier transform follow from the fact that it is a unitary transformation. This can
be checked by performing matrix multiplication and ensuring that the relation holds, where is the
Hermitian adjoint of . Alternately, one can check that orthogonal vectors of norm 1 get mapped to orthogonal vectors of
norm 1.

From the unitary property it follows that the inverse of the quantum Fourier transform is the Hermitian adjoint of the
Fourier matrix, thus . Since there is an efficient quantum circuit implementing the quantum Fourier
transform, the circuit can be run in reverse to perform the inverse quantum Fourier transform. Thus both transforms can
be efficiently performed on a quantum computer.

The quantum gates used in the circuit of qubits are the Hadamard gate and the phase gate , here in terms of

with the -th root of unity. The circuit is composed of gates and the controlled version of

Properties

Unitarity

Circuit implementation

while, for 2 qubits:

27/02/23, 15:18Quantum Fourier transform - Wikipedia

Page 2 of 5https://en.wikipedia.org/wiki/Quantum_Fourier_transform

In case that is a basis state, the quantum Fourier Transform can also be expressed as the map

Equivalently, the quantum Fourier transform can be viewed as a unitary matrix (or quantum gate) acting on quantum
state vectors, where the unitary matrix is given by

where . We get, for example, in the case of and phase the transformation matrix

Most of the properties of the quantum Fourier transform follow from the fact that it is a unitary transformation. This can
be checked by performing matrix multiplication and ensuring that the relation holds, where is the
Hermitian adjoint of . Alternately, one can check that orthogonal vectors of norm 1 get mapped to orthogonal vectors of
norm 1.

From the unitary property it follows that the inverse of the quantum Fourier transform is the Hermitian adjoint of the
Fourier matrix, thus . Since there is an efficient quantum circuit implementing the quantum Fourier
transform, the circuit can be run in reverse to perform the inverse quantum Fourier transform. Thus both transforms can
be efficiently performed on a quantum computer.

The quantum gates used in the circuit of qubits are the Hadamard gate and the phase gate , here in terms of

with the -th root of unity. The circuit is composed of gates and the controlled version of

Properties

Unitarity

Circuit implementation
27/02/23, 15:18Quantum Fourier transform - Wikipedia

Page 2 of 5https://en.wikipedia.org/wiki/Quantum_Fourier_transform

In case that is a basis state, the quantum Fourier Transform can also be expressed as the map

Equivalently, the quantum Fourier transform can be viewed as a unitary matrix (or quantum gate) acting on quantum
state vectors, where the unitary matrix is given by

where . We get, for example, in the case of and phase the transformation matrix

Most of the properties of the quantum Fourier transform follow from the fact that it is a unitary transformation. This can
be checked by performing matrix multiplication and ensuring that the relation holds, where is the
Hermitian adjoint of . Alternately, one can check that orthogonal vectors of norm 1 get mapped to orthogonal vectors of
norm 1.

From the unitary property it follows that the inverse of the quantum Fourier transform is the Hermitian adjoint of the
Fourier matrix, thus . Since there is an efficient quantum circuit implementing the quantum Fourier
transform, the circuit can be run in reverse to perform the inverse quantum Fourier transform. Thus both transforms can
be efficiently performed on a quantum computer.

The quantum gates used in the circuit of qubits are the Hadamard gate and the phase gate , here in terms of

with the -th root of unity. The circuit is composed of gates and the controlled version of

Properties

Unitarity

Circuit implementation

27/02/23, 15:18Quantum Fourier transform - Wikipedia

Page 2 of 5https://en.wikipedia.org/wiki/Quantum_Fourier_transform

In case that is a basis state, the quantum Fourier Transform can also be expressed as the map

Equivalently, the quantum Fourier transform can be viewed as a unitary matrix (or quantum gate) acting on quantum
state vectors, where the unitary matrix is given by

where . We get, for example, in the case of and phase the transformation matrix

Most of the properties of the quantum Fourier transform follow from the fact that it is a unitary transformation. This can
be checked by performing matrix multiplication and ensuring that the relation holds, where is the
Hermitian adjoint of . Alternately, one can check that orthogonal vectors of norm 1 get mapped to orthogonal vectors of
norm 1.

From the unitary property it follows that the inverse of the quantum Fourier transform is the Hermitian adjoint of the
Fourier matrix, thus . Since there is an efficient quantum circuit implementing the quantum Fourier
transform, the circuit can be run in reverse to perform the inverse quantum Fourier transform. Thus both transforms can
be efficiently performed on a quantum computer.

The quantum gates used in the circuit of qubits are the Hadamard gate and the phase gate , here in terms of

with the -th root of unity. The circuit is composed of gates and the controlled version of

Properties

Unitarity

Circuit implementation

27/02/23, 15:18Quantum Fourier transform - Wikipedia

Page 2 of 5https://en.wikipedia.org/wiki/Quantum_Fourier_transform

In case that is a basis state, the quantum Fourier Transform can also be expressed as the map

Equivalently, the quantum Fourier transform can be viewed as a unitary matrix (or quantum gate) acting on quantum
state vectors, where the unitary matrix is given by

where . We get, for example, in the case of and phase the transformation matrix

Most of the properties of the quantum Fourier transform follow from the fact that it is a unitary transformation. This can
be checked by performing matrix multiplication and ensuring that the relation holds, where is the
Hermitian adjoint of . Alternately, one can check that orthogonal vectors of norm 1 get mapped to orthogonal vectors of
norm 1.

From the unitary property it follows that the inverse of the quantum Fourier transform is the Hermitian adjoint of the
Fourier matrix, thus . Since there is an efficient quantum circuit implementing the quantum Fourier
transform, the circuit can be run in reverse to perform the inverse quantum Fourier transform. Thus both transforms can
be efficiently performed on a quantum computer.

The quantum gates used in the circuit of qubits are the Hadamard gate and the phase gate , here in terms of

with the -th root of unity. The circuit is composed of gates and the controlled version of

Properties

Unitarity

Circuit implementation

Circuit for the Quantum Fourier
Transform

At this point we specialize to the case of n qubits, so the dimension
is N = 2n.

We have seen that the quantum Fourier transform is a unitary
operator. Therefore, by our earlier results, there is a quantum
circuit which implements it. However, there is no guarantee that
this circuit will be efficient! A general unitary requires a circuit
with a number of gates exponenJal in the number of bits.

Very fortunately, in this case an efficient circuit does exist.
(Fortunately, because the Fourier transform is at the heart of the
most impressive quantum algorithms!)

Binary expression: j → j1 j2 … jn

Let the binary expression for j be j1j2 . . . jn, where
j = j12n−1 + j22n−2 + · · · + jn.
We also write binary fractions 0.j1j2 . . . jn = j1/2 + j2/4+
+ · · · + jn/2n = j/2n. Then

|j̃〉 = 2−n/2 (|0〉 + e2πi0.jn|1〉
)

⊗
(

|0〉 + e2πi0.jn−1jn|1〉
)

⊗ · · ·⊗
(

|0〉 + e2πi0.j1j2...jn |1〉
)

.

The unitary |0, 1〉 → (|0〉± exp(iθ)|1〉)/
√

2 is a Hadamard
followed by a Z-rotation by θ. In the expression above,
the rotation depends on the values of the other bits. So
we should expect to be able to build the Fourier
transform out of Hadamards and controlled-phase rotation
gates.

– p. 9/20

For example, for n = 2 we have j = 2 j1 + j2, therefore

0 → 00
1 → 01
2 → 10
3 → 11

as usual. We also consider the binary fracJonLet the binary expression for j be j1j2 . . . jn, where
j = j12n−1 + j22n−2 + · · · + jn.
We also write binary fractions 0.j1j2 . . . jn = j1/2 + j2/4+
+ · · · + jn/2n = j/2n. Then

|j̃〉 = 2−n/2 (|0〉 + e2πi0.jn|1〉
)

⊗
(

|0〉 + e2πi0.jn−1jn|1〉
)

⊗ · · ·⊗
(

|0〉 + e2πi0.j1j2...jn |1〉
)

.

The unitary |0, 1〉 → (|0〉± exp(iθ)|1〉)/
√

2 is a Hadamard
followed by a Z-rotation by θ. In the expression above,
the rotation depends on the values of the other bits. So
we should expect to be able to build the Fourier
transform out of Hadamards and controlled-phase rotation
gates.

– p. 9/20

Let the binary expression for j be j1j2 . . . jn, where
j = j12n−1 + j22n−2 + · · · + jn.
We also write binary fractions 0.j1j2 . . . jn = j1/2 + j2/4+
+ · · · + jn/2n = j/2n. Then

|j̃〉 = 2−n/2 (|0〉 + e2πi0.jn|1〉
)

⊗
(

|0〉 + e2πi0.jn−1jn|1〉
)

⊗ · · ·⊗
(

|0〉 + e2πi0.j1j2...jn |1〉
)

.

The unitary |0, 1〉 → (|0〉± exp(iθ)|1〉)/
√

2 is a Hadamard
followed by a Z-rotation by θ. In the expression above,
the rotation depends on the values of the other bits. So
we should expect to be able to build the Fourier
transform out of Hadamards and controlled-phase rotation
gates.

– p. 9/20

4

The key insight into designing a circuit for the Fourier transform is
to notice that it can be written in a product form

218 The quantum Fourier transform and its applications

In the following, we takeN = 2n, where n is some integer, and the basis |0〉, . . . , |2n−
1〉 is the computational basis for an n qubit quantum computer. It is helpful to write the
state |j〉 using the binary representation j = j1j2 . . . jn. More formally, j = j12n−1 +
j22n−2 + · · ·+ jn20. It is also convenient to adopt the notation 0.jljl+1 . . . jm to represent
the binary fraction jl/2 + jl+1/4 + · · · + jm/2m−l+1.
With a little algebra the quantum Fourier transform can be given the following useful

product representation:

|j1, . . . , jn〉 →

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

· · ·
(

|0〉 + e2πi0.j1j2···jn |1〉
)

2n/2
.

(5.4)

This product representation is so useful that you may even wish to consider this to be the
definition of the quantum Fourier transform. As we explain shortly this representation
allows us to construct an efficient quantum circuit computing the Fourier transform, a
proof that the quantum Fourier transform is unitary, and provides insight into algorithms
based upon the quantum Fourier transform. As an incidental bonus we obtain the classical
fast Fourier transform, in the exercises!
The equivalence of the product representation (5.4) and the definition (5.2) follows

from some elementary algebra:

|j〉 → 1
2n/2

2n−1
∑

k=0

e2πijk/2n |k〉 (5.5)

=
1
2n/2

1
∑

k1=0

. . .
1

∑

kn=0

e2πij
(
∑n

l=1
kl2−l

)

|k1 . . . kn〉 (5.6)

=
1
2n/2

1
∑

k1=0

. . .
1

∑

kn=0

n
⊗

l=1

e2πijkl2−l

|kl〉 (5.7)

=
1
2n/2

n
⊗

l=1

[

1
∑

kl=0

e2πijkl2−l

|kl〉
]

(5.8)

=
1
2n/2

n
⊗

l=1

[

|0〉 + e2πij2−l

|1〉
]

(5.9)

=

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

· · ·
(

|0〉 + e2πi0.j1j2···jn |1〉
)

2n/2 .(5.10)

The product representation (5.4) makes it easy to derive an efficient circuit for the
quantum Fourier transform. Such a circuit is shown in Figure 5.1. The gate Rk denotes
the unitary transformation

Rk ≡
[

1 0
0 e2πi/2k

]

. (5.11)

To see that the pictured circuit computes the quantum Fourier transform, consider what
happens when the state |j1 . . . jn〉 is input. Applying the Hadamard gate to the first bit
produces the state

1
21/2

(

|0〉 + e2πi0.j1 |1〉
)

|j2 . . . jn〉 , (5.12)

The proof is the following

218 The quantum Fourier transform and its applications

In the following, we takeN = 2n, where n is some integer, and the basis |0〉, . . . , |2n−
1〉 is the computational basis for an n qubit quantum computer. It is helpful to write the
state |j〉 using the binary representation j = j1j2 . . . jn. More formally, j = j12n−1 +
j22n−2 + · · ·+ jn20. It is also convenient to adopt the notation 0.jljl+1 . . . jm to represent
the binary fraction jl/2 + jl+1/4 + · · · + jm/2m−l+1.
With a little algebra the quantum Fourier transform can be given the following useful

product representation:

|j1, . . . , jn〉 →

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

· · ·
(

|0〉 + e2πi0.j1j2···jn |1〉
)

2n/2
.

(5.4)

This product representation is so useful that you may even wish to consider this to be the
definition of the quantum Fourier transform. As we explain shortly this representation
allows us to construct an efficient quantum circuit computing the Fourier transform, a
proof that the quantum Fourier transform is unitary, and provides insight into algorithms
based upon the quantum Fourier transform. As an incidental bonus we obtain the classical
fast Fourier transform, in the exercises!
The equivalence of the product representation (5.4) and the definition (5.2) follows

from some elementary algebra:

|j〉 → 1
2n/2

2n−1
∑

k=0

e2πijk/2n |k〉 (5.5)

=
1
2n/2

1
∑

k1=0

. . .
1

∑

kn=0

e2πij
(
∑n

l=1
kl2−l

)

|k1 . . . kn〉 (5.6)

=
1
2n/2

1
∑

k1=0

. . .
1

∑

kn=0

n
⊗

l=1

e2πijkl2−l

|kl〉 (5.7)

=
1
2n/2

n
⊗

l=1

[

1
∑

kl=0

e2πijkl2−l

|kl〉
]

(5.8)

=
1
2n/2

n
⊗

l=1

[

|0〉 + e2πij2−l

|1〉
]

(5.9)

=

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

· · ·
(

|0〉 + e2πi0.j1j2···jn |1〉
)

2n/2 .(5.10)

The product representation (5.4) makes it easy to derive an efficient circuit for the
quantum Fourier transform. Such a circuit is shown in Figure 5.1. The gate Rk denotes
the unitary transformation

Rk ≡
[

1 0
0 e2πi/2k

]

. (5.11)

To see that the pictured circuit computes the quantum Fourier transform, consider what
happens when the state |j1 . . . jn〉 is input. Applying the Hadamard gate to the first bit
produces the state

1
21/2

(

|0〉 + e2πi0.j1 |1〉
)

|j2 . . . jn〉 , (5.12)

In going from the third to the fourth line, we used the identity

1X

k1=0

. . .
1X

kn=0

nO

l=1

fkl =
1X

k1=0

. . .
1X

kn=0

fk1fk2 . . . fkn

=
nO

l=1

1X

kl=0

fkl =
1X

k1=0

fk1

1X

k2=0

fk2 . . .
1X

kn=0

fkn

<latexit sha1_base64="fEeTpxmjYdYEVmcLvplZ0s+mtK0=">AAADDHicjVJNb9MwGHYCbCOD0cFxF6sV0k5VXDHBpdIEF45DolulJosc1+msOnZkv0GqovyAXfgrXDiAEFd+ADf+zdy0QbSbJl4pypPned4vx2khhYUw/OP5Dx4+2tndexzsP3l68Kxz+Pzc6tIwPmJaajNOqeVSKD4CAZKPC8Npnkp+kc7fLfWLT9xYodVHWBQ8zulMiUwwCo5KDr1uNAkiW+ZJNU8IHuKwviQ4klMNFre8+sunYqZB5NwmlcRDUl8qnC0dsnaW/y7TpJB69R7Ura/5VHUQxUHgphre2a4tJtti+L4J2k6tMNgQXOv7Z1Q1dtMknV7YD5vAtwFZgx5ax1nS+R1NNStzroBJau2EhAXEFTUgmORuwdLygrI5nfGJg4q6DeOq+Zk1fumYKc60cY8C3LD/ZlQ0t3aRp86ZU7iy29qSvEublJC9iSuhihK4YqtGWSkxaLy8GXgqDGcgFw5QZoSbFbMraigDd38Cdwhke+Xb4HzQJ6/6Jx8GvdO36+PYQ0eoi44RQa/RKXqPztAIMe/a++J98777n/2v/g//58rqe+ucF2gj/F832QbvaQ==</latexit>

5

The unitary

Let the binary expression for j be j1j2 . . . jn, where
j = j12n−1 + j22n−2 + · · · + jn.
We also write binary fractions 0.j1j2 . . . jn = j1/2 + j2/4+
+ · · · + jn/2n = j/2n. Then

|j̃〉 = 2−n/2 (|0〉 + e2πi0.jn|1〉
)

⊗
(

|0〉 + e2πi0.jn−1jn|1〉
)

⊗ · · ·⊗
(

|0〉 + e2πi0.j1j2...jn |1〉
)

.

The unitary |0, 1〉 → (|0〉± exp(iθ)|1〉)/
√

2 is a Hadamard
followed by a Z-rotation by θ. In the expression above,
the rotation depends on the values of the other bits. So
we should expect to be able to build the Fourier
transform out of Hadamards and controlled-phase rotation
gates.

