Quantu

m Computing

6 — Quantum Fourier

Trar

sform and

Ap

olications

Angelo Bassi

The Quantum Fourier Transform

The discrete Fourier transform takes as input a vector of complex
numbers, X, . . ., Xy -1 Where the length N of the vector is a fixed
parameter. It outputs the transformed data, a vector of complex
numbers yy, ..., Yn-1, defined by

1 N—
Z 27rzyl€/N
VN ‘2

In the quantum Fourier transform, we do a DFT on the amplitudes
of a quantum state

N—1 N—1
Z xilj) — Z Yi|k)
=0 k=0

where the amplitudes y, are the discrete Fourier transform of the
amplitudes x;. On the computational basis it reads

1 N—-1
\/_ Z ﬂ'ij'/N’k
k=0

It is not obvious from the definition, but this transformation is a
unitary transformation, and thus can be implemented as the
dynamics for a quantum computer.

Since the output amplitudes are a linear combination of the input
amplitudes, it is a linear operator. Its form is easy to write down

. N 2mijk/N
F=2

— k) {j|

It is easy to check that it is unitary

“ 1 RN
FIE = = 37 emlH =N sy,
Jk.g" K

1 o L
S o
Jik,J!

= D N8 = il =1
J>3 J

The Fourier transform lets us define a new basis: |X) = F |x), where
{|x)} is the usual computational basis. This basis has a number of
interesting properties. Every vector |X) is an equally weighted
superposition of all the computational basis states:

(EF)P = yla)(Ely) = (Yl Fle) (x| FTly)
6271'1':17y/N e—27ri33y/N 1

VN VN N

From the point of view of physics, the relationship of this basis to
the computational basis is analogous to that between the
momentum and position bases of a particle.

Recall that the Hadamard transform could also turn computational
basis states into equally weighted superpositions of all states. But it
left all amplitudes real, while the amplitudes of |X) are complex. -

In matrix representation:

ol

1

1
W 2 3

[

6

e N

W
w

E & &

w
w
QFT = .

w

9

Ell

1 V-1 2v-1) 3(N-1)

In particular, for 1 qubit:

orr === (1 1)
V2\1 -1

while, for 2 qubits:

QFT = —

DO | =
[O T S =

1
w1

L2(-1)

WSBO-1)

LN-D(N-1)

w

_ e27rz/N

Circuit for the Quantum Fourier
Transform

At this point we specialize to the case of n qubits, so the dimension
isN=2"

We have seen that the quantum Fourier transform is a unitary
operator. Therefore, by our earlier results, there is a quantum
circuit which implements it. However, there is no guarantee that
this circuit will be efficient! A general unitary requires a circuit
with a number of gates exponential in the number of bits.

Very fortunately, in this case an efficient circuit does exist.
(Fortunately, because the Fourier transform is at the heart of the

most impressive quantum algorithms!)

Binary expression: j = jij; - in
j= j12n—1 _|_j22n—2 + -+ n

For example, for n =2 we have j= 2 j; +j,, therefore

0—> 00
1->01
210
3211

as usual. We also consider the binary fraction

0.J1J2 - Jn = J1/2 4 J2 /44 - 4 jn /2" = j/2"

The key insight into designing a circuit for the Fourier transform is
to notice that it can be written in a product form

(’0> + ezmo.jn‘w) (‘0> + ezmo'jnljnm) (‘O> + eZin,jljz...jn‘1>)
27

’j17"'7jn> -

The proof is the following

2" —1

|,]> _ W Z 27r2]k:/2"|k

1
= W Z R Z GZTMJ(ZFI iz l) ‘kl R kn>
k1:0

kn=0
1 1 1 n
— 2mijki 27!
s 2 2 Qe)
k1=0 kn=0 I=1

1 n [1 N
)
=1 _]43120

1 T a2
= 5 Q[10) + e)]
=1

<|0> + ezmo.jn|1>> <|0> + ezmo.jn,]jn|1>> <|0> + ezmo,jljz...jn“))
27

In going from the third to the fourth line, we used the identity

JirFrs oo fi
k1=0 kn=0 =1 k1=0 kn=0
n 1 1 1
= Fio = fee D fraee D T
I=1 k=0 ki=0 ka=0