– p. 9/20

is a Hadamard followed by a Z-rotaJon by θ. In the expression above the
rotaJon depends on the values of the other bits. So we should expect
to be able to build the Fourier transform out of Hadamard and
controlled-phase rotaJon gates. Define the rotaJon

218 The quantum Fourier transform and its applications

In the following, we takeN = 2n, where n is some integer, and the basis |0〉, . . . , |2n−
1〉 is the computational basis for an n qubit quantum computer. It is helpful to write the
state |j〉 using the binary representation j = j1j2 . . . jn. More formally, j = j12n−1 +
j22n−2 + · · ·+ jn20. It is also convenient to adopt the notation 0.jljl+1 . . . jm to represent
the binary fraction jl/2 + jl+1/4 + · · · + jm/2m−l+1.
With a little algebra the quantum Fourier transform can be given the following useful

product representation:

|j1, . . . , jn〉 →

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

· · ·
(

|0〉 + e2πi0.j1j2···jn |1〉
)

2n/2
.

(5.4)

This product representation is so useful that you may even wish to consider this to be the
definition of the quantum Fourier transform. As we explain shortly this representation
allows us to construct an efficient quantum circuit computing the Fourier transform, a
proof that the quantum Fourier transform is unitary, and provides insight into algorithms
based upon the quantum Fourier transform. As an incidental bonus we obtain the classical
fast Fourier transform, in the exercises!
The equivalence of the product representation (5.4) and the definition (5.2) follows

from some elementary algebra:

|j〉 → 1
2n/2

2n−1
∑

k=0

e2πijk/2n |k〉 (5.5)

=
1
2n/2

1
∑

k1=0

. . .
1

∑

kn=0

e2πij
(
∑n

l=1
kl2−l

)

|k1 . . . kn〉 (5.6)

=
1
2n/2

1
∑

k1=0

. . .
1

∑

kn=0

n
⊗

l=1

e2πijkl2−l

|kl〉 (5.7)

=
1
2n/2

n
⊗

l=1

[

1
∑

kl=0

e2πijkl2−l

|kl〉
]

(5.8)

=
1
2n/2

n
⊗

l=1

[

|0〉 + e2πij2−l

|1〉
]

(5.9)

=

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

· · ·
(

|0〉 + e2πi0.j1j2···jn |1〉
)

2n/2 .(5.10)

The product representation (5.4) makes it easy to derive an efficient circuit for the
quantum Fourier transform. Such a circuit is shown in Figure 5.1. The gate Rk denotes
the unitary transformation

Rk ≡
[

1 0
0 e2πi/2k

]

. (5.11)

To see that the pictured circuit computes the quantum Fourier transform, consider what
happens when the state |j1 . . . jn〉 is input. Applying the Hadamard gate to the first bit
produces the state

1
21/2

(

|0〉 + e2πi0.j1 |1〉
)

|j2 . . . jn〉 , (5.12)

The circuit implemenJng the QFT then is The quantum Fourier transform 219

Figure 5.1. Efficient circuit for the quantum Fourier transform. This circuit is easily derived from the product
representation (5.4) for the quantum Fourier transform. Not shown are swap gates at the end of the circuit which
reverse the order of the qubits, or normalization factors of 1/

√
2 in the output.

since e2πi0.j1 = −1 when j1 = 1, and is +1 otherwise. Applying the controlled-R2 gate
produces the state

1
21/2

(

|0〉 + e2πi0.j1j2 |1〉
)

|j2 . . . jn〉 . (5.13)

We continue applying the controlled-R3, R4 through Rn gates, each of which adds an
extra bit to the phase of the co-efficient of the first |1〉. At the end of this procedure we
have the state

1
21/2

(

|0〉 + e2πi0.j1j2...jn |1〉
)

|j2 . . . jn〉 . (5.14)

Next, we perform a similar procedure on the second qubit. The Hadamard gate puts us
in the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2 |1〉
)

|j3 . . . jn〉 , (5.15)

and the controlled-R2 through Rn−1 gates yield the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

|j3 . . . jn〉. (5.16)

We continue in this fashion for each qubit, giving a final state

1
2n/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

. . .
(

|0〉 + e2πi0.jn |1〉
)

. (5.17)

Swap operations (see Section 1.3.4 for a description of the circuit), omitted from Fig-
ure 5.1 for clarity, are then used to reverse the order of the qubits. After the swap
operations, the state of the qubits is

1
2n/2

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

. . .
(

|0〉 + e2πi0.j1j2···jn |1〉
)

. (5.18)

Comparing with Equation (5.4) we see that this is the desired output from the quantum
Fourier transform. This construction also proves that the quantum Fourier transform is
unitary, since each gate in the circuit is unitary. An explicit example showing a circuit
for the quantum Fourier transform on three qubits is given in Box 5.1.
How many gates does this circuit use? We start by doing a Hadamard gate and n− 1

conditional rotations on the first qubit – a total of n gates. This is followed by a Hadamard
gate and n− 2 conditional rotations on the second qubit, for a total of n+ (n− 1) gates.
Continuing in this way, we see that n+ (n− 1)+ · · ·+1 = n(n+1)/2 gates are required,

Let us see if it works. Applying the Hadamard gate to the first bit
produces the state

218 The quantum Fourier transform and its applications

In the following, we takeN = 2n, where n is some integer, and the basis |0〉, . . . , |2n−
1〉 is the computational basis for an n qubit quantum computer. It is helpful to write the
state |j〉 using the binary representation j = j1j2 . . . jn. More formally, j = j12n−1 +
j22n−2 + · · ·+ jn20. It is also convenient to adopt the notation 0.jljl+1 . . . jm to represent
the binary fraction jl/2 + jl+1/4 + · · · + jm/2m−l+1.
With a little algebra the quantum Fourier transform can be given the following useful

product representation:

|j1, . . . , jn〉 →

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

· · ·
(

|0〉 + e2πi0.j1j2···jn |1〉
)

2n/2
.

(5.4)

This product representation is so useful that you may even wish to consider this to be the
definition of the quantum Fourier transform. As we explain shortly this representation
allows us to construct an efficient quantum circuit computing the Fourier transform, a
proof that the quantum Fourier transform is unitary, and provides insight into algorithms
based upon the quantum Fourier transform. As an incidental bonus we obtain the classical
fast Fourier transform, in the exercises!
The equivalence of the product representation (5.4) and the definition (5.2) follows

from some elementary algebra:

|j〉 → 1
2n/2

2n−1
∑

k=0

e2πijk/2n |k〉 (5.5)

=
1
2n/2

1
∑

k1=0

. . .
1

∑

kn=0

e2πij
(
∑n

l=1
kl2−l

)

|k1 . . . kn〉 (5.6)

=
1
2n/2

1
∑

k1=0

. . .
1

∑

kn=0

n
⊗

l=1

e2πijkl2−l

|kl〉 (5.7)

=
1
2n/2

n
⊗

l=1

[

1
∑

kl=0

e2πijkl2−l

|kl〉
]

(5.8)

=
1
2n/2

n
⊗

l=1

[

|0〉 + e2πij2−l

|1〉
]

(5.9)

=

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

· · ·
(

|0〉 + e2πi0.j1j2···jn |1〉
)

2n/2 .(5.10)

The product representation (5.4) makes it easy to derive an efficient circuit for the
quantum Fourier transform. Such a circuit is shown in Figure 5.1. The gate Rk denotes
the unitary transformation

Rk ≡
[

1 0
0 e2πi/2k

]

. (5.11)

To see that the pictured circuit computes the quantum Fourier transform, consider what
happens when the state |j1 . . . jn〉 is input. Applying the Hadamard gate to the first bit
produces the state

1
21/2

(

|0〉 + e2πi0.j1 |1〉
)

|j2 . . . jn〉 , (5.12)

since e2πi 0.j1 = −1 when j1 = 1, and is +1 otherwise. Applying the
controlled-R2 gate produces the state

The quantum Fourier transform 219

Figure 5.1. Efficient circuit for the quantum Fourier transform. This circuit is easily derived from the product
representation (5.4) for the quantum Fourier transform. Not shown are swap gates at the end of the circuit which
reverse the order of the qubits, or normalization factors of 1/

√
2 in the output.

since e2πi0.j1 = −1 when j1 = 1, and is +1 otherwise. Applying the controlled-R2 gate
produces the state

1
21/2

(

|0〉 + e2πi0.j1j2 |1〉
)

|j2 . . . jn〉 . (5.13)

We continue applying the controlled-R3, R4 through Rn gates, each of which adds an
extra bit to the phase of the co-efficient of the first |1〉. At the end of this procedure we
have the state

1
21/2

(

|0〉 + e2πi0.j1j2...jn |1〉
)

|j2 . . . jn〉 . (5.14)

Next, we perform a similar procedure on the second qubit. The Hadamard gate puts us
in the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2 |1〉
)

|j3 . . . jn〉 , (5.15)

and the controlled-R2 through Rn−1 gates yield the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

|j3 . . . jn〉. (5.16)

We continue in this fashion for each qubit, giving a final state

1
2n/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

. . .
(

|0〉 + e2πi0.jn |1〉
)

. (5.17)

Swap operations (see Section 1.3.4 for a description of the circuit), omitted from Fig-
ure 5.1 for clarity, are then used to reverse the order of the qubits. After the swap
operations, the state of the qubits is

1
2n/2

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

. . .
(

|0〉 + e2πi0.j1j2···jn |1〉
)

. (5.18)

Comparing with Equation (5.4) we see that this is the desired output from the quantum
Fourier transform. This construction also proves that the quantum Fourier transform is
unitary, since each gate in the circuit is unitary. An explicit example showing a circuit
for the quantum Fourier transform on three qubits is given in Box 5.1.
How many gates does this circuit use? We start by doing a Hadamard gate and n− 1

conditional rotations on the first qubit – a total of n gates. This is followed by a Hadamard
gate and n− 2 conditional rotations on the second qubit, for a total of n+ (n− 1) gates.
Continuing in this way, we see that n+ (n− 1)+ · · ·+1 = n(n+1)/2 gates are required,

6

We continue applying the controlled-R3, R4 through Rn gates, each of
which adds an extra bit to the phase of the co-efficient of the first |1⟩. At
the end of this procedure we have the state

The quantum Fourier transform 219

Figure 5.1. Efficient circuit for the quantum Fourier transform. This circuit is easily derived from the product
representation (5.4) for the quantum Fourier transform. Not shown are swap gates at the end of the circuit which
reverse the order of the qubits, or normalization factors of 1/

√
2 in the output.

since e2πi0.j1 = −1 when j1 = 1, and is +1 otherwise. Applying the controlled-R2 gate
produces the state

1
21/2

(

|0〉 + e2πi0.j1j2 |1〉
)

|j2 . . . jn〉 . (5.13)

We continue applying the controlled-R3, R4 through Rn gates, each of which adds an
extra bit to the phase of the co-efficient of the first |1〉. At the end of this procedure we
have the state

1
21/2

(

|0〉 + e2πi0.j1j2...jn |1〉
)

|j2 . . . jn〉 . (5.14)

Next, we perform a similar procedure on the second qubit. The Hadamard gate puts us
in the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2 |1〉
)

|j3 . . . jn〉 , (5.15)

and the controlled-R2 through Rn−1 gates yield the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

|j3 . . . jn〉. (5.16)

We continue in this fashion for each qubit, giving a final state

1
2n/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

. . .
(

|0〉 + e2πi0.jn |1〉
)

. (5.17)

Swap operations (see Section 1.3.4 for a description of the circuit), omitted from Fig-
ure 5.1 for clarity, are then used to reverse the order of the qubits. After the swap
operations, the state of the qubits is

1
2n/2

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

. . .
(

|0〉 + e2πi0.j1j2···jn |1〉
)

. (5.18)

Comparing with Equation (5.4) we see that this is the desired output from the quantum
Fourier transform. This construction also proves that the quantum Fourier transform is
unitary, since each gate in the circuit is unitary. An explicit example showing a circuit
for the quantum Fourier transform on three qubits is given in Box 5.1.
How many gates does this circuit use? We start by doing a Hadamard gate and n− 1

conditional rotations on the first qubit – a total of n gates. This is followed by a Hadamard
gate and n− 2 conditional rotations on the second qubit, for a total of n+ (n− 1) gates.
Continuing in this way, we see that n+ (n− 1)+ · · ·+1 = n(n+1)/2 gates are required,

Next, we perform a similar procedure on the second qubit. The
Hadamard gate puts us in the state

and the controlled-R2 through Rn−1 gates yield the state

We conJnue in this fashion for each qubit, giving a final state

If necessary, swap operaJons omifed from the Figure for clarity, can be
used to reverse the order of the qubits. AOer the swap operaJons, the
state of the qubits is

The quantum Fourier transform 219

Figure 5.1. Efficient circuit for the quantum Fourier transform. This circuit is easily derived from the product
representation (5.4) for the quantum Fourier transform. Not shown are swap gates at the end of the circuit which
reverse the order of the qubits, or normalization factors of 1/

√
2 in the output.

since e2πi0.j1 = −1 when j1 = 1, and is +1 otherwise. Applying the controlled-R2 gate
produces the state

1
21/2

(

|0〉 + e2πi0.j1j2 |1〉
)

|j2 . . . jn〉 . (5.13)

We continue applying the controlled-R3, R4 through Rn gates, each of which adds an
extra bit to the phase of the co-efficient of the first |1〉. At the end of this procedure we
have the state

1
21/2

(

|0〉 + e2πi0.j1j2...jn |1〉
)

|j2 . . . jn〉 . (5.14)

Next, we perform a similar procedure on the second qubit. The Hadamard gate puts us
in the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2 |1〉
)

|j3 . . . jn〉 , (5.15)

and the controlled-R2 through Rn−1 gates yield the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

|j3 . . . jn〉. (5.16)

We continue in this fashion for each qubit, giving a final state

1
2n/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

. . .
(

|0〉 + e2πi0.jn |1〉
)

. (5.17)

Swap operations (see Section 1.3.4 for a description of the circuit), omitted from Fig-
ure 5.1 for clarity, are then used to reverse the order of the qubits. After the swap
operations, the state of the qubits is

1
2n/2

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

. . .
(

|0〉 + e2πi0.j1j2···jn |1〉
)

. (5.18)

Comparing with Equation (5.4) we see that this is the desired output from the quantum
Fourier transform. This construction also proves that the quantum Fourier transform is
unitary, since each gate in the circuit is unitary. An explicit example showing a circuit
for the quantum Fourier transform on three qubits is given in Box 5.1.
How many gates does this circuit use? We start by doing a Hadamard gate and n− 1

conditional rotations on the first qubit – a total of n gates. This is followed by a Hadamard
gate and n− 2 conditional rotations on the second qubit, for a total of n+ (n− 1) gates.
Continuing in this way, we see that n+ (n− 1)+ · · ·+1 = n(n+1)/2 gates are required,

The quantum Fourier transform 219

Figure 5.1. Efficient circuit for the quantum Fourier transform. This circuit is easily derived from the product
representation (5.4) for the quantum Fourier transform. Not shown are swap gates at the end of the circuit which
reverse the order of the qubits, or normalization factors of 1/

√
2 in the output.

since e2πi0.j1 = −1 when j1 = 1, and is +1 otherwise. Applying the controlled-R2 gate
produces the state

1
21/2

(

|0〉 + e2πi0.j1j2 |1〉
)

|j2 . . . jn〉 . (5.13)

We continue applying the controlled-R3, R4 through Rn gates, each of which adds an
extra bit to the phase of the co-efficient of the first |1〉. At the end of this procedure we
have the state

1
21/2

(

|0〉 + e2πi0.j1j2...jn |1〉
)

|j2 . . . jn〉 . (5.14)

Next, we perform a similar procedure on the second qubit. The Hadamard gate puts us
in the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2 |1〉
)

|j3 . . . jn〉 , (5.15)

and the controlled-R2 through Rn−1 gates yield the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

|j3 . . . jn〉. (5.16)

We continue in this fashion for each qubit, giving a final state

1
2n/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

. . .
(

|0〉 + e2πi0.jn |1〉
)

. (5.17)

Swap operations (see Section 1.3.4 for a description of the circuit), omitted from Fig-
ure 5.1 for clarity, are then used to reverse the order of the qubits. After the swap
operations, the state of the qubits is

1
2n/2

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

. . .
(

|0〉 + e2πi0.j1j2···jn |1〉
)

. (5.18)

Comparing with Equation (5.4) we see that this is the desired output from the quantum
Fourier transform. This construction also proves that the quantum Fourier transform is
unitary, since each gate in the circuit is unitary. An explicit example showing a circuit
for the quantum Fourier transform on three qubits is given in Box 5.1.
How many gates does this circuit use? We start by doing a Hadamard gate and n− 1

conditional rotations on the first qubit – a total of n gates. This is followed by a Hadamard
gate and n− 2 conditional rotations on the second qubit, for a total of n+ (n− 1) gates.
Continuing in this way, we see that n+ (n− 1)+ · · ·+1 = n(n+1)/2 gates are required,

The quantum Fourier transform 219

Figure 5.1. Efficient circuit for the quantum Fourier transform. This circuit is easily derived from the product
representation (5.4) for the quantum Fourier transform. Not shown are swap gates at the end of the circuit which
reverse the order of the qubits, or normalization factors of 1/

√
2 in the output.

since e2πi0.j1 = −1 when j1 = 1, and is +1 otherwise. Applying the controlled-R2 gate
produces the state

1
21/2

(

|0〉 + e2πi0.j1j2 |1〉
)

|j2 . . . jn〉 . (5.13)

We continue applying the controlled-R3, R4 through Rn gates, each of which adds an
extra bit to the phase of the co-efficient of the first |1〉. At the end of this procedure we
have the state

1
21/2

(

|0〉 + e2πi0.j1j2...jn |1〉
)

|j2 . . . jn〉 . (5.14)

Next, we perform a similar procedure on the second qubit. The Hadamard gate puts us
in the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2 |1〉
)

|j3 . . . jn〉 , (5.15)

and the controlled-R2 through Rn−1 gates yield the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

|j3 . . . jn〉. (5.16)

We continue in this fashion for each qubit, giving a final state

1
2n/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

. . .
(

|0〉 + e2πi0.jn |1〉
)

. (5.17)

Swap operations (see Section 1.3.4 for a description of the circuit), omitted from Fig-
ure 5.1 for clarity, are then used to reverse the order of the qubits. After the swap
operations, the state of the qubits is

1
2n/2

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

. . .
(

|0〉 + e2πi0.j1j2···jn |1〉
)

. (5.18)

Comparing with Equation (5.4) we see that this is the desired output from the quantum
Fourier transform. This construction also proves that the quantum Fourier transform is
unitary, since each gate in the circuit is unitary. An explicit example showing a circuit
for the quantum Fourier transform on three qubits is given in Box 5.1.
How many gates does this circuit use? We start by doing a Hadamard gate and n− 1

conditional rotations on the first qubit – a total of n gates. This is followed by a Hadamard
gate and n− 2 conditional rotations on the second qubit, for a total of n+ (n− 1) gates.
Continuing in this way, we see that n+ (n− 1)+ · · ·+1 = n(n+1)/2 gates are required,

The quantum Fourier transform 219

Figure 5.1. Efficient circuit for the quantum Fourier transform. This circuit is easily derived from the product
representation (5.4) for the quantum Fourier transform. Not shown are swap gates at the end of the circuit which
reverse the order of the qubits, or normalization factors of 1/

√
2 in the output.

since e2πi0.j1 = −1 when j1 = 1, and is +1 otherwise. Applying the controlled-R2 gate
produces the state

1
21/2

(

|0〉 + e2πi0.j1j2 |1〉
)

|j2 . . . jn〉 . (5.13)

We continue applying the controlled-R3, R4 through Rn gates, each of which adds an
extra bit to the phase of the co-efficient of the first |1〉. At the end of this procedure we
have the state

1
21/2

(

|0〉 + e2πi0.j1j2...jn |1〉
)

|j2 . . . jn〉 . (5.14)

Next, we perform a similar procedure on the second qubit. The Hadamard gate puts us
in the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2 |1〉
)

|j3 . . . jn〉 , (5.15)

and the controlled-R2 through Rn−1 gates yield the state

1
22/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

|j3 . . . jn〉. (5.16)

We continue in this fashion for each qubit, giving a final state

1
2n/2

(

|0〉 + e2πi0.j1j2...jn |1〉
) (

|0〉 + e2πi0.j2...jn |1〉
)

. . .
(

|0〉 + e2πi0.jn |1〉
)

. (5.17)

Swap operations (see Section 1.3.4 for a description of the circuit), omitted from Fig-
ure 5.1 for clarity, are then used to reverse the order of the qubits. After the swap
operations, the state of the qubits is

1
2n/2

(

|0〉 + e2πi0.jn |1〉
) (

|0〉 + e2πi0.jn−1jn |1〉
)

. . .
(

|0〉 + e2πi0.j1j2···jn |1〉
)

. (5.18)

Comparing with Equation (5.4) we see that this is the desired output from the quantum
Fourier transform. This construction also proves that the quantum Fourier transform is
unitary, since each gate in the circuit is unitary. An explicit example showing a circuit
for the quantum Fourier transform on three qubits is given in Box 5.1.
How many gates does this circuit use? We start by doing a Hadamard gate and n− 1

conditional rotations on the first qubit – a total of n gates. This is followed by a Hadamard
gate and n− 2 conditional rotations on the second qubit, for a total of n+ (n− 1) gates.
Continuing in this way, we see that n+ (n− 1)+ · · ·+1 = n(n+1)/2 gates are required,

7

220 The quantum Fourier transform and its applications

Box 5.1: Three qubit quantum Fourier transform

For concreteness it may help to look at the explicit circuit for the three qubit
quantum Fourier transform:

Recall that S and T are the phase and π/8 gates (see page xxiii). As a matrix the
quantum Fourier transform in this instance may be written out explicitly, using
ω = e2πi/8 =

√
i, as

1√
8

1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω1 ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω1 ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω1

. (5.19)

plus the gates involved in the swaps. At most n/2 swaps are required, and each swap
can be accomplished using three controlled- gates. Therefore, this circuit provides a
Θ(n2) algorithm for performing the quantum Fourier transform.
In contrast, the best classical algorithms for computing the discrete Fourier transform

on 2n elements are algorithms such as the Fast Fourier Transform (FFT), which com-
pute the discrete Fourier transform usingΘ(n2n) gates. That is, it requires exponentially
more operations to compute the Fourier transform on a classical computer than it does
to implement the quantum Fourier transform on a quantum computer.
At face value this sounds terrific, since the Fourier transform is a crucial step in so many

real-world data processing applications. For example, in computer speech recognition,
the first step in phoneme recognition is to Fourier transform the digitized sound. Can
we use the quantum Fourier transform to speed up the computation of these Fourier
transforms? Unfortunately, the answer is that there is no known way to do this. The
problem is that the amplitudes in a quantum computer cannot be directly accessed by
measurement. Thus, there is no way of determining the Fourier transformed amplitudes
of the original state. Worse still, there is in general no way to efficiently prepare the
original state to be Fourier transformed. Thus, finding uses for the quantum Fourier
transform is more subtle than we might have hoped. In this and the next chapter we
develop several algorithms based upon a more subtle application of the quantum Fourier
transform.

How many gates does this circuit use? We start by doing a Hadamard
gate and n − 1 conditional rotations on the first qubit – a total of n gates.
This is followed by a Hadamard gate and n − 2 conditional rotations on the
second qubit, for a total of n + (n − 1) gates. Continuing in this way, we see
that n+(n−1)+···+1 = n(n+1)/2 gates are required plus the gates involved in
the swaps. At most n/2 swaps are required, and each swap can be
accomplished using three CNOT gates. Therefore, this circuit provides a
Θ(n2) algorithm for performing the quantum Fourier transform.

In contrast, the best classical algorithms for computing the discrete Fourier
transform on 2n elements are algorithms such as the Fast Fourier
Transform (FFT), which compute the discrete Fourier transform using
Θ(n2n) gates.

8

But remember, we cannot measure particular values of the
amplitudes! The quantum Fourier Transform is useful only as a piece
of another algorithm.

Exercise on IBM Quantum Composer.

N = 2

9

Opuput state
[0.5+0j, 0-0.5j, -0.5+0j, 0+0.5j]

Opuput state
[0.5+0j, 0+0.5j, -0.5+0j, 0-0.5j]

Opuput state
[0.5+0j, -0.5+0j, 0.5+0j, -0.5+0j]

Opuput state
[0.5+0j, 0.5+0j, 0.5+0j, 0.5+0j]

This corresponds to the matrix seen before

N = 3

Phase estimation algorithm

The problem: Suppose we are given a unitary operator U on n
qubits, which has a known eigenstate |u⟩ with an unknown
eigenvalue e2πiφ, with φ in [0,1). We wish to find the phase φ with
some precision.

By itself, the phase estimation algorithm is a solution to a rather
artificial problem. But this solution turns out to be useful as a piece of
several other algorithms, to solve much more natural and important
problems.

The first thing we might try is to prepare n q-bits in the state |u⟩, and
carry out the unitary transformation U on them:

Not Global Phase

The first thing we might try is to prepare n q-bits in the
state |u〉, and carry out the unitary transformation Û on
them:

Is there a measurement on the bits which will give us
information about the phase φ? The answer, of course,
is no: Û just produces an overall phase on the state,
with no observable consequences.

– p. 2/24

Is there a measurement on the bits which will give us information
about the phase φ? The answer, of course, is no: Û just produces an
overall phase on the state, with no observable consequences.

We need to generate relative phases, which can be measured. This can
be done in the following way.

Expectation Value

Here is a more sophisticated approach to the problem.
Suppose we perform the following circuit:

Instead of performing the operation Û , we do a
controlled- Û , and then measure the control bit. We can
find that the expectation of Ẑ on the control bit is

〈Ẑ〉 = 〈u|(Û + Û †)|u〉/2 =
1

2

(

e2πiφ + e−2πiφ
)

= cos(2πφ).

– p. 3/24

Expectation Value

Here is a more sophisticated approach to the problem.
Suppose we perform the following circuit:

Instead of performing the operation Û , we do a
controlled- Û , and then measure the control bit. We can
find that the expectation of Ẑ on the control bit is

〈Ẑ〉 = 〈u|(Û + Û †)|u〉/2 =
1

2

(

e2πiφ + e−2πiφ
)

= cos(2πφ).

– p. 3/24

10

The iniJal state changes as follows:

|0i|ui ! 1p
2
[|0i+ |1i]|ui

! 1p
2
[|0i|ui+ |1ie2⇡i'|ui] = 1p

2
[|0i+ e2⇡i'|1i]|ui

<latexit sha1_base64="CMRgTonKI7BPevGGU2v5/78Z4tQ=">AAADKXiclVJdixMxFM2MX+v41dVHX4JFEYQyU1b0RVz0xccV7O5CM5Y76Z1p2ExmNsmslHT+ji/+FV8UFPXVP2La7dK6WxAvBE7uPefm5iRZLYWxcfwzCC9dvnL12tb16MbNW7fvdLbv7puq0RwHvJKVPszAoBQKB1ZYiYe1RigziQfZ0et5/eAEtRGVemenNaYlFErkgoP1qdF28JJlWAjl8FiB1jBto1nMNKhCIp01Z+gRZVoUE+sp1Yf5LtfAXdI6Zo61df22HdKV7gmdJWc4XevCVKWaMkNNGYv+r+WqyXpzfO/6rBZUUHYCup6IdkVM6YvoX2Nu0m+cfG30iKEar+wadbpxL14EvQiSJeiSZeyNOl/ZuOJNicpyCcYMk7i2qQNtBZfYRqwxWAM/ggKHHioo0aRu8dItfegzY5pX2i9l6SK7rnBQGjMtM88swU7M+do8uak2bGz+PHVC1Y1FxU8PyhtJbUXn34aOhUZu5dQD4Fr4WSmfgHfX+s8VeROS81e+CPb7vWSn9/Rtv7v7amnHFrlPHpDHJCHPyC55Q/bIgPDgY/A5+BZ8Dz+FX8If4a9TahgsNffIXxH+/gP8iwQF</latexit>

Now we have a relaJve phase among the two qubits of the
computaJonal basis, which can be measured for example by first
applying an Hadamard gate to the first qubit, whose state then
becomes:

1 + e2⇡i'

2
|0i+ 1� e2⇡i'

2
|1i

<latexit sha1_base64="4RE+JhQ/aTzuiXGm0WM3shb0BrM=">AAACSHicdZDNS8MwGMbT+V2/ph69BIcgiKMdih6HXjwquCmsdaTZ2y2YpiVJB6P2z/Pi0Zt/gxcPingz2yropi8EHp7neUnyCxLOlHacZ6s0Mzs3v7C4ZC+vrK6tlzc2mypOJYUGjXksbwKigDMBDc00h5tEAokCDtfB3dkwv+6DVCwWV3qQgB+RrmAho0Qbq11uey3bCyWhmYv3MdxmNS9hmGGvT2TSYznOs1qO7x1PEtHlYDrf7YP/227Rtj2/Xa44VWc0eFq4haigYi7a5SevE9M0AqEpJ0q1XCfRfkakZpRDbnupgoTQO9KFlpGCRKD8bAQix7vG6eAwluYIjUfuz42MREoNosA0I6J7ajIbmn9lrVSHJ37GRJJqEHR8UZhyrGM8pIo7TALVfGAEoZKZt2LaIwaUNuxtA8Gd/PK0aNaq7mH16LJWqZ8WOBbRNtpBe8hFx6iOztEFaiCKHtALekPv1qP1an1Yn+NqySp2ttCvKZW+AB+Vr6o=</latexit>

and by making a measurement on the computational basis we
have the output probabilities:

P[0] = 1 + cos 2⇡'

2
, P[1] = 1� cos 2⇡'

2

<latexit sha1_base64="U8BSCtNGeNfcHj92unalNyk7apY=">AAACXHicbVFdS8MwFE3r1K1zWhV88SU4BEEd7VD0RRj64uME9wFNGWmWumD6YZIKo/RP+uaLf0XTrQ9zeiDhcO493NyTIOVMKsf5NMyN2ubWdr1hNXdau3v2/sFQJpkgdEASnohxgCXlLKYDxRSn41RQHAWcjoLXh7I+eqdCsiR+VvOU+hF+iVnICFZamtgSeRaKsJoFQd4vPMeHdxCFApPchecQkUTCLkQpQ+9YpDNW5N3iAqK3twxPUXmtmt1V8+X/Zmghf2K3nY6zAPxL3Iq0QYX+xP5A04RkEY0V4VhKz3VS5edYKEY4LSyUSZpi8opfqKdpjCMq/XwRTgFPtTKFYSL0iRVcqKuOHEdSzqNAd5aryPVaKf5X8zIV3vo5i9NM0ZgsB4UZhyqBZdJwygQlis81wUQw/VZIZlino/R/WDoEd33lv2TY7bhXneunbrt3X8VRB8fgBJwBF9yAHngEfTAABHyCb6NuNIwvs2Y2zday1TQqzyH4BfPoB79Zsmc=</latexit>

We can run this circuit several times to recover the phase φ.
Unfortunately, the convergence of this algorithm is very slow.
After N repetitions, the accuracy in the estimate of the phase φ
is N-1/2. If we wish to know φ with m bits accuracy, then N1/2 = 2m,
which means N = 22m: the number of repetitions grows
exponentially with the number of bits of accuracy.

A smarter solution is provided by the following algorithm.

11

222 The quantum Fourier transform and its applications

to successive powers of two. The final state of the first register is easily seen to be:

1
2t/2

(

|0〉 + e2πi2t−1ϕ|1〉
) (

|0〉 + e2πi2t−2ϕ|1〉
)

. . .
(

|0〉 + e2πi20ϕ|1〉
)

=
1
2t/2

2t−1
∑

k=0

e2πiϕk|k〉 . (5.20)

We omit the second register from this description, since it stays in the state |u〉 throughout
the computation.

| 〉 H · · · • | 〉 e2πi(2t−1ϕ)| 〉

| 〉 H • · · · | 〉 e2πi(22ϕ)| 〉

| 〉 H • · · · | 〉 e2πi(21ϕ)| 〉

| 〉 H • · · · | 〉 e2πi(20ϕ)| 〉

|u〉 U20
U21

U22 · · · U2t−1 |u〉

t

Figure 5.2. The first stage of the phase estimation procedure. Normalization factors of 1/
√
2 have been omitted, on

the right.

Exercise 5.7: Additional insight into the circuit in Figure 5.2 may be obtained by
showing, as you should now do, that the effect of the sequence of controlled-U
operations like that in Figure 5.2 is to take the state |j〉|u〉 to |j〉U j|u〉. (Note
that this does not depend on |u〉 being an eigenstate of U .)

The second stage of phase estimation is to apply the inverse quantum Fourier transform
on the first register. This is obtained by reversing the circuit for the quantum Fourier
transform in the previous section (Exercise 5.5), and can be done in Θ(t2) steps. The
third and final stage of phase estimation is to read out the state of the first register by
doing a measurement in the computational basis. We will show that this provides a pretty
good estimate of ϕ. An overall schematic of the algorithm is shown in Figure 5.3.
To sharpen our intuition as to why phase estimation works, suppose ϕ may be ex-

pressed exactly in t bits, as ϕ = 0.ϕ1 . . . ϕt. Then the state (5.20) resulting from the first
stage of phase estimation may be rewritten

1
2t/2

(

|0〉 + e2πi0.ϕt |1〉
) (

|0〉 + e2πi0.ϕt−1ϕt |1〉
)

. . .
(

|0〉 + e2πi0.ϕ1ϕ2···ϕt |1〉
)

. (5.21)

The second stage of phase estimation is to apply the inverse quantum Fourier transform.
But comparing the previous equation with the product form for the Fourier transform,
Equation (5.4), we see that the output state from the second stage is the product state
|ϕ1 . . .ϕt〉. A measurement in the computational basis therefore gives us ϕ exactly!

0

0

0

0

0

0

0

0

1

1

1

1

Second register

First register
qubits

+

+

+

+

(normaliza:on factors 2-1/2 have been ominCed)

How we choose t depends on two things: the number of digits of
accuracy we wish to have in our estimate for φ, and with what
probability we wish the phase estimation procedure to be successful.