The unitary
0,1) — (|0) + exp(i)[1)) /2

is a Hadamard followed by a Z-rotation by 6. In the expression above the
rotation depends on the values of the other bits. So we should expect
to be able to build the Fourier transform out of Hadamard and
controlled-phase rotation gates. Define the rotation

1 0
Ry, = [0 elmi/2t]

The circuit implementing the QFT then is

H —.—R, | R'W 10) + €2i0d1--n |1)
. F F . 2700,
H |- —|Ra2[HR 0) + e 1)

o @E— ‘0> 4 2mi0-jn—1in |1>
H % 10) + €27i04n| 1)

L]

Let us see if it works. Applying the Hadamard gate to the first bit
produces the state

1 o)
S (100 + ™ 1)) |z)

since €201 = -1 when j; = 1, and is +1 otherwise. Applying the
controlled-R, gate produces the state

1 g
7 (100 + ™92 (1)) | . o)

We continue applying the controlled-Rs, R, through R, gates, each of
which adds an extra bit to the phase of the co-efficient of the first |1). At
the end of this procedure we have the state

1 T '1 2 N N
517z (10 + 0PI) Y)

Next, we perform a similar procedure on the second qubit. The
Hadamard gate puts us in the state

7 (10) + eroaiean) (1) + €0 1) | ..)
and the controlled-R, through R,_; gates yield the state
1 ; j)]))) . .
m (‘O> + 62#20.]112...jn|1>> <|O> + 6271'20.]2...]71‘1>> ‘]3 .]n>

We continue in this fashion for each qubit, giving a final state

27}/2 (|O> " ezmo.jljz...jnm) (‘0> n ezmo.jz...jnm) N (|O> n ezmo.jnm)

If necessary, swap operations omitted from the Figure for clarity, can be
used to reverse the order of the qubits. After the swap operations, the
state of the qubits is

2:/2 (!0> + e“io-ﬂ'nm) (yo> + ezmo-jn—w’nm) . (\o> + eZm'o.jljz-.-jnm)

Box 5.1: Three qubit quantum Fourier transform

For concreteness it may help to look at the explicit circuit for the three qubit
quantum Fourier transform:

— H -S| —T

H— S

[T

Recall that S and T are the phase and 7/8 gates (see page xxiii). As a matrix the
quantum Fourier transform in this instance may be written out explicitly, using

w=eri/8 = /i as

1l 1 1 1 1 1 1 11
1l w W W oWt W W W
1 W Wt W1 W oWt W
1 |1 b W W oWt W oW W
% 1wt 1 w1 Wt 1 Wt (5.19)
1 w0 W Wt W Wb WP
1 Wb Wt W1l W oWt WP
1 W W W oWt W W Wl

How many gates does this circuit use? We start by doing a Hadamard
gate and n — 1 conditional rotations on the first qubit — a total of n gates.
This is followed by a Hadamard gate and n - 2 conditional rotations on the
second qubit, for a total of n + (n — 1) gates. Continuing in this way, we see
that n+(n-1)+--+1 = n(n+1)/2 gates are required plus the gates involved in
the swaps. At most n/2 swaps are required, and each swap can be
accomplished using three CNOT gates. Therefore, this circuit provides a
0O(n?) algorithm for performing the quantum Fourier transform.

In contrast, the best classical algorithms for computing the discrete Fourier
transform on 2" elements are algorithms such as the Fast Fourier
Transform (FFT), which compute the discrete Fourier transform using
©(n2") gates.

But remember, we cannot measure particular values of the
amplitudes! The quantum Fourier Transform is useful only as a piece
of another algorithm.

Exercise on IBM Quantum Composer.

N=2

qle] T

ql1l |H P

(pi/2)

c4

Opuput state

[0.5+0j, 0.5+0j, 0.5+0j, 0.5+0j]

qle] T
q [j-] <EE[;> +4 (ijz)
c4

Opuput state

!