The final state of the first register is easily seen to be

222 The quantum Fourier transform and its applications

to successive powers of two. The final state of the first register is easily seen to be:

1
2t/2

(

|0〉 + e2πi2t−1ϕ|1〉
) (

|0〉 + e2πi2t−2ϕ|1〉
)

. . .
(

|0〉 + e2πi20ϕ|1〉
)

=
1
2t/2

2t−1
∑

k=0

e2πiϕk|k〉 . (5.20)

We omit the second register from this description, since it stays in the state |u〉 throughout
the computation.

| 〉 H · · · • | 〉 e2πi(2t−1ϕ)| 〉

| 〉 H • · · · | 〉 e2πi(22ϕ)| 〉

| 〉 H • · · · | 〉 e2πi(21ϕ)| 〉

| 〉 H • · · · | 〉 e2πi(20ϕ)| 〉

|u〉 U20
U21

U22 · · · U2t−1 |u〉

t

Figure 5.2. The first stage of the phase estimation procedure. Normalization factors of 1/
√
2 have been omitted, on

the right.

Exercise 5.7: Additional insight into the circuit in Figure 5.2 may be obtained by
showing, as you should now do, that the effect of the sequence of controlled-U
operations like that in Figure 5.2 is to take the state |j〉|u〉 to |j〉U j|u〉. (Note
that this does not depend on |u〉 being an eigenstate of U .)

The second stage of phase estimation is to apply the inverse quantum Fourier transform
on the first register. This is obtained by reversing the circuit for the quantum Fourier
transform in the previous section (Exercise 5.5), and can be done in Θ(t2) steps. The
third and final stage of phase estimation is to read out the state of the first register by
doing a measurement in the computational basis. We will show that this provides a pretty
good estimate of ϕ. An overall schematic of the algorithm is shown in Figure 5.3.
To sharpen our intuition as to why phase estimation works, suppose ϕ may be ex-

pressed exactly in t bits, as ϕ = 0.ϕ1 . . . ϕt. Then the state (5.20) resulting from the first
stage of phase estimation may be rewritten

1
2t/2

(

|0〉 + e2πi0.ϕt |1〉
) (

|0〉 + e2πi0.ϕt−1ϕt |1〉
)

. . .
(

|0〉 + e2πi0.ϕ1ϕ2···ϕt |1〉
)

. (5.21)

The second stage of phase estimation is to apply the inverse quantum Fourier transform.
But comparing the previous equation with the product form for the Fourier transform,
Equation (5.4), we see that the output state from the second stage is the product state
|ϕ1 . . .ϕt〉. A measurement in the computational basis therefore gives us ϕ exactly!

0

0

0

0

0

0

0

0

1

1

1

1

Second register

First register
qubits

The first stage of the algorithm is:

Suppose φ may be expressed exactly in t bits, as φ = 0.φ1 . . . φt. Then

Now that we have prepared this state, what do we do
with it? Let us suppose that there is an exact t-bit
expression for the phase, φ = 0.φ1φ2 . . . φt. Then,

e2πiφ = e2πi0.φ1...φt .

e4πiφ = e2πiφ1.φ2...φt = e2πiφ1+2πi0.φ2...φt = e2πi0.φ2...φt .

e2
jπiφ = e2πi0.φj...φt .

The state of the control bits can be written

2−t/2
(

|0〉+ e2πi0.φ1...φt|1〉
)

⊗ · · ·⊗
(

|0〉+ e2πi0.φt|1〉
)

,

which is the Fourier transform of the basis state
|φ1 · · ·φt〉 = |2tφ〉!

– p. 6/24

12

=
1

2t/2

1X

k1=0

. . .
1X

kt=0

e2⇡i'(k12
t�1+k22

t�2+...+kt2
0)|k1k2 . . . kti

<latexit sha1_base64="KwZIgEFLQTCcTF3vlkO/r2xg5Ls=">AAACjnicbZFbb9MwFMedcBsZlwweebGokIYQJYlgIFDFBC97HBLdJtVp5LhOa9VxIvtkUmXycfhCvPFtsNuIy8aRLP39/53jyzllK4WBJPkZhDdu3rp9Z+9utH/v/oOH8cGjM9N0mvEpa2SjL0pquBSKT0GA5Bet5rQuJT8v1589P7/k2ohGfYVNy/OaLpWoBKPgrCL+TmbRBJNKU2bT3mZzC6+yvsfEdHVh10WKJzjp545hIhcNmN8E/hA+txlpBRaYXFLdrgQ+9JX+sJcOv8DrItvtMr8bDvI2eDvpn/f4m6/weQN1jGiqlpJHJC/iUTJOtoGvi3QQIzTEaRH/IIuGdTVXwCQ1ZpYmLeSWahBM8j4ineEtZWu65DMnFa25ye22nT1+5pwFrhrtlgK8df+usLQ2ZlOXLrOmsDJXmTf/x2YdVO9yK1TbAVdsd1HVSQwN9rPBC6E5A7lxgjIt3FsxW1E3GnATjFwT0qtfvi7OsnH6evzmSzY6/jS0Yw89QU/RIUrRW3SMTtApmiIW7Adp8D74EMbhUTgJP+5Sw2CoeYz+ifDkF7j6wKU=</latexit>

The output state can be rewritten as

222 The quantum Fourier transform and its applications

to successive powers of two. The final state of the first register is easily seen to be:

1
2t/2

(

|0〉 + e2πi2t−1ϕ|1〉
) (

|0〉 + e2πi2t−2ϕ|1〉
)

. . .
(

|0〉 + e2πi20ϕ|1〉
)

=
1
2t/2

2t−1
∑

k=0

e2πiϕk|k〉 . (5.20)

We omit the second register from this description, since it stays in the state |u〉 throughout
the computation.

| 〉 H · · · • | 〉 e2πi(2t−1ϕ)| 〉

| 〉 H • · · · | 〉 e2πi(22ϕ)| 〉

| 〉 H • · · · | 〉 e2πi(21ϕ)| 〉

| 〉 H • · · · | 〉 e2πi(20ϕ)| 〉

|u〉 U20
U21

U22 · · · U2t−1 |u〉

t

Figure 5.2. The first stage of the phase estimation procedure. Normalization factors of 1/
√
2 have been omitted, on

the right.

Exercise 5.7: Additional insight into the circuit in Figure 5.2 may be obtained by
showing, as you should now do, that the effect of the sequence of controlled-U
operations like that in Figure 5.2 is to take the state |j〉|u〉 to |j〉U j|u〉. (Note
that this does not depend on |u〉 being an eigenstate of U .)

The second stage of phase estimation is to apply the inverse quantum Fourier transform
on the first register. This is obtained by reversing the circuit for the quantum Fourier
transform in the previous section (Exercise 5.5), and can be done in Θ(t2) steps. The
third and final stage of phase estimation is to read out the state of the first register by
doing a measurement in the computational basis. We will show that this provides a pretty
good estimate of ϕ. An overall schematic of the algorithm is shown in Figure 5.3.
To sharpen our intuition as to why phase estimation works, suppose ϕ may be ex-

pressed exactly in t bits, as ϕ = 0.ϕ1 . . . ϕt. Then the state (5.20) resulting from the first
stage of phase estimation may be rewritten

1
2t/2

(

|0〉 + e2πi0.ϕt |1〉
) (

|0〉 + e2πi0.ϕt−1ϕt |1〉
)

. . .
(

|0〉 + e2πi0.ϕ1ϕ2···ϕt |1〉
)

. (5.21)

The second stage of phase estimation is to apply the inverse quantum Fourier transform.
But comparing the previous equation with the product form for the Fourier transform,
Equation (5.4), we see that the output state from the second stage is the product state
|ϕ1 . . .ϕt〉. A measurement in the computational basis therefore gives us ϕ exactly!

0

0

0

0

0

0

0

0

1

1

1

1

Second register

First register
qubits

which is the Quantum Fourier Transform of the state

Therefore the second stage of the algorithm is to apply the inverse
Quantum Fourier Transform to the output of the first state, and one
recovers exactly the bits of the binary fracJon for φ.

The full phase esJmaJon algorithm is:

222 The quantum Fourier transform and its applications

to successive powers of two. The final state of the first register is easily seen to be:

1
2t/2

(

|0〉 + e2πi2t−1ϕ|1〉
) (

|0〉 + e2πi2t−2ϕ|1〉
)

. . .
(

|0〉 + e2πi20ϕ|1〉
)

=
1
2t/2

2t−1
∑

k=0

e2πiϕk|k〉 . (5.20)

We omit the second register from this description, since it stays in the state |u〉 throughout
the computation.

| 〉 H · · · • | 〉 e2πi(2t−1ϕ)| 〉

| 〉 H • · · · | 〉 e2πi(22ϕ)| 〉

| 〉 H • · · · | 〉 e2πi(21ϕ)| 〉

| 〉 H • · · · | 〉 e2πi(20ϕ)| 〉

|u〉 U20
U21

U22 · · · U2t−1 |u〉

t

Figure 5.2. The first stage of the phase estimation procedure. Normalization factors of 1/
√
2 have been omitted, on

the right.

Exercise 5.7: Additional insight into the circuit in Figure 5.2 may be obtained by
showing, as you should now do, that the effect of the sequence of controlled-U
operations like that in Figure 5.2 is to take the state |j〉|u〉 to |j〉U j|u〉. (Note
that this does not depend on |u〉 being an eigenstate of U .)

The second stage of phase estimation is to apply the inverse quantum Fourier transform
on the first register. This is obtained by reversing the circuit for the quantum Fourier
transform in the previous section (Exercise 5.5), and can be done in Θ(t2) steps. The
third and final stage of phase estimation is to read out the state of the first register by
doing a measurement in the computational basis. We will show that this provides a pretty
good estimate of ϕ. An overall schematic of the algorithm is shown in Figure 5.3.
To sharpen our intuition as to why phase estimation works, suppose ϕ may be ex-

pressed exactly in t bits, as ϕ = 0.ϕ1 . . . ϕt. Then the state (5.20) resulting from the first
stage of phase estimation may be rewritten

1
2t/2

(

|0〉 + e2πi0.ϕt |1〉
) (

|0〉 + e2πi0.ϕt−1ϕt |1〉
)

. . .
(

|0〉 + e2πi0.ϕ1ϕ2···ϕt |1〉
)

. (5.21)

The second stage of phase estimation is to apply the inverse quantum Fourier transform.
But comparing the previous equation with the product form for the Fourier transform,
Equation (5.4), we see that the output state from the second stage is the product state
|ϕ1 . . .ϕt〉. A measurement in the computational basis therefore gives us ϕ exactly!

0

0

0

0

0

0

0

0

1

1

1

1

Second register

First register
qubits

Phase estimation 223

!!
!
!
!
!
!
! """"""""

#######

" " " " " " " "

##
##
##
#

Figure 5.3. Schematic of the overall phase estimation procedure. The top t qubits (the ‘/’ denotes a bundle of
wires, as usual) are the first register, and the bottom qubits are the second register, numbering as many as required
to perform U . |u〉 is an eigenstate of U with eigenvalue e2πiϕ. The output of the measurement is an
approximation to ϕ accurate to t −

⌈

log
(

2 + 1
2ε

)⌉

bits, with probability of success at least 1− ε.

Summarizing, the phase estimation algorithm allows one to estimate the phase ϕ of an
eigenvalue of a unitary operator U , given the corresponding eigenvector |u〉. An essential
feature at the heart of this procedure is the ability of the inverse Fourier transform to
perform the transformation

1
2t/2

2t−1
∑

j=0

e2πiϕj |j〉|u〉 → |ϕ̃〉|u〉 , (5.22)

where |ϕ̃〉 denotes a state which is a good estimator for ϕ when measured.

5.2.1 Performance and requirements
The above analysis applies to the ideal case, where ϕ can be written exactly with a t
bit binary expansion. What happens when this is not the case? It turns out that the
procedure we have described will produce a pretty good approximation to ϕ with high
probability, as foreshadowed by the notation used in (5.22). Showing this requires some
careful manipulations.
Let b be the integer in the range 0 to 2t −1 such that b/2t = 0.b1 . . . bt is the best t bit

approximation to ϕ which is less than ϕ. That is, the difference δ ≡ ϕ − b/2t between
ϕ and b/2t satisfies 0 ≤ δ ≤ 2−t. We aim to show that the observation at the end of
the phase estimation procedure produces a result which is close to b, and thus enables us
to estimate ϕ accurately, with high probability. Applying the inverse quantum Fourier
transform to the state (5.20) produces the state

1
2t

2t−1
∑

k,l=0

e
−2πikl

2t e2πiϕk|l〉 . (5.23)

Let αl be the amplitude of |(b + l)(mod 2t)〉,

αl ≡
1
2t

2t−1
∑

k=0

(

e2πi(ϕ−(b+l)/2t)
)k

. (5.24)

This is the sum of a geometric series, so

αl =
1
2t

(

1− e2πi(2tϕ−(b+l))

1− e2πi(ϕ−(b+l)/2t)

)

(5.25)

The above analysis applies to the ideal case, where φ can be wrifen
exactly with a t bit binary expansion. What happens when this is not
the case?

Applying the inverse QFT to the state in the previous page produces
the state

13

Phase estimation 223

!!
!
!
!
!
!
! """"""""

#######

" " " " " " " "

##
##
##
#

Figure 5.3. Schematic of the overall phase estimation procedure. The top t qubits (the ‘/’ denotes a bundle of
wires, as usual) are the first register, and the bottom qubits are the second register, numbering as many as required
to perform U . |u〉 is an eigenstate of U with eigenvalue e2πiϕ. The output of the measurement is an
approximation to ϕ accurate to t −

⌈

log
(

2 + 1
2ε

)⌉

bits, with probability of success at least 1− ε.

Summarizing, the phase estimation algorithm allows one to estimate the phase ϕ of an
eigenvalue of a unitary operator U , given the corresponding eigenvector |u〉. An essential
feature at the heart of this procedure is the ability of the inverse Fourier transform to
perform the transformation

1
2t/2

2t−1
∑

j=0

e2πiϕj |j〉|u〉 → |ϕ̃〉|u〉 , (5.22)

where |ϕ̃〉 denotes a state which is a good estimator for ϕ when measured.

5.2.1 Performance and requirements
The above analysis applies to the ideal case, where ϕ can be written exactly with a t
bit binary expansion. What happens when this is not the case? It turns out that the
procedure we have described will produce a pretty good approximation to ϕ with high
probability, as foreshadowed by the notation used in (5.22). Showing this requires some
careful manipulations.
Let b be the integer in the range 0 to 2t −1 such that b/2t = 0.b1 . . . bt is the best t bit

approximation to ϕ which is less than ϕ. That is, the difference δ ≡ ϕ − b/2t between
ϕ and b/2t satisfies 0 ≤ δ ≤ 2−t. We aim to show that the observation at the end of
the phase estimation procedure produces a result which is close to b, and thus enables us
to estimate ϕ accurately, with high probability. Applying the inverse quantum Fourier
transform to the state (5.20) produces the state

1
2t

2t−1
∑

k,l=0

e
−2πikl

2t e2πiϕk|l〉 . (5.23)

Let αl be the amplitude of |(b + l)(mod 2t)〉,

αl ≡
1
2t

2t−1
∑

k=0

(

e2πi(ϕ−(b+l)/2t)
)k

. (5.24)

This is the sum of a geometric series, so

αl =
1
2t

(

1− e2πi(2tϕ−(b+l))

1− e2πi(ϕ−(b+l)/2t)

)

(5.25)

We see again that if φ = 0.φ1 . . . Φt, then 2t φ is an integer and the
sum over k returns a Kronecker delta, forcing it to be equal to 2t φ.
The final state is

=
1

2t

2t�1X

k,l=0

e�
2⇡i
2t

(l�2t')k|li

<latexit sha1_base64="e1KUMaDoRV4WgSqUefTx1mPfK+Y=">AAACSHicbZBPSxwxGMYz29raqa1rPfby0qVgobvMLEq9CKIXjxa6Kmxmh0z2nd2wmcyQZIRlnI/nxaM3P4MXD4p4M/vn0GpfCDw8z/OS5JcUUhgbBDde483blXfvVz/4H9c+fV5vbnw5MXmpOfZ4LnN9ljCDUijsWWElnhUaWZZIPE0mh7P89By1Ebn6Y6cFRhkbKZEKzqyz4mZM+/4e0FQzXoV11R3YGqgps7ia/JR7QT2YWdAOa8BB1V70urQQIBblLQltcIKeM12MxQ+Y1HAhqWZqJNGnUdxsBZ1gPvBahEvRIss5jpvXdJjzMkNluWTG9MOgsFHFtBVcYu3T0mDB+ISNsO+kYhmaqJqDqOG7c4aQ5todZWHu/r1RscyYaZa4Zsbs2LzMZub/sn5p092oEqooLSq+uCgtJdgcZlRhKDRyK6dOMK6FeyvwMXOwrGPvOwjhyy+/FifdTrjd2fndbe0fLHGskq/kG9kiIflF9skROSY9wskluSX35MG78u68R+9pUW14y51N8s80Gs8ZF7A2</latexit>

Now that we have prepared this state, what do we do
with it? Let us suppose that there is an exact t-bit
expression for the phase, φ = 0.φ1φ2 . . . φt. Then,

e2πiφ = e2πi0.φ1...φt .

e4πiφ = e2πiφ1.φ2...φt = e2πiφ1+2πi0.φ2...φt = e2πi0.φ2...φt .

e2
jπiφ = e2πi0.φj...φt .