[0.5+0j,-0.5+0j, 0.5+0j,-0.5+0j]

This corresponds to the matrix seen before

N=3

qloe]

ql1] T

(pi/2)

ql2] |H P

(pi/2)

P

(pi/a)

c4

atel P H I

ql1] |H P

(pi/2)

c4

Opuput state
[0.5+0j, 0+0.5j,-0.5+0j, 0-0.5j]

q[-} @ H lpﬁi)

Opuput state
[0.5+0j, 0-0.5j, -0.5+0j, 0+0.5j]

Phase estimation algorithm

The problem: Suppose we are given a unitary operator U on n
qubits, which has a known eigenstate |u) with an unknown
eigenvalue e2™¢, with ¢ in [0,1). We wish to find the phase ¢ with
some precision.

By itself, the phase estimation algorithm is a solution to a rather
artificial problem. But this solution turns out to be useful as a piece of
several other algorithms, to solve much more natural and important
problems.

The first thing we might try is to prepare n g-bits in the state |u), and
carry out the unitary transformation U on them:

lu>] U] lu>

Is there a measurement on the bits which will give us information
about the phase d? The answer, of course, is no: U just produces an
overall phase on the state, with no observable consequences.

We need to generate relative phases, which can be measured. This can
be done in the following way.

0> _| H

lu>] U lu>

The initial state changes as follows:

Olu) — %nowmnw
1 2mip|,, _L e2mip u
= 0l + D] = [0 + e)

Now we have a relative phase among the two qubits of the
computational basis, which can be measured for example by first
applying an Hadamard gate to the first qubit, whose state then
becomes:

1+627m'cp 1_627m'90
—10) + ———|1
10+ ——)

and by making a measurement on the computational basis we
have the output probabilities:

1+ cos2mp
= 5 ,

1 —cos2mp

P[0 ’

P[1]

We can run this circuit several times to recover the phase ¢.
Unfortunately, the convergence of this algorithm is very slow.
After N repetitions, the accuracy in the estimate of the phase ¢
is NV/2. If we wish to know ¢ with m bits accuracy, then N%2 = 2m
which means N = 2™ the number of repetitions grows
exponentially with the number of bits of accuracy.

A smarter solution is provided by the following algorithm.

11

The first stage of the algorithm is:

(

0) —{H 0) + e2mi 1))
First register .
¢ qubits 0) < H 0) + e2miZ)|1)
0) —{ i 0) + 2mi(2'0)|1)
| 0)H B 0) + e2m7)|1)

U2 E)

Second register{ ‘u> U20 U21 U22

(normalization factors 2-%/2 have been omintted)

How we choose t depends on two things: the number of digits of
accuracy we wish to have in our estimate for ¢, and with what
probability we wish the phase estimation procedure to be successful.

The final state of the first register is easily seen to be

Zt—l/z (10) + 22 (1)) (J0) + €22 1)) . (J0) + €2 2% 1))
2'—1

1 1 -
1 Z 2mip(k1 287 4 ko2 724 4K, 20) — 1 2 : 2mipk
:WZ e LA 2 t |k1k2kt>—m (& ‘k>
k=0

k1=0 k=0

Suppose ® may be expressed exactly in t bits, as § =0.¢; Then

e27m'¢ o 627m'0.q51...¢t
647Ti¢ — 627Ti¢1.¢2...¢t — 627‘("i¢1—|—27‘(‘i0.¢2...¢t — 627T’i0.¢2...¢¢
er mi¢ _ ,2mi0.¢05...¢

12

The output state can be rewritten as

ﬁ (|O> " 627ri0.<pt|1>) (\O) n ezmo.wupt|1>) (\O) + ezmo"“‘m”"“H))

which is the Quantum Fourier Transform of the state [¢1---¥:)
Therefore the second stage of the algorithm is to apply the inverse
Quantum Fourier Transform to the output of the first state, and one

recovers exactly the bits of the binary fraction for ¢.

The full phase estimation algorithm is:

0) - H} FTH A

u) U |)

The above analysis applies to the ideal case, where ¢ can be written
exactly with a t bit binary expansion. What happens when this is not
the case?