The state of the control bits can be written

2−t/2
(

|0〉+ e2πi0.φ1...φt|1〉
)

⊗ · · ·⊗
(

|0〉+ e2πi0.φt|1〉
)

,

which is the Fourier transform of the basis state
|φ1 · · ·φt〉 = |2tφ〉!

– p. 6/24

14

The above function is sharply peaked around the closest l to 2t φ.
More precisely, it can be shown (see Nielsen & Chuang) that to
successfully obtain φ accurate to n bits with probability of success at
least 1 − ε, we choose

224 The quantum Fourier transform and its applications

=
1
2t

(

1− e2πi(2tδ−l)

1− e2πi(δ−l/2t)

)

. (5.26)

Suppose the outcome of the final measurement is m. We aim to bound the probability of
obtaining a value of m such that |m− b| > e, where e is a positive integer characterizing
our desired tolerance to error. The probability of observing such an m is given by

p(|m − b| > e) =
∑

−2t−1<l≤−(e+1)

|αl|2 +
∑

e+1≤l≤2t−1

|αl|2 . (5.27)

But for any real θ, |1− exp(iθ)| ≤ 2, so

|αl| ≤
2

2t |1− e2πi(δ−l/2t)| . (5.28)

By elementary geometry or calculus |1− exp(iθ)| ≥ 2|θ|/π whenever −π ≤ θ ≤ π. But
when −2t−1 < l ≤ 2t−1 we have −π ≤ 2π(δ − l/2t) ≤ π. Thus

|αl| ≤
1

2t+1(δ − l/2t)
. (5.29)

Combining (5.27) and (5.29) gives

p(|m − b| > e) ≤ 1
4

−(e+1)
∑

l=−2t−1+1

1
(l − 2tδ)2

+
2t−1
∑

l=e+1

1
(l − 2tδ)2

 . (5.30)

Recalling that 0 ≤ 2tδ ≤ 1, we obtain

p(|m − b| > e) ≤ 1
4

−(e+1)
∑

l=−2t−1+1

1
l2
+

2t−1
∑

l=e+1

1
(l − 1)2

 (5.31)

≤ 1
2

2t−1−1
∑

l=e

1
l2

(5.32)

≤ 1
2

∫ 2t−1−1

e−1
dl
1
l2

(5.33)

=
1

2(e − 1)
. (5.34)

Suppose we wish to approximate ϕ to an accuracy 2−n, that is, we choose e = 2t−n − 1.
By making use of t = n + p qubits in the phase estimation algorithm we see from (5.34)
that the probability of obtaining an approximation correct to this accuracy is at least
1 − 1/2(2p − 2). Thus to successfully obtain ϕ accurate to n bits with probability of
success at least 1− ε we choose

t = n +
⌈

log
(

2 +
1
2ε

)⌉

. (5.35)

In order to make use of the phase estimation algorithm, we need to be able to prepare an
eigenstate |u〉 of U . What if we do not know how to prepare such an eigenstate? Suppose
that we prepare some other state |ψ〉 in place of |u〉. Expanding this state in terms of
eigenstates |u〉 of U gives |ψ〉 =

∑

u cu|u〉. Suppose the eigenstate |u〉 has eigenvalue
e2πiϕu . Intuitively, the result of running the phase estimation algorithm will be to give

If this is not the case, the coefficient associated to the state |l> is:

=
1

2t

2t�1X

k=0

e�
2⇡i
2t

(l�2t')k =
1

2t
1� e2⇡i(l�2t')

1� e2⇡i(l�2t')/2t

<latexit sha1_base64="14+cG+zhjWbPIAfzkSs4dLQWnDI=">AAACnXichVFda9swFJXdbsuyr6x9ax96WRhkD0lts7G+BMJKoS1ldLA0gdgJsiI3IvIHkhwIRv9qv2Rv+zeT7QS6prALgqNzzzmSrsKMM6kc549l7+0/e/6i8bL56vWbt+9a7w/uZJoLQock5akYh1hSzhI6VExxOs4ExXHI6Shcnpf90YoKydLkp1pnNIjxfcIiRrAy1Kz1y580++BHApPC1YU3VRp8mcezYtl39LQkoOtqoNOiW6s8P2PAammHQxcM8FdYZAv2CZYaYCeu3hmlCfGgssPWCVur1v+VnJZxuukHs1bb6TlVwS5wN6CNNnU7a/325ynJY5oowrGUE9fJVFBgoRjh1ETmkmaYLPE9nRiY4JjKoKimq+GjYeYQpcKsREHFPnQUOJZyHYdGGWO1kI97JflUb5Kr6CwoWJLliiakPijKOagUyq+COROUKL42ABPBzF2BLLAZpjIf2jRDcB8/eRfceT33c+/LD689+LYZRwMdow+og1z0FQ3QJbpFQ0SsI2tgXVnX9ol9Yd/Y32upbW08h+ifskd/AfGvxYo=</latexit>

And its square modulus is

1

22t
1� cos[2⇡(l � 2t')]

1� cos[2⇡(l � 2t')/2t]

<latexit sha1_base64="9yBtWmBJVcfeCDlcLYP/bVdWFag=">AAACUXicdVHLSgMxFL0d3/VVdekmWARdWGcGRZeiG5cK1gozY8mkmTY08yC5I5RhftGFrvwPNy4U01pFrV4InJxz7k1yEmZSaLTtp4o1NT0zOze/UF1cWl5Zra2tX+s0V4w3WSpTdRNSzaVIeBMFSn6TKU7jUPJW2D8b6q07rrRIkyscZDyIaTcRkWAUDdWu9XyvSvxIUVY4ZeHeFi6W5SdB9ojPUk08l/iZIDvSEO4tEv+OqqwndoPyy/OfZd9sgrLqB+1a3W7YoyKTwBmDOozrol178Dspy2OeIJNUa8+xMwwKqlAwyc3IXPOMsj7tcs/AhMZcB8UokZJsG6ZDolSZlSAZsd87ChprPYhD44wp9vRvbUj+pXk5RsdBIZIsR56wj4OiXBJMyTBe0hGKM5QDAyhTwtyVsB41aaL5hKoJwfn95Elw7Tacg8bhpVs/OR3HMQ+bsAU74MARnMA5XEATGNzDM7zCW+Wx8mKBZX1Yrcq4ZwN+lLX4Dg9Yrq4=</latexit>

The number of qubits needed to run the algorithm with the desired
accuracy grows linearly. Assuming that the controlled-U2j unitaries are
given by oracles (and hence free), the complexity of the algorithm is
basically that of the Quantum Fourier Transform, O(t2). We have an
exponenJal advantage with respect to the naïve algorithm we first
tried.

However, if we have to perform circuits for the controlled-U2j unitaries,
than things change. Even if we have an efficient circuit for controlled-
U, we need efficient circuits for all the controlled-U2j gates as well; just
repeaJng the controlled-U 2j Jmes will make the complexity
exponenJal.

There is another somewhat arJficial assumpJon as well. It is assumed
that we don’t know the eigenvalue e2πiφ , but that we can prepare the
eigenvector |u⟩. While this may someJmes be true, in most cases it
will not be.

15

The phase estimation algorithm then is:

Phase estimation 225

as output a state close to
∑

u cu|ϕ̃u〉|u〉, where ϕ̃u is a pretty good approximation to the
phase ϕu. Therefore, we expect that reading out the first register will give us a good
approximation to ϕu, where u is chosen at random with probability |cu|2. Making this
argument rigorous is left for Exercise 5.8. This procedure allows us to avoid preparing
a (possibly unknown) eigenstate, at the cost of introducing some additional randomness
into the algorithm.

Exercise 5.8: Suppose the phase estimation algorithm takes the state |0〉|u〉 to the
state |ϕ̃u〉|u〉, so that given the input |0〉

(
∑

u cu|u〉
)

, the algorithm outputs
∑

u cu|ϕ̃u〉|u〉. Show that if t is chosen according to (5.35), then the probability
for measuring ϕu accurate to n bits at the conclusion of the phase estimation
algorithm is at least |cu|2(1− ε).

Why is phase estimation interesting? For its own sake, phase estimation solves a prob-
lem which is both non-trivial and interesting from a physical point of view: how to
estimate the eigenvalue associated to a given eigenvector of a unitary operator. Its real
use, though, comes from the observation that other interesting problems can be reduced
to phase estimation, as will be shown in subsequent sections. The phase estimation algo-
rithm is summarized below.

Algorithm: Quantum phase estimation

Inputs: (1) A black box wich performs a controlled-U j operation, for integer j,
(2) an eigenstate |u〉 of U with eigenvalue e2πiϕu , and (3) t = n +

⌈

log
(

2 + 1
2ε

)⌉

qubits initialized to |0〉.

Outputs: An n-bit approximation ϕ̃u to ϕu.

Runtime: O(t2) operations and one call to controlled-U j black box. Succeeds
with probability at least 1− ε.

Procedure:

1. |0〉|u〉 initial state

2. → 1√
2t

2t−1
∑

j=0

|j〉|u〉 create superposition

3. → 1√
2t

2t−1
∑

j=0

|j〉U j|u〉 apply black box

=
1√
2t

2t−1
∑

j=0

e2πijϕu |j〉|u〉 result of black box

4. → |ϕ̃u〉|u〉 apply inverse Fourier transform

5. → ϕ̃u measure first register

Exercise 5.9: Let U be a unitary transform with eigenvalues ±1, which acts on a state
|ψ〉. Using the phase estimation procedure, construct a quantum circuit to
collapse |ψ〉 into one or the other of the two eigenspaces of U , giving also aExample 1. Consider the unitary operator (X gate)

27/02/23, 15:28Quantum Phase Estimation and Hadamard test

Page 1 of 4https://vtomole.com/blog/2018/05/20/pea

Home

Quantum Phase Estimation and Hadamard test
20 May 2018

Introduction

Quantum Phase estimation is an important subroutine in quantum computing. It’s used for factoring, quantum
simulation, and discrete logarithm. A version of Phase estimation called the Hadamard test is used to
approximate the Jones polynomial (a significant expression in Knot theory). Quantum computers can estimate
phases more efficiently than classical computers because quantum computers can exploit the Quantum
Fourier transform; which requires gates instead of on classical computers. This post will
cover Phase Estimation and Hadamard test including their implementations on a quantum computer.

Quantum Phase estimation

Quantum Phase estimation solves: Given a Unitary and an eigenvector of such that =
where , find the eigenvalue of or the phase .

This algorithm uses 2 registers. The first register contains qubits. The more qubits, the more accurate 's
estimation will be. The second register contains . Quantum Phase estimation first prepares the state

 by intilizing the first qubits to and encoding in the second register. Hadamard gates are
applied to each qubit in the first register

 controlled-U (cU) gates are applied to the second register, remember that =

This equation can be written as

Which is similiar to the Quantum Fourier transform

The first register of is similar to QFT (QFT). To get , the inverse of the Quantum Fourier
transform (QFT in reverse) is applied to the first register.

The state of the second register doesn't change during computation, so the final state of the system before
measurement is . Measurement of the first register will result in an approximation of .

Quantum Phase estimation example

Given a unitary , and an eigenvector of (1, 1), with an eigenvalue of , find the

phase (). A calculation for the eigenvalues of U gives and . So and . The
phases can be calculated on a quantum computer where corresponds to the measured result and to
because it's the only other option (using more qubits to estimate is not neccesary in this case).

The eigenvalue can be approximated wih a single bit, so the first register will contain a qubit. The second
register will also contain one qubit because is a one qubit gate (i.e X gate). To encode the eigenvector (1,1)

O(n2) O(n ∗ 2n)

U U |ψ⟩ U |ψ⟩ e2πiθ

0 ≤ θ < 1 e2πiθ |ψ⟩ θ

m m θ
|ψ⟩

|0⟩m |ψ⟩ m |0⟩ |ψ⟩

|φ0⟩ = H ⊗m[|0⟩] |ψ⟩ = [(|0⟩ + |1⟩)0 (|0⟩ + |1⟩)1 (|0⟩ + |1⟩)2 . . . (|0⟩ + |1⟩)2m−1] |ψ⟩
1

√2m

2m−1 U |ψ⟩ e2πiθ

|φ1⟩ = cU 2m−1 |φ0⟩ = [(|0⟩ + e2πiθ20
|1⟩)0 (|0⟩ + e2πiθ21 |1⟩)1 (|0⟩ + e2πiθ22 |1⟩)2 . . . (|0⟩ + e2πiθ2m−1

|1⟩)2m−1] |ψ⟩
1

√2m

|φ1⟩ = [
2m−1

∑
k=0

e2πiθk |k⟩] |ψ⟩
1

√2m

QFT |x⟩ =
2m−1

∑
k=0

e |k⟩
1

√2m

2πixk

2n

|φ1⟩ |x⟩ |θ⟩ |θ⟩

QFT−1QFT |θ⟩ = QFT−1
2m−1

∑
k=0

e2πiθk |k⟩ = |θ0 θ1 θ2. . . θm⟩
1

√2m

|θ0 θ1 θ2. . . θm⟩ |ψ⟩ θ

U = [0 1
1 0

] U λ = e2πiθ

θ λ1 = 1 λ2 = −1 θ1 = 0 θ2 = 1
2

θ1 0 θ2 1
1
2

U

1 1

with eigenstate and we know the relative eigenvalue
is a phase
The goal is to find the phase, with 1 bit precision.

1. The initial state is:

|+i = 1p
2
[|0i+ |1i]

<latexit sha1_base64="lJgSRPB2sNuhHqfCo66eY4EPRtU=">AAACJXicbZDLSsNAFIYnXmu8VV26GSyCUChJUXShUHTjsoK9QBLKZDpph04mcWYilDQv48ZXcePCIoIrX8VpG0FbDwx8/P85nDm/HzMqlWV9GkvLK6tr64UNc3Nre2e3uLfflFEiMGngiEWi7SNJGOWkoahipB0LgkKfkZY/uJn4rUciJI34vRrGxAtRj9OAYqS01Cleuo45KrsC8R4j8Aq6gUA4tbPUlQ9CpdUsc+DI+vHLcGTn7Jmu1ymWrIo1LbgIdg4lkFe9Uxy73QgnIeEKMySlY1ux8lIkFMWMZKabSBIjPEA94mjkKCTSS6dXZvBYK10YREI/ruBU/T2RolDKYejrzhCpvpz3JuJ/npOo4MJLKY8TRTieLQoSBlUEJ5HBLhUEKzbUgLCg+q8Q95HOSelgTR2CPX/yIjSrFfu0cnZXLdWu8zgK4BAcgRNgg3NQA7egDhoAgyfwAt7A2Hg2Xo1342PWumTkMwfgTxlf38iQpDU=</latexit>

27/02/23, 15:28Quantum Phase Estimation and Hadamard test

Page 1 of 4https://vtomole.com/blog/2018/05/20/pea

Home

Quantum Phase Estimation and Hadamard test
20 May 2018

Introduction

Quantum Phase estimation is an important subroutine in quantum computing. It’s used for factoring, quantum
simulation, and discrete logarithm. A version of Phase estimation called the Hadamard test is used to
approximate the Jones polynomial (a significant expression in Knot theory). Quantum computers can estimate
phases more efficiently than classical computers because quantum computers can exploit the Quantum
Fourier transform; which requires gates instead of on classical computers. This post will
cover Phase Estimation and Hadamard test including their implementations on a quantum computer.

Quantum Phase estimation

Quantum Phase estimation solves: Given a Unitary and an eigenvector of such that =
where , find the eigenvalue of or the phase .

This algorithm uses 2 registers. The first register contains qubits. The more qubits, the more accurate 's
estimation will be. The second register contains . Quantum Phase estimation first prepares the state

 by intilizing the first qubits to and encoding in the second register. Hadamard gates are
applied to each qubit in the first register

 controlled-U (cU) gates are applied to the second register, remember that =

This equation can be written as

Which is similiar to the Quantum Fourier transform

The first register of is similar to QFT (QFT). To get , the inverse of the Quantum Fourier
transform (QFT in reverse) is applied to the first register.

The state of the second register doesn't change during computation, so the final state of the system before
measurement is . Measurement of the first register will result in an approximation of .

Quantum Phase estimation example

Given a unitary , and an eigenvector of (1, 1), with an eigenvalue of , find the

phase (). A calculation for the eigenvalues of U gives and . So and . The
phases can be calculated on a quantum computer where corresponds to the measured result and to
because it's the only other option (using more qubits to estimate is not neccesary in this case).