Applying the inverse QFT to the state in the previous page produces
the state

2t—1

Z . 2;21@ 27”80143‘[Z . 227;i(l—2t¢)k|l>

k,l=0 k,l=0

We see again thatif $ =0.¢; ... ®,, then 2t d is an integer and the
sum over k returns a Kronecker delta, forcing it to be equal to 2t ¢.
The final state is |¢1 - - @) = |2t)

13

If this is not the case, the coefficient associated to the state |I> is:

t .
. 1 — _2_7?(l_2t<p)k B 1 1— 627T’L(l—2t<p)
a E k:z(:) © o ? 1 — e2mi(l—2%¢) /2t

And its square modulus is

1 1—cos[2m(l — 2p)]
22t 1 — cos[2m (I — 2typ) /2]

The above function is sharply peaked around the closest | to 2t ¢.
More precisely, it can be shown (see Nielsen & Chuang) that to
successfully obtain ¢ accurate to n bits with probability of success at
least 1 — €, we choose

)

The number of qubits needed to run the algorithm with the desired
accuracy grows linearly. Assuming that the controlled-U% unitaries are
given by oracles (and hence free), the complexity of the algorithm is
basically that of the Quantum Fourier Transform, O(t?). We have an
exponential advantage with respect to the naive algorithm we first
tried.

However, if we have to perform circuits for the controlled-U?% unitaries,
than things change. Even if we have an efficient circuit for controlled-
U, we need efficient circuits for all the controlled-U% gates as well; just
repeating the controlled-U 2/ times will make the complexity
exponential.

There is another somewhat artificial assumption as well. It is assumed
that we don’t know the eigenvalue eZ%® but that we can prepare the
eigenvector |u). While this may sometimes be true, in most cases it
will not be.

14

The phase estimation algorithm then is:

é Inputs: (1) A black box wich performs a controlled-U” operation, for integer 7,)
(2) an eigenstate |u) of U with eigenvalue e*™?*, and (3) ¢ = n + [log (2 +) |
qubits initialized to |0).

Outputs: An n-bit approximation ,, to ©,,.
Runtime: O(t?) operations and one call to controlled-U7 black box. Succeeds
with probability at least 1 — €.
Procedure:
1. |0> |u> initial state
1 2f—1
2. — 7 Z ‘]>]u) create superposition
7=0
1 2t—1 _
3. — —= 1)U |u) apply black box
2t <
7=0
1 2t—1
_ 2 u |
= — e 7))\ result of black box
77 2 e
4 — |(l/5;> |u> apply inverse Fourier transform
5 — gfp\; measure first register
. J

Example 1. Consider the unitary operator (X gate)
0 1
o= 7 o
1

with eigenstate |+) = —2[|O> +11)] and we know the relative eigenvalue
is a phase \ = e,

The goal is to find the phase, with 1 bit precision.

1. The initial state is:

0)[+)

15

2. We apply a Hadamard to the first qubit to create the superposition:

1
EH(D +D]+)

3. We apply the controlled-U gate once: the state remains unchanged

4. The inverse Fourier transform, which amounts to an Hadamard, brings
the state back to >

0)|+)

5. Measuring the first register gives 0, from which we learn that the
phase, in binary fraction, is 0.0 (to 1 bit accuracy).

This is correct: we know that the eigenvalue is 1, therefore the phase is
0.

Exercise 1. Consider the unitary operator (T gate)

=10 eotinb |

with eigenstate |1>. Write down the circuit to find the associated
eigenvalue (which is assumed to be a phase) with 3 bit precision.

Solution: since the associated eigenvalue is e™*, the desired phase is
1/8, which corresponds to the binary fraction 0.001. Therefore the

algorithm returns 001, corresponding to the exact value of the phase.

On the IBM Quantum Composer, it looks as follows

qle]
ql1]
ql2]
q[3]

c3

Remember that qubits are ordered from bottom to top.
(use “freeform alignment” to place the gate as desired)

The output probabilities are

Probability (% of 1024 shots)

a

010 011 100 101
Computational basis states

Exercise 2. Consider the same case as before, with a phase =1/3 =
0,33333 (not binary fraction). With 3-bit precision the algorithm is
similar to the one before:

qroe]
ql1]
al2]
al3]

c3

EIEEO

(N | DN | DN N D D | D
(2+pi / 3) (2xpi / 3) (2#pi / 3) (2xpi / 3) (23pi / 3) (2%pi / 3) (25pi / 3)

17

The output probabilities are

Probability (% of 1024 shots)

Computational basis states

Most likely outcome: 011 = binary fraction 0.011 corresponding to a
phase d =1/4+1/8 =0,375 = 0,042 difference from exact result (off
by 13%).

The second most likely outcome is: 010 = binary fraction 0.010
corresponding to a phase @ =1/4 =0,25 - 0,083 difference from
exact result (off by 25%).

The true phase lies in between, closer to the most likely outcome.

The circuit can be written more shortly as follows

qle]

D
ql1]
ql2]

ql3]

c3

18

Exercise 3. Same as before, but with 4-bit precision. The circuit is

LI SV) IS | N | N |
(2% pi/ 3) (4 * pi/ 3) (8 % pi/ 3) (16 * pi / 3)

| |
| |
| N
atz) | 1 [
| B
| E
1] ‘1

c4

The output probabilities are

100

Probability (% of 1024 shots)

127,

S 9 ~ S o 5 o S
& & o S S S S ~
o S S 5 ~ ~ ~ ~

Computational basis states

Most likely outcome: 0101 = binary fraction 0.0101 corresponding to
aphased =1/4+1/16 =0,313 = 0,02 difference from exact result
(off by 6%).

The second most likely outcome is: 0110 — binary fraction 0.0110
corresponding to a phase ® =1/4+1/8 =0,375 = 0,042 difference
from exact result (off by 13%).

We see an improvement with respect to the case with 3 bits

19

Exercise 4. Same as before, but with 5-bit precision. The outcome
probabilities are

0.8 1

0.686

Probabilities
o o
S (@)]

o
(N)

0.0

Most likely outcome: 01011 - binary fraction 0.01011 corresponding
toaphased =1/4+1/16+1/32 =0,344 - 0,011 difference from

exact result (off by 3%).

The second most likely outcome is: 01010 - binary fraction 0.01010
corresponding to a phase ® =1/4+1/16 =0,313 = 0,02 difference

from exact result (off by 6%).

Again, we see an improvement with respect to the previous cases.

20

Order finding algorithm

Definition of order: For positive integers x and N, x < N, with no
common factors, the order of x modulo N is defined to be the least
positive integer, r, such that x" = 1(mod N).

Order finding problem: to determine the order for some specified x
and N.

Order-finding is believed to be a hard problem on a classical computer.
The quantum algorithm for order-finding is just the phase estimation
algorithm applied to the unitary operator

Uly) = |zy(mod N))

withy € {0, 1, ... 2-1}, with L to be defined later. Note that here and
below, when N <y < 2L -1, we use the convention that xy(mod N) is
just y again. That is, U only acts non-trivially when 0 <y <N -1,

Example: N =15, x=7. Then:

U|0>=|0> U|8>=|11> U|l6>=|16>
Ull>=|7> U|9>=|3> U|17>=|17>
U|2>=114> U |10>=|10> and so on
U|3>=]|6> Ulll>=12>

U|4>=|13> U|12>=19>

U |5>=|5> U|13>=]1>

Ule>=[12> U|14>=8>

U|7>=14> U |15>=]15>

A simple calculation shows that the states defined by

—2misk
LZS] |2* mod N)

(this because x" mod N = 1, by definition).

Using the phase estimation procedure allows us to obtain, with high
accuracy, the corresponding eigenvalues exp?™/" from which we can
obtain the order r with a little bit more work.

There are three important requirements to be met in order for the
algorithm to be efficient:

* We must have efficient procedures to implement a controlled-
U? operation for any integer j.

* We must be able to efficiently prepare an eigenstate | u,) with a
non-trivial eigenvalue.

* We must be able to obtain the desired answer, r, from the result
of the phase estimation algorithm, ¢ = s/r.