The eigenvalue can be approximated wih a single bit, so the first register will contain a qubit. The second
register will also contain one qubit because is a one qubit gate (i.e X gate). To encode the eigenvector (1,1)

O(n2) O(n ∗ 2n)

U U |ψ⟩ U |ψ⟩ e2πiθ

0 ≤ θ < 1 e2πiθ |ψ⟩ θ

m m θ
|ψ⟩

|0⟩m |ψ⟩ m |0⟩ |ψ⟩

|φ0⟩ = H ⊗m[|0⟩] |ψ⟩ = [(|0⟩ + |1⟩)0 (|0⟩ + |1⟩)1 (|0⟩ + |1⟩)2 . . . (|0⟩ + |1⟩)2m−1] |ψ⟩
1

√2m

2m−1 U |ψ⟩ e2πiθ

|φ1⟩ = cU 2m−1 |φ0⟩ = [(|0⟩ + e2πiθ20
|1⟩)0 (|0⟩ + e2πiθ21 |1⟩)1 (|0⟩ + e2πiθ22 |1⟩)2 . . . (|0⟩ + e2πiθ2m−1

|1⟩)2m−1] |ψ⟩
1

√2m

|φ1⟩ = [
2m−1

∑
k=0

e2πiθk |k⟩] |ψ⟩
1

√2m

QFT |x⟩ =
2m−1

∑
k=0

e |k⟩
1

√2m

2πixk

2n

|φ1⟩ |x⟩ |θ⟩ |θ⟩

QFT−1QFT |θ⟩ = QFT−1
2m−1

∑
k=0

e2πiθk |k⟩ = |θ0 θ1 θ2. . . θm⟩
1

√2m

|θ0 θ1 θ2. . . θm⟩ |ψ⟩ θ

U = [0 1
1 0

] U λ = e2πiθ

θ λ1 = 1 λ2 = −1 θ1 = 0 θ2 = 1
2

θ1 0 θ2 1
1
2

U

1 1

|0i|+i

<latexit sha1_base64="4X5F7kvA/1/oFgT1P8OmVdGa+nU=">AAACAnicbZDLSsNAFIZPvNZ4q7oSN4NFEISSFEWXRTcuK9gLJKFMppN26GQSZiZCaYsbX8WNC0Xc+hTufBunbRba+sPAx3/O4cz5w5QzpR3n21paXlldWy9s2Jtb2zu7xb39hkoySWidJDyRrRArypmgdc00p61UUhyHnDbD/s2k3nygUrFE3OtBSoMYdwWLGMHaWO3ioe/ZI8eXWHQ5RaOznGw/aBdLTtmZCi2Cm0MJctXaxS+/k5AspkITjpXyXCfVwRBLzQinY9vPFE0x6eMu9QwKHFMVDKcnjNGJcTooSqR5QqOp+3tiiGOlBnFoOmOse2q+NjH/q3mZjq6CIRNppqkgs0VRxpFO0CQP1GGSEs0HBjCRzPwVkR6WmGiTmm1CcOdPXoRGpeyely/uKqXqdR5HAY7gGE7BhUuowi3UoA4EHuEZXuHNerJerHfrY9a6ZOUzB/BH1ucPnnKWTA==</latexit>

16

2. We apply a Hadamard to the first qubit to create the superposiJon:

1p
2
[|0i+ |1i]|+i

<latexit sha1_base64="EwB9JK/CMsKzLXAQ2+95mn/bSfM=">AAACInicbZDLSsNAFIYnXmu8RV26GSyCUChJUdRd0Y3LCvYCSSiT6aQdOpnEmYlQ0jyLG1/FjQtFXQk+jNM2C239YeDjP+dw5vxBwqhUtv1lLC2vrK6tlzbMza3tnV1rb78l41Rg0sQxi0UnQJIwyklTUcVIJxEERQEj7WB4Pam3H4iQNOZ3apQQP0J9TkOKkdJW17r0XNMLBcKZk2eevBcqq+W5O7Y9gXifEViBY6dgH44rBZqe37XKdtWeCi6CU0AZFGp0rQ+vF+M0IlxhhqR0HTtRfoaEopiR3PRSSRKEh6hPXI0cRUT62fTEHB5rpwfDWOjHFZy6vycyFEk5igLdGSE1kPO1iflfzU1VeOFnlCepIhzPFoUpgyqGk7xgjwqCFRtpQFhQ/VeIB0gHpnSqpg7BmT95EVq1qnNaPbutletXRRwlcAiOwAlwwDmogxvQAE2AwSN4Bq/gzXgyXox343PWumQUMwfgj4zvH3dbo5o=</latexit>

3. We apply the controlled-U gate once: the state remains unchanged

4. The inverse Fourier transform, which amounts to an Hadamard, brings
the state back to >

5. Measuring the first register gives 0, from which we learn that the
phase, in binary fraction, is 0.0 (to 1 bit accuracy).

This is correct: we know that the eigenvalue is 1, therefore the phase is
0.

|0i|+i

<latexit sha1_base64="4X5F7kvA/1/oFgT1P8OmVdGa+nU=">AAACAnicbZDLSsNAFIZPvNZ4q7oSN4NFEISSFEWXRTcuK9gLJKFMppN26GQSZiZCaYsbX8WNC0Xc+hTufBunbRba+sPAx3/O4cz5w5QzpR3n21paXlldWy9s2Jtb2zu7xb39hkoySWidJDyRrRArypmgdc00p61UUhyHnDbD/s2k3nygUrFE3OtBSoMYdwWLGMHaWO3ioe/ZI8eXWHQ5RaOznGw/aBdLTtmZCi2Cm0MJctXaxS+/k5AspkITjpXyXCfVwRBLzQinY9vPFE0x6eMu9QwKHFMVDKcnjNGJcTooSqR5QqOp+3tiiGOlBnFoOmOse2q+NjH/q3mZjq6CIRNppqkgs0VRxpFO0CQP1GGSEs0HBjCRzPwVkR6WmGiTmm1CcOdPXoRGpeyely/uKqXqdR5HAY7gGE7BhUuowi3UoA4EHuEZXuHNerJerHfrY9a6ZOUzB/BH1ucPnnKWTA==</latexit>

Exercise 1. Consider the unitary operator (T gate)
Single Qubit Quantum Gates

174 Quantum circuits

4.2 Single qubit operations

The development of our quantum computational toolkit begins with operations on the
simplest quantum system of all – a single qubit. Single qubit gates were introduced in
Section 1.3.1. Let us quickly summarize what we learned there; you may find it useful
to refer to the notes on notation on page xxiii as we go along.
A single qubit is a vector |ψ〉 = a|0〉 + b|1〉 parameterized by two complex numbers

satisfying |a|2 + |b|2 = 1. Operations on a qubit must preserve this norm, and thus are
described by 2×2 unitary matrices. Of these, some of the most important are the Pauli
matrices; it is useful to list them again here:

X ≡
[

0 1
1 0

]

; Y ≡
[

0 −i
i 0

]

; Z ≡
[

1 0
0 −1

]

. (4.1)

Three other quantum gates will play a large part in what follows, the Hadamard gate
(denoted H), phase gate (denoted S), and π/8 gate (denoted T):

H =
1√
2

[

1 1
1 −1

]

; S =
[

1 0
0 i

]

; T =
[

1 0
0 exp(iπ/4)

]

. (4.2)

A couple of useful algebraic facts to keep in mind are that H = (X+Z)/
√
2 and S = T 2.

You might wonder why the T gate is called the π/8 gate when it is π/4 that appears in
the definition. The reason is that the gate has historically often been referred to as the
π/8 gate, simply because up to an unimportant global phase T is equal to a gate which
has exp(±iπ/8) appearing on its diagonals.

T = exp(iπ/8)
[

exp(−iπ/8) 0
0 exp(iπ/8)

]

. (4.3)

Nevertheless, the nomenclature is in some respects rather unfortunate, and we often refer
to this gate as the T gate.
Recall also that a single qubit in the state a|0〉+ b|1〉 can be visualized as a point (θ, ϕ)

on the unit sphere, where a = cos(θ/2), b = eiϕ sin(θ/2), and a can be taken to be real
because the overall phase of the state is unobservable. This is called the Bloch sphere
representation, and the vector (cosϕ sin θ, sinϕ sin θ, cos θ) is called the Bloch vector.
We shall return to this picture often as an aid to intuition.

Exercise 4.1: In Exercise 2.11, which you should do now if you haven’t already done
it, you computed the eigenvectors of the Pauli matrices. Find the points on the
Bloch sphere which correspond to the normalized eigenvectors of the different
Pauli matrices.

The Pauli matrices give rise to three useful classes of unitary matrices when they are
exponentiated, the rotation operators about the x̂, ŷ, and ẑ axes, defined by the equations:

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin

θ

2
X =

[

cos θ
2 −i sin θ

2
−i sin θ

2 cos θ
2

]

(4.4)

Ry(θ) ≡ e−iθY/2 = cos
θ

2
I − i sin

θ

2
Y =

[

cos θ
2 − sin θ

2
sin θ

2 cos θ
2

]

(4.5)

Rz(θ) ≡ e−iθZ/2 = cos
θ

2
I − i sin

θ

2
Z =

[

e−iθ/2 0
0 eiθ/2

]

. (4.6)

with eigenstate |1>. Write down the circuit to find the associated
eigenvalue (which is assumed to be a phase) with 3 bit precision.

Solution: since the associated eigenvalue is eiπ/4, the desired phase is
1/8, which corresponds to the binary fraction 0.001. Therefore the
algorithm returns 001, corresponding to the exact value of the phase.

On the IBM Quantum Composer, it looks as follows

17

Remember that qubits are ordered from bottom to top.
(use “freeform alignment” to place the gate as desired)

The output probabilities are

Exercise 2. Consider the same case as before, with a phase φ = 1/3 =
0,33333 (not binary fraction). With 3-bit precision the algorithm is
similar to the one before:

18

The output probabiliJes are

Most likely outcome: 011 → binary fraction 0.011 corresponding to a
phase φ = 1/4 + 1/8 = 0,375 → 0,042 difference from exact result (off
by 13%).

The second most likely outcome is: 010 → binary fraction 0.010
corresponding to a phase φ = 1/4 = 0,25 → 0,083 difference from
exact result (off by 25%).

The true phase lies in between, closer to the most likely outcome.

The circuit can be written more shortly as follows

19

Exercise 3. Same as before, but with 4-bit precision. The circuit is

The output probabilities are

Most likely outcome: 0101 → binary fraction 0.0101 corresponding to
a phase φ = 1/4 + 1/16 = 0,313 → 0,02 difference from exact result
(off by 6%).

The second most likely outcome is: 0110 → binary fraction 0.0110
corresponding to a phase φ = 1/4 + 1/8 = 0,375 → 0,042 difference
from exact result (off by 13%).

We see an improvement with respect to the case with 3 bits

20

Exercise 4. Same as before, but with 5-bit precision. The outcome
probabilities are

Most likely outcome: 01011 → binary fraction 0.01011 corresponding
to a phase φ = 1/4 + 1/16 + 1/32 = 0,344 → 0,011 difference from
exact result (off by 3%).

The second most likely outcome is: 01010 → binary fraction 0.01010
corresponding to a phase φ = 1/4 + 1/16 = 0,313 → 0,02 difference
from exact result (off by 6%).

Again, we see an improvement with respect to the previous cases.

21

Order finding algorithm

Definition of order: For positive integers x and N , x < N , with no
common factors, the order of x modulo N is defined to be the least
positive integer, r, such that xr = 1(mod N).

Order finding problem: to determine the order for some specified x
and N.

Order-finding is believed to be a hard problem on a classical computer.
The quantum algorithm for order-finding is just the phase estimation
algorithm applied to the unitary operator

226 The quantum Fourier transform and its applications

classical indicator as to which space the final state is in. Compare your result
with Exercise 4.34.

5.3 Applications: order-finding and factoring

The phase estimation procedure can be used to solve a variety of interesting problems. We
now describe two of the most interesting of these problems: the order-finding problem,
and the factoring problem. These two problems are, in fact, equivalent to one another, so
in Section 5.3.1 we explain a quantum algorithm for solving the order-finding problem,
and in Section 5.3.2 we explain how the order-finding problem implies the ability to
factor as well.
To understand the quantum algorithms for factoring and order-finding requires a

little background in number theory. All the required materials are collected together in
Appendix 4. The description we give over the next two sections focuses on the quantum
aspects of the problem, and requires only a little familiarity with modular arithmetic to
be readable. Detailed proofs of the number-theoretic results we quote here may be found
in Appendix 4.
The fast quantum algorithms for order-finding and factoring are interesting for at least

three reasons. First, and most important in our opinion, they provide evidence for the idea
that quantum computers may be inherently more powerful than classical computers, and
provide a credible challenge to the strong Church–Turing thesis. Second, both problems
are of sufficient intrinsic worth to justify interest in any novel algorithm, be it classical
or quantum. Third, and most important from a practical standpoint, efficient algorithms
for order-finding and factoring can be used to break the RSA public-key cryptosystem
(Appendix 5).

5.3.1 Application: order-finding
For positive integers x andN , x < N , with no common factors, the order of xmoduloN
is defined to be the least positive integer, r, such that xr = 1(mod N). The order-finding
problem is to determine the order for some specified x and N . Order-finding is believed
to be a hard problem on a classical computer, in the sense that no algorithm is known
to solve the problem using resources polynomial in the O(L) bits needed to specify the
problem, where L ≡ "log(N)# is the number of bits needed to specify N . In this section
we explain how phase estimation may be used to obtain an efficient quantum algorithm
for order-finding.

Exercise 5.10: Show that the order of x = 5 modulo N = 21 is 6.

Exercise 5.11: Show that the order of x satisfies r ≤ N .

The quantum algorithm for order-finding is just the phase estimation algorithm applied
to the unitary operator

U |y〉 ≡ |xy(mod N)〉 , (5.36)

with y ∈ {0, 1}L. (Note that here and below, when N ≤ y ≤ 2L − 1, we use the
convention that xy(mod N) is just y again. That is, U only acts non-trivially whenwith y ∈ {0, 1, … 2L -1}, with L to be defined later. Note that here and

below, when N ≤ y ≤ 2L −1, we use the convenJon that xy(mod N) is
just y again. That is, U only acts non-trivially when 0 ≤ y ≤ N − 1.

Example: N = 15, x = 7. Then:

U |0> = |0> U |8> = |11> U |16> = |16>
U |1> = |7> U |9> = |3> U |17> = |17>
U |2> = |14> U |10> = |10> and so on
U |3> = |6> U |11> = |2>
U |4> = |13> U |12> = |9>
U |5> = |5> U |13> = |1>
U |6> = |12> U |14> = |8>
U |7> = |4> U |15> = |15>

22

A simple calculation shows that the states defined by

for integer 0 ≤ s ≤ r − 1 are eigenstates of U, since

(this because xr mod N = 1, by definition).

Using the phase estimation procedure allows us to obtain, with high
accuracy, the corresponding eigenvalues exp2πis/r, from which we can
obtain the order r with a little bit more work.

There are three important requirements to be met in order for the
algorithm to be efficient:

• We must have efficient procedures to implement a controlled-
U2j operation for any integer j.

• We must be able to efficiently prepare an eigenstate |us⟩ with a
non-trivial eigenvalue.

• We must be able to obtain the desired answer, r, from the result
of the phase estimation algorithm, φ ≈ s/r.

We analyse the three elements separately.

Applications: order-finding and factoring 227

0 ≤ y ≤ N − 1.) A simple calculation shows that the states defined by

|us〉 ≡
1√
r

r−1
∑

k=0

exp
[−2πisk

r

]

|xk mod N〉 , (5.37)

for integer 0 ≤ s ≤ r − 1 are eigenstates of U , since

U |us〉 =
1√
r

r−1
∑

k=0

exp
[−2πisk

r

]

|xk+1 mod N〉 (5.38)

= exp
[

2πis

r

]

|us〉 . (5.39)

Using the phase estimation procedure allows us to obtain, with high accuracy, the cor-
responding eigenvalues exp(2πis/r), from which we can obtain the order r with a little
bit more work.

Exercise 5.12: Show that U is unitary (Hint: x is co-prime to N , and therefore has
an inverse modulo N).

There are two important requirements for us to be able to use the phase estimation
procedure: we must have efficient procedures to implement a controlled-U 2j operation
for any integer j, and we must be able to efficiently prepare an eigenstate |us〉 with a non-
trivial eigenvalue, or at least a superposition of such eigenstates. The first requirement
is satisfied by using a procedure known as modular exponentiation, with which we
can implement the entire sequence of controlled-U 2j operations applied by the phase
estimation procedure using O(L3) gates, as described in Box 5.2.
The second requirement is a little tricker: preparing |us〉 requires that we know r, so

this is out of the question. Fortunately, there is a clever observation which allows us to
circumvent the problem of preparing |us〉, which is that

1√
r

r−1
∑

s=0

|us〉 = |1〉 . (5.44)

In performing the phase estimation procedure, if we use t = 2L + 1 +
⌈

log
(

2 + 1
2ε

)⌉

qubits in the first register (referring to Figure 5.3), and prepare the second register in
the state |1〉 – which is trivial to construct – it follows that for each s in the range 0
through r − 1, we will obtain an estimate of the phase ϕ ≈ s/r accurate to 2L + 1 bits,
with probability at least (1− ε)/r. The order-finding algorithm is schematically depicted
in Figure 5.4.

Exercise 5.13: Prove (5.44). (Hint:
∑r−1

s=0 exp(−2πisk/r) = rδk0.) In fact, prove that

1√
r

r−1
∑

s=0

e2πisk/r |us〉 = |xk mod N〉 . (5.45)

Exercise 5.14: The quantum state produced in the order-finding algorithm, before
the inverse Fourier transform, is

|ψ〉 =
2t−1
∑

j=0

|j〉U j|1〉 =
2t−1
∑

j=0

|j〉|xj mod N〉 , (5.46)

Applications: order-finding and factoring 227

0 ≤ y ≤ N − 1.) A simple calculation shows that the states defined by

|us〉 ≡
1√
r

r−1
∑

k=0

exp
[−2πisk

r

]

|xk mod N〉 , (5.37)

for integer 0 ≤ s ≤ r − 1 are eigenstates of U , since

U |us〉 =
1√
r

r−1
∑

k=0

exp
[−2πisk

r

]

|xk+1 mod N〉 (5.38)

= exp
[

2πis

r

]

|us〉 . (5.39)

Using the phase estimation procedure allows us to obtain, with high accuracy, the cor-
responding eigenvalues exp(2πis/r), from which we can obtain the order r with a little
bit more work.

Exercise 5.12: Show that U is unitary (Hint: x is co-prime to N , and therefore has
an inverse modulo N).

There are two important requirements for us to be able to use the phase estimation
procedure: we must have efficient procedures to implement a controlled-U 2j operation
for any integer j, and we must be able to efficiently prepare an eigenstate |us〉 with a non-
trivial eigenvalue, or at least a superposition of such eigenstates. The first requirement
is satisfied by using a procedure known as modular exponentiation, with which we
can implement the entire sequence of controlled-U 2j operations applied by the phase
estimation procedure using O(L3) gates, as described in Box 5.2.
The second requirement is a little tricker: preparing |us〉 requires that we know r, so

this is out of the question. Fortunately, there is a clever observation which allows us to
circumvent the problem of preparing |us〉, which is that

1√
r

r−1
∑

s=0

|us〉 = |1〉 . (5.44)

In performing the phase estimation procedure, if we use t = 2L + 1 +
⌈

log
(

2 + 1
2ε

)⌉

qubits in the first register (referring to Figure 5.3), and prepare the second register in
the state |1〉 – which is trivial to construct – it follows that for each s in the range 0
through r − 1, we will obtain an estimate of the phase ϕ ≈ s/r accurate to 2L + 1 bits,
with probability at least (1− ε)/r. The order-finding algorithm is schematically depicted
in Figure 5.4.

Exercise 5.13: Prove (5.44). (Hint:
∑r−1

s=0 exp(−2πisk/r) = rδk0.) In fact, prove that

1√
r

r−1
∑

s=0

e2πisk/r |us〉 = |xk mod N〉 . (5.45)

Exercise 5.14: The quantum state produced in the order-finding algorithm, before
the inverse Fourier transform, is

|ψ〉 =
2t−1
∑

j=0

|j〉U j|1〉 =
2t−1
∑

j=0

|j〉|xj mod N〉 , (5.46)

23

Implementation of the controlled-U2j operation: modular
exponentiation. The following relation holds:

228 The quantum Fourier transform and its applications

Box 5.2: Modular exponentiation

How can we compute the sequence of controlled-U 2j operations used by the phase
estimation procedure as part of the order-finding algorithm? That is, we wish to
compute the transformation

|z〉|y〉 → |z〉U zt2t−1
. . . U z120 |y〉 (5.40)

= |z〉|xzt2t−1
× · · ·× xz120y(mod N)〉 (5.41)

= |z〉|xzy(mod N)〉. (5.42)

Thus the sequence of controlled-U 2j operations used in phase estimation is equiva-
lent to multiplying the contents of the second register by the modular exponential
xz(mod N), where z is the contents of the first register. This operation may be
accomplished easily using the techniques of reversible computation. The basic idea
is to reversibly compute the function xz(mod N) of z in a third register, and then
to reversibly multiply the contents of the second register by xz(mod N), using the
trick of uncomputation to erase the contents of the third register upon completion.
The algorithm for computing the modular exponential has two stages. The first stage
uses modular multiplication to compute x2(modN), by squaring xmoduloN , then
computes x4(modN) by squaring x2(modN), and continues in this way, computing
x2

j

(mod N) for all j up to t − 1. We use t = 2L + 1 + %log(2 + 1/(2ε))& = O(L),
so a total of t − 1 = O(L) squaring operations is performed at a cost of O(L2)
each (this cost assumes the circuit used to do the squaring implements the familiar
algorithm we all learn as children for multiplication), for a total cost of O(L3) for
the first stage. The second stage of the algorithm is based upon the observation
we’ve already noted,

xz(mod N) =
(

xzt2t−1
(mod N)

) (

xzt−12t−2
(mod N)

)

. . .
(

xz120 (mod N)
)

.

(5.43)

Performing t − 1 modular multiplications with a cost O(L2) each, we see that this
product can be computed using O(L3) gates. This is sufficiently efficient for our
purposes, but more efficient algorithms are possible based on more efficient algo-
rithms for multiplication (see ‘History and further reading’). Using the techniques
of Section 3.2.5, it is now straightforward to construct a reversible circuit with a
t bit register and an L bit register which, when started in the state (z, y) outputs
(z, xzy (modN)), usingO(L3) gates, which can be translated into a quantum circuit
using O(L3) gates computing the transformation |z〉|y〉 → |z〉|xzy (mod N)〉.

if we initialize the second register as |1〉. Show that the same state is obtained if
we replace U j with a different unitary transform V , which computes

V |j〉|k〉 = |j〉|k + xj mod N〉 , (5.47)

and start the second register in the state |0〉. Also show how to construct V using
O(L3) gates.

Thus the sequence of controlled-U2j operations used in phase
estimation is equivalent to multiplying the contents of the second
register by the modular exponential xz(mod N), where z is the contents
of the first register.

This operation may be accomplished classically using O(L3) gates. The
classical circuit can be transformed into a reversible circuit, which can
be translated into a quantum circuit of similar complexity, computing
the transformation |z⟩|y⟩ → |z⟩|xzy (mod N)⟩. The book of Nakahara &
Ohimi (p. 156) explains in detail how to do it.

Prepare an eigenstate |us⟩. Preparing |us⟩ requires that we know r, so
this is out of the question. Fortunately, there is a clever observation
which allows us to circumvent the problem of preparing |us⟩, which is
that

Applications: order-finding and factoring 227

0 ≤ y ≤ N − 1.) A simple calculation shows that the states defined by

|us〉 ≡
1√
r

r−1
∑

k=0

exp
[−2πisk

r

]

|xk mod N〉 , (5.37)

for integer 0 ≤ s ≤ r − 1 are eigenstates of U , since

U |us〉 =
1√
r

r−1
∑

k=0

exp
[−2πisk

r

]

|xk+1 mod N〉 (5.38)

= exp
[

2πis

r

]

|us〉 . (5.39)

Using the phase estimation procedure allows us to obtain, with high accuracy, the cor-
responding eigenvalues exp(2πis/r), from which we can obtain the order r with a little
bit more work.

Exercise 5.12: Show that U is unitary (Hint: x is co-prime to N , and therefore has
an inverse modulo N).

There are two important requirements for us to be able to use the phase estimation
procedure: we must have efficient procedures to implement a controlled-U 2j operation
for any integer j, and we must be able to efficiently prepare an eigenstate |us〉 with a non-
trivial eigenvalue, or at least a superposition of such eigenstates. The first requirement
is satisfied by using a procedure known as modular exponentiation, with which we
can implement the entire sequence of controlled-U 2j operations applied by the phase
estimation procedure using O(L3) gates, as described in Box 5.2.
The second requirement is a little tricker: preparing |us〉 requires that we know r, so

this is out of the question. Fortunately, there is a clever observation which allows us to
circumvent the problem of preparing |us〉, which is that

1√
r

r−1
∑

s=0

|us〉 = |1〉 . (5.44)

In performing the phase estimation procedure, if we use t = 2L + 1 +
⌈

log
(

2 + 1
2ε

)⌉

qubits in the first register (referring to Figure 5.3), and prepare the second register in
the state |1〉 – which is trivial to construct – it follows that for each s in the range 0
through r − 1, we will obtain an estimate of the phase ϕ ≈ s/r accurate to 2L + 1 bits,
with probability at least (1− ε)/r. The order-finding algorithm is schematically depicted
in Figure 5.4.

Exercise 5.13: Prove (5.44). (Hint:
∑r−1

s=0 exp(−2πisk/r) = rδk0.) In fact, prove that

1√
r

r−1
∑

s=0

e2πisk/r |us〉 = |xk mod N〉 . (5.45)

Exercise 5.14: The quantum state produced in the order-finding algorithm, before
the inverse Fourier transform, is

|ψ〉 =
2t−1
∑

j=0

|j〉U j|1〉 =
2t−1
∑

j=0

|j〉|xj mod N〉 , (5.46)

This means that if we prepare the second register in the state |1>,
just before measurement the state of the two registers will be:

1p
r

r�1X

s=0

|'si|usi

<latexit sha1_base64="3M3h0393tUY8z6BW+Y0jWsGFVJE=">AAACMXicbZDLSgMxFIYz3h1vVZdugkVwY5kRRTdC0Y3LCrYVmnHIpJk2mMmMSaZQ0nklN76JuOlCEbe+hGmdhbcfAh//OYeT80cZZ0p73tiZmZ2bX1hcWnZXVtfWNyqbWy2V5pLQJkl5Km8irChngjY105zeZJLiJOK0Hd1dTOrtAZWKpeJaDzMaJLgnWMwI1tYKK5eo46JYYmL8wiB1L7WRRQGRypPQqDOvuDXywC/gCA2wzPosVBBJLHqcwlEeqpJdFISVqlfzpoJ/wS+hCko1wsoT6qYkT6jQhGOlOr6X6cBgqRnhtHBRrmiGyR3u0Y5FgROqAjO9uIB71unCOJX2CQ2n7vcJgxOlhklkOxOs++p3bWL+V+vkOj4NDBNZrqkgX4vinEOdwkl8sMskJZoPLWAimf0rJH1s89M2ZNeG4P8++S+0Dmv+Ue346rBaPy/jWAI7YBfsAx+cgDq4BA3QBAQ8gGfwAl6dR2fsvDnvX60zTjmzDX7I+fgETLqq3Q==</latexit>

24

A measurement of the first register will collapse the state of the
second register to the eigenstate |us>, and the first register will end
up in the state |φs>, from which the phase φ ≈ s/r can be read.

Therefore, if we use

qubits in the first register and prepare the second register in the state
|1⟩, which is trivial to construct, it follows that for each s in the range 0
through r − 1, we will obtain an estimate of the phase φ ≈ s/r accurate to
2L + 1 bits, with probability at least (1 − ε)/r.

The order finding algorithm the is:

Applications: order-finding and factoring 227

0 ≤ y ≤ N − 1.) A simple calculation shows that the states defined by

|us〉 ≡
1√
r

r−1
∑

k=0

exp
[−2πisk

r

]

|xk mod N〉 , (5.37)

for integer 0 ≤ s ≤ r − 1 are eigenstates of U , since

U |us〉 =
1√
r

r−1
∑

k=0

exp
[−2πisk

r

]

|xk+1 mod N〉 (5.38)

= exp
[

2πis

r

]

|us〉 . (5.39)

Using the phase estimation procedure allows us to obtain, with high accuracy, the cor-
responding eigenvalues exp(2πis/r), from which we can obtain the order r with a little
bit more work.

Exercise 5.12: Show that U is unitary (Hint: x is co-prime to N , and therefore has
an inverse modulo N).

There are two important requirements for us to be able to use the phase estimation
procedure: we must have efficient procedures to implement a controlled-U 2j operation
for any integer j, and we must be able to efficiently prepare an eigenstate |us〉 with a non-
trivial eigenvalue, or at least a superposition of such eigenstates. The first requirement
is satisfied by using a procedure known as modular exponentiation, with which we
can implement the entire sequence of controlled-U 2j operations applied by the phase
estimation procedure using O(L3) gates, as described in Box 5.2.
The second requirement is a little tricker: preparing |us〉 requires that we know r, so

this is out of the question. Fortunately, there is a clever observation which allows us to
circumvent the problem of preparing |us〉, which is that

1√
r

r−1
∑

s=0

|us〉 = |1〉 . (5.44)

In performing the phase estimation procedure, if we use t = 2L + 1 +
⌈

log
(

2 + 1
2ε

)⌉

qubits in the first register (referring to Figure 5.3), and prepare the second register in
the state |1〉 – which is trivial to construct – it follows that for each s in the range 0
through r − 1, we will obtain an estimate of the phase ϕ ≈ s/r accurate to 2L + 1 bits,
with probability at least (1− ε)/r. The order-finding algorithm is schematically depicted
in Figure 5.4.

Exercise 5.13: Prove (5.44). (Hint:
∑r−1

s=0 exp(−2πisk/r) = rδk0.) In fact, prove that

1√
r

r−1
∑

s=0

e2πisk/r |us〉 = |xk mod N〉 . (5.45)

Exercise 5.14: The quantum state produced in the order-finding algorithm, before
the inverse Fourier transform, is

|ψ〉 =
2t−1
∑

j=0

|j〉U j|1〉 =
2t−1
∑

j=0

|j〉|xj mod N〉 , (5.46)

Applications: order-finding and factoring 229

t
| 〉 / H⊗t |j〉 • FT †

!!
!
!
!
!
!
! """"""""

#######

" " " " " " " "

##
##
##
#

L
| 〉 / xj N

Figure 5.4. Quantum circuit for the order-finding algorithm. The second register is shown as being initialized to
the |1〉 state, but if the method of Exercise 5.14 is used, it can be initialized to |0〉 instead. This circuit can also be
used for factoring, using the reduction given in Section 5.3.2.

The continued fraction expansion
The reduction of order-finding to phase estimation is completed by describing how to
obtain the desired answer, r, from the result of the phase estimation algorithm, ϕ ≈ s/r.
We only know ϕ to 2L + 1 bits, but we also know a priori that it is a rational number
– the ratio of two bounded integers – and if we could compute the nearest such fraction
to ϕ we might obtain r.
Remarkably, there is an algorithm which accomplishes this task efficiently, known as

the continued fractions algorithm. An example of how this works is described in Box 5.3.
The reason this algorithm satisfies our needs is the following theorem, which is proved
in Appendix 4:

Theorem 5.1: Suppose s/r is a rational number such that
∣

∣

∣

s

r
− ϕ

∣

∣

∣
≤ 1
2r2

. (5.48)

Then s/r is a convergent of the continued fraction for ϕ, and thus can be
computed in O(L3) operations using the continued fractions algorithm.

Since ϕ is an approximation of s/r accurate to 2L + 1 bits, it follows that |s/r − ϕ| ≤
2−2L−1 ≤ 1/2r2, since r ≤ N ≤ 2L. Thus, the theorem applies.
Summarizing, given ϕ the continued fractions algorithm efficiently produces numbers

s′ and r′ with no common factor, such that s′/r′ = s/r. The number r′ is our candidate
for the order. We can check to see whether it is the order by calculating xr′

mod N , and
seeing if the result is 1. If so, then r′ is the order of x modulo N , and we are done!

Performance
How can the order-finding algorithm fail? There are two possibilities. First, the phase
estimation procedure might produce a bad estimate to s/r. This occurs with probability
at most ε, and can be made small with a negligible increase in the size of the circuit.
More seriously, it might be that s and r have a common factor, in which case the
number r′ returned by the continued fractions algorithm be a factor of r, and not r itself.
Fortunately, there are at least three ways around this problem.
Perhaps the most straightforward way is to note that for randomly chosen s in the

range 0 through r − 1, it’s actually pretty likely that s and r are co-prime, in which
case the continued fractions algorithm must return r. To see that this is the case, note
that by Problem 4.1 on page 638 the number of prime numbers less than r is at least

mod

Register 1

qubits

Register 2

qubits 1

0

How to extract r from φ ≈ s/r. We only know φ to 2L + 1 bits, but we also
know a priori that it is a rational number – the ratio of two integers – and
if we could compute the nearest such fraction to φ we might obtain r.

There is an algorithm which accomplishes this task efficiently, known as
the continued fractions algorithm: given φ the continued fractions
algorithm efficiently produces numbers sʹ and rʹ with no common factor,
such that sʹ/rʹ = s/r. The number rʹ is our candidate for the order. We can
check to see whether it is the order by calculating xrʹ mod N, and seeing if
the result is 1. If so, then rʹ is the order of x modulo N, and we are done.

25

Performance. How can the order-finding algorithm fail? There are two
possibilities.

First, the phase estimation procedure might produce a bad estimate to
s/r. This occurs with probability at most ε, and can be made small with a
negligible increase in the size of the circuit.

More seriously, it might be that s and r have a common factor, in which
case the number rʹ returned by the continued fractions algorithm be a
factor of r, and not r itself. Fortunately, there are at least three ways
around this problem. Perhaps the most straightforward way is to note
that for randomly chosen s in the range 0 through r − 1, it’s actually pretty
likely that s and r are co-prime, in which case the continued fractions
algorithm must return r. Specifically, one can show that by repeating the
algorithm 2log(N) times we will, with high probability, observe a phase s/r
such that s and r are co-prime, and therefore the continued fractions
algorithm produces r, as desired.