We analyse the three elements separately.

22

Implementation of the controlled-U% operation: modular
exponentiation. The following relation holds:

AU U)
Nz x o x 272 y(mod N))

[2)|y) — |
|
= [z)[z"y(mod N)).

Thus the sequence of controlled-U% operations used in phase
estimation is equivalent to multiplying the contents of the second
register by the modular exponential x?(mod N), where z is the contents
of the first register.

This operation may be accomplished classically using O(L3) gates. The
classical circuit can be transformed into a reversible circuit, which can
be translated into a quantum circuit of similar complexity, computing
the transformation |z)|y) = |z)|x% (mod N)). The book of Nakahara &
Ohimi (p. 156) explains in detail how to do it.

Prepare an eigenstate |u). Preparing |u.) requires that we know r, so
this is out of the question. Fortunately, there is a clever observation

which allows us to circumvent the problem of preparing |us), which is
that

}iw— 1)

This means that if we prepare the second register in the state |1>,
just before measurement the state of the two registers will be:

> S o))

23

A measurement of the first register will collapse the state of the
second register to the eigenstate |u.>, and the first register will end
up in the state |$.>, from which the phase ¢ = s/r can be read.

Therefore, if we use

t=20+1+[log(2+5)]

qubits in the first register and prepare the second register in the state

| 1), which is trivial to construct, it follows that for each s in the range O
through r - 1, we will obtain an estimate of the phase ¢ = s/r accurate to
2L + 1 bits, with probability at least (1 - €)/r.

The order finding algorithm the is:

Register 1

t qubits 0) = H®! } = [FT1 P/ﬁ

Register 2 .
L qubits 1) —/ 7 mod N}

How to extract r from ¢ = s/r. We only know ¢ to 2L + 1 bits, but we also
know a priori that it is a rational number — the ratio of two integers — and
if we could compute the nearest such fraction to ¢ we might obtain .

There is an algorithm which accomplishes this task efficiently, known as
the continued fractions algorithm: given ¢ the continued fractions
algorithm efficiently produces numbers s' and r' with no common factor,
such that s'/r' =s/r. The number r' is our candidate for the order. We can
check to see whether it is the order by calculating x” mod N, and seeing if
the resultis 1. If so, then r' is the order of x modulo N, and we are done.

24

Performance. How can the order-finding algorithm fail? There are two
possibilities.

First, the phase estimation procedure might produce a bad estimate to
s/r. This occurs with probability at most €, and can be made small with a
negligible increase in the size of the circuit.

More seriously, it might be that s and r have a common factor, in which
case the number r’ returned by the continued fractions algorithm be a
factor of r, and not r itself. Fortunately, there are at least three ways
around this problem. Perhaps the most straightforward way is to note
that for randomly chosen s in the range 0 through r - 1, it’s actually pretty
likely that s and r are co-prime, in which case the continued fractions
algorithm must return r. Specifically, one can show that by repeating the
algorithm 2log(N) times we will, with high probability, observe a phase s/r
such that s and r are co-prime, and therefore the continued fractions
algorithm produces r, as desired.

See Nielsen and Chuang for further details.

Note. The quantum state produced in the order-finding algorithm, before
the inverse Fourier transform, is

2t—1 2t—1
[¥) =D 1)U[1) =) [5)|2 mod N)
§=0 §=0

if we initialize the second register as | 1). The same state is obtained if we
replace U'with a different unitary transform V, which computes

V1j)lk) = |5)|k + 2’ mod N)

and start the second register in the state |0). Moreover, V can be
constructed also using O(L3) gates.

25

The order finding algorithm

then is

(1

k) —
t=2L+1+ [log (2 +
to the state |1).

nputs: (1) A black box U, y which performs the transformation
|7)|z7k mod N), for x co-prime to the L-bit number N, (2)
2-)| qubits initialized to |0), and (3) L qubits initialized

Outputs: The least integer 7 > 0 such that " = 1 (mod N).

Runtime: O(L?) operations. Succeeds with probability O(1).