See Nielsen and Chuang for further details.

Note. The quantum state produced in the order-finding algorithm, before
the inverse Fourier transform, is

Applications: order-finding and factoring 227

0 ≤ y ≤ N − 1.) A simple calculation shows that the states defined by

|us〉 ≡
1√
r

r−1
∑

k=0

exp
[−2πisk

r

]

|xk mod N〉 , (5.37)

for integer 0 ≤ s ≤ r − 1 are eigenstates of U , since

U |us〉 =
1√
r

r−1
∑

k=0

exp
[−2πisk

r

]

|xk+1 mod N〉 (5.38)

= exp
[

2πis

r

]

|us〉 . (5.39)

Using the phase estimation procedure allows us to obtain, with high accuracy, the cor-
responding eigenvalues exp(2πis/r), from which we can obtain the order r with a little
bit more work.

Exercise 5.12: Show that U is unitary (Hint: x is co-prime to N , and therefore has
an inverse modulo N).

There are two important requirements for us to be able to use the phase estimation
procedure: we must have efficient procedures to implement a controlled-U 2j operation
for any integer j, and we must be able to efficiently prepare an eigenstate |us〉 with a non-
trivial eigenvalue, or at least a superposition of such eigenstates. The first requirement
is satisfied by using a procedure known as modular exponentiation, with which we
can implement the entire sequence of controlled-U 2j operations applied by the phase
estimation procedure using O(L3) gates, as described in Box 5.2.
The second requirement is a little tricker: preparing |us〉 requires that we know r, so

this is out of the question. Fortunately, there is a clever observation which allows us to
circumvent the problem of preparing |us〉, which is that

1√
r

r−1
∑

s=0

|us〉 = |1〉 . (5.44)

In performing the phase estimation procedure, if we use t = 2L + 1 +
⌈

log
(

2 + 1
2ε

)⌉

qubits in the first register (referring to Figure 5.3), and prepare the second register in
the state |1〉 – which is trivial to construct – it follows that for each s in the range 0
through r − 1, we will obtain an estimate of the phase ϕ ≈ s/r accurate to 2L + 1 bits,
with probability at least (1− ε)/r. The order-finding algorithm is schematically depicted
in Figure 5.4.

Exercise 5.13: Prove (5.44). (Hint:
∑r−1

s=0 exp(−2πisk/r) = rδk0.) In fact, prove that

1√
r

r−1
∑

s=0

e2πisk/r |us〉 = |xk mod N〉 . (5.45)

Exercise 5.14: The quantum state produced in the order-finding algorithm, before
the inverse Fourier transform, is

|ψ〉 =
2t−1
∑

j=0

|j〉U j|1〉 =
2t−1
∑

j=0

|j〉|xj mod N〉 , (5.46)

if we initialize the second register as |1⟩. The same state is obtained if we
replace Uj with a different unitary transform V, which computes

228 The quantum Fourier transform and its applications

Box 5.2: Modular exponentiation

How can we compute the sequence of controlled-U 2j operations used by the phase
estimation procedure as part of the order-finding algorithm? That is, we wish to
compute the transformation

|z〉|y〉 → |z〉U zt2t−1
. . . U z120 |y〉 (5.40)

= |z〉|xzt2t−1
× · · ·× xz120y(mod N)〉 (5.41)

= |z〉|xzy(mod N)〉. (5.42)

Thus the sequence of controlled-U 2j operations used in phase estimation is equiva-
lent to multiplying the contents of the second register by the modular exponential
xz(mod N), where z is the contents of the first register. This operation may be
accomplished easily using the techniques of reversible computation. The basic idea
is to reversibly compute the function xz(mod N) of z in a third register, and then
to reversibly multiply the contents of the second register by xz(mod N), using the
trick of uncomputation to erase the contents of the third register upon completion.
The algorithm for computing the modular exponential has two stages. The first stage
uses modular multiplication to compute x2(modN), by squaring xmoduloN , then
computes x4(modN) by squaring x2(modN), and continues in this way, computing
x2

j

(mod N) for all j up to t − 1. We use t = 2L + 1 + %log(2 + 1/(2ε))& = O(L),
so a total of t − 1 = O(L) squaring operations is performed at a cost of O(L2)
each (this cost assumes the circuit used to do the squaring implements the familiar
algorithm we all learn as children for multiplication), for a total cost of O(L3) for
the first stage. The second stage of the algorithm is based upon the observation
we’ve already noted,

xz(mod N) =
(

xzt2t−1
(mod N)

) (

xzt−12t−2
(mod N)

)

. . .
(

xz120 (mod N)
)

.

(5.43)

Performing t − 1 modular multiplications with a cost O(L2) each, we see that this
product can be computed using O(L3) gates. This is sufficiently efficient for our
purposes, but more efficient algorithms are possible based on more efficient algo-
rithms for multiplication (see ‘History and further reading’). Using the techniques
of Section 3.2.5, it is now straightforward to construct a reversible circuit with a
t bit register and an L bit register which, when started in the state (z, y) outputs
(z, xzy (modN)), usingO(L3) gates, which can be translated into a quantum circuit
using O(L3) gates computing the transformation |z〉|y〉 → |z〉|xzy (mod N)〉.

if we initialize the second register as |1〉. Show that the same state is obtained if
we replace U j with a different unitary transform V , which computes

V |j〉|k〉 = |j〉|k + xj mod N〉 , (5.47)

and start the second register in the state |0〉. Also show how to construct V using
O(L3) gates.and start the second register in the state |0⟩. Moreover, V can be

constructed also using O(L3) gates.

26

The order finding algorithm then is

232 The quantum Fourier transform and its applications

What resource requirements does this algorithm consume? The Hadamard transform
requires O(L) gates, and the inverse Fourier transform requires O(L2) gates. The major
cost in the quantum circuit proper actually comes from the modular exponentiation,
which uses O(L3) gates, for a total of O(L3) gates in the quantum circuit proper. The
continued fractions algorithm adds O(L3) more gates, for a total of O(L3) gates to obtain
r′. Using the third method for obtaining r from r′ we need only repeat this procedure a
constant number of times to obtain the order, r, for a total cost of O(L3). The algorithm
is summarized below.

Algorithm: Quantum order-finding

Inputs: (1) A black box Ux,N which performs the transformation
|j〉|k〉 → |j〉|xjk mod N〉, for x co-prime to the L-bit number N , (2)
t = 2L + 1 +

⌈

log
(

2 + 1
2ε

)⌉

qubits initialized to |0〉, and (3) L qubits initialized
to the state |1〉.

Outputs: The least integer r > 0 such that xr = 1 (mod N).

Runtime: O(L3) operations. Succeeds with probability O(1).

Procedure:

1. |0〉|1〉 initial state

2. → 1√
2t

2t−1
∑

j=0

|j〉|1〉 create superposition

3. → 1√
2t

2t−1
∑

j=0

|j〉|xj mod N〉 apply Ux,N

≈ 1√
r2t

r−1
∑

s=0

2t−1
∑

j=0

e2πisj/r |j〉|us〉

4. → 1√
r

r−1
∑

s=0

|˜s/r〉|us〉 apply inverse Fourier transform to first
register

5. → ˜s/r measure first register

6. → r apply continued fractions
algorithm

5.3.2 Application: factoring

The problem of distinguishing prime numbers from composites, and of resolving
composite numbers into their prime factors, is one of the most important and
useful in all of arithmetic. [. . .] The dignity of science seems to demand that
every aid to the solution of such an elegant and celebrated problem be zealously
cultivated.
– Carl Friedrich Gauss, as quoted by Donald Knuth

Given a positive composite integer N , what prime numbers when multiplied together
equal it? This factoring problem turns out to be equivalent to the order-finding problem

Example: Find the order r of x = 7 mod N = 15. We use L = 8 qubits.
The initial state is:

FAT TO R I Z Z A Z I O N E D I 1 5

Ad ogni stato della macchina è associato un istogramma
di questo tipo:

• Il primo asse rappresenta la base computaizionale del
primo registro, i cui valori verranno indicati con c.

• Il secondo rappresenta la base computazionale del
secondo, limitato ai valori ottenuti nell pratica (in
questo caso 13), i cui valori verranno indicati con k.

• L'asse verticale rappresenta la probabilità di misura
P(c,k) associata ad ogni elemento della base della
coppia di registri. Es: lo stato iniziale

Next, we apply the Hadamard transformation to the first register

FAT TO R I Z Z A Z I O N E D I 1 5

Passo 1) Trasformata di Hadamard

=0 =255

27

The next step is to perform the modular exponentiation. One gets

FAT TO R I Z Z A Z I O N E D I 1 5
Passo 2) Applico l'operatore esponenziale modulare Umod exp

Esso è stato ottenuto a partire dall'algoritmo classico utilizzando la tecnica di computazione reversibile accennata in precedenza: ciò
ha una complessità O(q2 log(q) log(log(q))) e una richiesta di memoria O(q log(q) log(log(q))

È uno stato non separabile, descrivibile come sovrapposizione con
uguale ampiezza di probabilità di 4 stati separabili

which can be rewritten as

FAT TO R I Z Z A Z I O N E D I 1 5
Passo 2) Applico l'operatore esponenziale modulare Umod exp

Esso è stato ottenuto a partire dall'algoritmo classico utilizzando la tecnica di computazione reversibile accennata in precedenza: ciò
ha una complessità O(q2 log(q) log(log(q))) e una richiesta di memoria O(q log(q) log(log(q))

È uno stato non separabile, descrivibile come sovrapposizione con
uguale ampiezza di probabilità di 4 stati separabili

DA CONTINUARE SU QISKIT

28

Factoring

The factoring problem turns out to be equivalent to the order-finding
problem we just studied, in the sense that a fast algorithm for order-
finding can easily be turned into a fast algorithm for factoring. The
reduction of factoring to order-finding proceeds in two basic steps.

The first step is to show that we can compute a factor of N if we can find
a non-trivial solution x neq ± 1(mod N) to the equation x2 = 1(mod N).

The second step is to show that a randomly chosen y co-prime to N is
quite likely to have an order r which is even, and such that yr/2 neq ±
1(mod N). Thus x ≡ yr/2(mod N) is a non-trivial solution to x2 = 1(mod
N).

The algorithm runs as follows.

Applications: order-finding and factoring 233

we just studied, in the sense that a fast algorithm for order-finding can easily be turned
into a fast algorithm for factoring. In this section we explain the method used to reduce
factoring to order-finding, and give a simple example of this reduction.
The reduction of factoring to order-finding proceeds in two basic steps. The first

step is to show that we can compute a factor of N if we can find a non-trivial solution
x != ± 1(mod N) to the equation x2 = 1(mod N). The second step is to show that a
randomly chosen y co-prime to N is quite likely to have an order r which is even, and
such that yr/2 != ± 1(mod N), and thus x ≡ yr/2(mod N) is a non-trivial solution to
x2 = 1(mod N). These two steps are embodied in the following theorems, whose proofs
may be found in Section A4.3 of Appendix 4.

Theorem 5.2: Suppose N is an L bit composite number, and x is a non-trivial solution
to the equation x2 = 1(mod N) in the range 1 ≤ x ≤ N , that is, neither
x = 1(mod N) nor x = N − 1 = −1(mod N). Then at least one of
gcd(x − 1, N) and gcd(x + 1, N) is a non-trivial factor of N that can be
computed using O(L3) operations.

Theorem 5.3: Suppose N = pα1
1 . . . pαm

m is the prime factorization of an odd composite
positive integer. Let x be an integer chosen uniformly at random, subject to the
requirements that 1 ≤ x ≤ N − 1 and x is co-prime to N . Let r be the order of
x modulo N . Then

p(r is even and xr/2 != − 1(mod N)) ≥ 1− 1
2m

. (5.60)

Theorems 5.2 and 5.3 can be combined to give an algorithm which, with high prob-
ability, returns a non-trivial factor of any composite N . All the steps in the algorithm
can be performed efficiently on a classical computer except (so far as is known today) an
order-finding ‘subroutine’ which is used by the algorithm. By repeating the procedure
we may find a complete prime factorization of N . The algorithm is summarized below.

Algorithm: Reduction of factoring to order-finding

Inputs: A composite number N

Outputs: A non-trivial factor of N .

Runtime: O((log N)3) operations. Succeeds with probability O(1).

Procedure:

1. If N is even, return the factor 2.

2. Determine whether N = ab for integers a ≥ 1 and b ≥ 2, and if so
return the factor a (uses the classical algorithm of Exercise 5.17).

3. Randomly choose x in the range 1 toN−1. If gcd(x, N) > 1 then return
the factor gcd(x, N).

4. Use the order-finding subroutine to find the order r of x modulo N .
234 The quantum Fourier transform and its applications

5. If r is even and xr/2 != − 1(mod N) then compute gcd(xr/2− 1, N) and
gcd(xr/2 + 1, N), and test to see if one of these is a non-trivial factor,
returning that factor if so. Otherwise, the algorithm fails.

Steps 1 and 2 of the algorithm either return a factor, or else ensure that N is an
odd integer with more than one prime factor. These steps may be performed using
O(1) and O(L3) operations, respectively. Step 3 either returns a factor, or produces
a randomly chosen element x of {0, 1, 2, . . . , N − 1}. Step 4 calls the order-finding
subroutine, computing the order r of x modulo N . Step 5 completes the algorithm,
since Theorem 5.3 guarantees that with probability at least one-half r will be even and
xr/2 != − 1(mod N), and then Theorem 5.2 guarantees that either gcd(xr/2 − 1, N) or
gcd(xr/2 + 1, N) is a non-trivial factor of N . An example illustrating the use of this
algorithm with the quantum order-finding subroutine is shown in Box 5.4.

Exercise 5.17: Suppose N is L bits long. The aim of this exercise is to find an
efficient classical algorithm to determine whether N = ab for some integers
a ≥ 1 and b ≥ 2. This may be done as follows:
(1) Show that b, if it exists, satisfies b ≤ L.
(2) Show that it takes at most O(L2) operations to compute log2 N , x = y/b for

b ≤ L, and the two integers u1 and u2 nearest to 2x.
(3) Show that it takes at most O(L2) operations to compute ub

1 and ub
2 (use

repeated squaring) and check to see if either is equal to N .
(4) Combine the previous results to give an O(L3) operation algorithm to

determine whether N = ab for integers a and b.

Exercise 5.18: (Factoring 91) Suppose we wish to factor N = 91. Confirm that
steps 1 and 2 are passed. For step 3, suppose we choose x = 4, which is co-prime
to 91. Compute the order r of x with respect to N , and show that
xr/2 mod 91 = 64 != − 1(mod 91), so the algorithm succeeds, giving
gcd(64− 1, 19) = 7.
It is unlikely that this is the most efficient method you’ve seen for factoring 91.
Indeed, if all computations had to be carried out on a classical computer, this
reduction would not result in an efficient factoring algorithm, as no efficient
method is known for solving the order-finding problem on a classical computer.

Exercise 5.19: Show that N = 15 is the smallest number for which the order-finding
subroutine is required, that is, it is the smallest composite number that is not
even or a power of some smaller integer.

5.4 General applications of the quantum Fourier transform

The main applications of the quantum Fourier transform we have described so far in
this chapter are phase estimation and order-finding. What other problems can be solved
with these techniques? In this section, we define a very general problem known as the
hidden subgroup problem, and describe an efficient quantum algorithm for solving it. This
problem, which encompasses all known ‘exponentially fast’ applications of the quantum
Fourier transform, can be thought of as a generalization of the task of finding the unknown
period of a periodic function, in a context where the structure of the domain and range

29

Steps 1 and 2 of the algorithm either return a factor, or else ensure that
N is an odd integer with more than one prime factor. These steps may
be performed using O(1) and O(L3) operations, respectively.

Step 3 either returns a factor, or produces a randomly chosen element x
of {0, 1, 2, . . . , N − 1}, co-prime to N.

Step 4 calls the order-finding subroutine, computing the order r of x
modulo N.

Step 5 completes the algorithm, since Theorem 5.3 of Nielsen & Chuang
guarantees that with probability at least one-half, r will be even and xr/2

neq − 1(mod N), and then Theorem 5.2 of Nielsen & Chuang guarantees
that either gcd(xr/2 − 1, N) or gcd(xr/2 + 1,N) is a non-trivial factor of N.

Example: Factoring N = 15.

15 is neither even, nor of the form ab with a greater or equal to 1 and b
greater or equal to 2. Therefore steps 1 and 2 do not return anything.

Step 3 requires to pick randomly a number between 1 and d 14.
Following the previous example, suppose we choose x = 7. It is co-prime
to 15.

Step 4 makes use of the order finding algorithm to find the order r of x =
7 mod N = 15. We saw that the output is r = 4.

By chance, 4 is even, and more over xr/2 mod 15 = 4 differ from -1 mod
15, so the algorithm works. Computing the greatest common divisor
gcd(x2 − 1, 15) = 3 and gcd(x2 + 1, 15) = 5 tells us that 15 = 3×5.