Procedure:
1 ‘0> | 1> initial state
2t -1
1 :
2 — 7 | j) ‘ 1> create superposition
J=0
1 2t—1
3 — 5 |7)|z7 mod N) apply Uz, N
20
‘7:
1 r—12%—1
2mwisg/r
\/? € |j ‘u
s=0 7=0
1 r—1))
4 . ‘S /7“> ‘Us> apply inverse Fourier transform to first
r register
s=0
5 — S / T measure first register
6. oy apply continued fractions
\ algorithm

~N

Example: Find the order r of x =7 mod N = 15. We use L = 8 qubits.

The initial state is:

100....0) |00...0) =

10)10)

Next, we apply the Hadamard transformation to the first register

(|00..

1
V256 \ g

0)g + ... [11...1)
=255

) 100...0),

26

The next step is to perform the modular exponentiation. One gets

o (100 10) 1) 17) 4120 14) +13) [13) +14)[1) +) 7) .. [255) 113))

which can be rewritten as

+

1 (|o>+|4>+...+|252>>Il> 1 (|1>+|5>+...+|253>>|7>

Vi V64 Nz N
L /2)+16) +..+[254)\ 1 ([3)+[7)+...+[255) ..
*ﬁ(NG)M+ﬂ< NG)w

DA CONTINUARE SU QISKIT

27

Factoring

The factoring problem turns out to be equivalent to the order-finding
problem we just studied, in the sense that a fast algorithm for order-
finding can easily be turned into a fast algorithm for factoring. The
reduction of factoring to order-finding proceeds in two basic steps.

The first step is to show that we can compute a factor of N if we can find
a non-trivial solution x neq + 1(mod N) to the equation x? = 1(mod N).

The second step is to show that a randomly chosen y co-prime to N is
quite likely to have an order r which is even, and such that y/2 neq +
1(mod N). Thus x = y72(mod N) is a non-trivial solution to x2 = 1(mod
N).

The algorithm runs as follows.
(—_ ~\

Inputs: A composite number NV

Outputs: A non-trivial factor of .

Runtime: O((log N)?*) operations. Succeeds with probability O(1).

Procedure:

1. If N is even, return the factor 2.

2. Determine whether N = a’ for integers ¢ > 1 and b > 2, and if so
return the factor a (uses the classical algorithm of Exercise 5.17).

3. Randomly choose x in the range 1 to N — 1. If gcd(x, N) > 1 then return
the factor ged(z, V).

4. Use the order-finding subroutine to find the order r of modulo V.

5. If 7 is even and 2"/? # — I(mod N) then compute ged(z"/?> — 1, N) and

ged(z™/? + 1, N), and test to see if one of these is a non-trivial factor,
returning that factor if so. Otherwise, the algorithm fails.
\ S

28

Steps 1 and 2 of the algorithm either return a factor, or else ensure that
N is an odd integer with more than one prime factor. These steps may
be performed using O(1) and O(L3) operations, respectively.

Step 3 either returns a factor, or produces a randomly chosen element x
of{0,1,2,...,N-1} co-prime to N.

Step 4 calls the order-finding subroutine, computing the order r of x
modulo N.

Step 5 completes the algorithm, since Theorem 5.3 of Nielsen & Chuang
guarantees that with probability at least one-half, r will be even and x"2
neqg - 1(mod N), and then Theorem 5.2 of Nielsen & Chuang guarantees
that either gcd(x72 = 1, N) or gcd(x72 + 1,N) is a non-trivial factor of N.

Example: Factoring N = 15.

15 is neither even, nor of the form a® with a greater or equalto 1 and b
greater or equal to 2. Therefore steps 1 and 2 do not return anything.

Step 3 requires to pick randomly a number between 1 and d 14.
Following the previous example, suppose we choose x = 7. It is co-prime
to 15.

Step 4 makes use of the order finding algorithm to find the order r of x =
7 mod N = 15. We saw that the outputisr =4,

By chance, 4 is even, and more over x72 mod 15 = 4 differ from -1 mod
15, so the algorithm works. Computing the greatest common divisor
gcd(x? -1, 15) = 3 and ged(x? + 1, 15) = 5 tells us that 15 = 3x5.

