Image Processing for Physicists

Prof. Pierre Thibault pthibault@units.it

Overview

- Fundamentals of tomography
 - Physics & geometry
- Analytic formulation
 - Radon transform
 - Filtered back-projection
- Algebraic formulation

Examples of tomographic imaging Computed (X-ray) Tomography (CT)

Examples of tomographic imaging

Single-Photon Emission

Positron emission tomography (PET) + CT

Computed Tomography (SPECT)

Examples of tomographic imaging Seismic tomography

source: Sambridge et al. G3 Vol.4 Nr.3 (2003)

Examples of tomographic imaging Ultrasonography/tomography (US/UST)

Magnetic resonance imaging/tomography (MRI/MRT)

Reconstructions from projections

Radon transform

Rotated coordinate system

$$\begin{pmatrix} r \\ s \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
Radon transform
$$p(\theta, r) = \int f(x = r\cos s\theta - s\sin \theta, y = s\cos \theta + r\sin \theta) ds$$

$$p(\theta, r) = \int f(x = r\cos s\theta - s\sin \theta, y = s\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos s\theta - s\sin \theta, y = s\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos s\theta - s\sin \theta, y = s\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos s\theta - s\sin \theta, y = s\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos s\theta - s\sin \theta, y = s\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos s\theta - s\sin \theta, y = s\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos s\theta - s\sin \theta, y = s\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos s\theta - s\sin \theta, y = s\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos s\theta - s\sin \theta, y = s\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos s\theta - s\sin \theta, y = s\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos s\theta - s\sin \theta, y = s\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos s\theta - s\sin \theta, y = s\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos s\theta - s\sin \theta, y = s\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta + r\sin \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta) ds$$

$$P(\theta, r) = \int f(x = r\cos \theta)$$

Sinogram

Representation of projection measured by a single detector line as a function of angle

b

Filtered back-projection

- Filter can be tuned to achieve image enhancement
- Trade-off between noise and sharpness

Medical CT

- Mathematical methods developed by Allan M. Cormack in the early 60s.
- First clinically useful CT instrument developed by Godfrey Hounsfield in the early 70s.
- Cormack & Hounsfield were awarded the Nobel prize in 1979 "for the development of computer assisted tomography".

Photo from the Nobel Foundation archive. Allan M. Cormack

Photo from the Nobel Foundation archive. Godfrey N. Hounsfield

Hounsfield units

Medical CT

Geometries

Medical CT

- 3rd generation scanners:
 - -1 X-ray source
 - -1D detector
 - Fan beam geometry
 - Total scan time less than 5 second.

• Recent scanners: 2D detectors (cone beam)

Anti-scatter

Medical CT

Algebraic formulation

Tomography can be formulated as a set of linear equations

Weighting coefficients

Differences in calculation effort, smoothness, noise sensitivity, ...

Tomography

source: Buzug, Springer, 1st ed. 2008

System Matrix

Matrix (pseudo)-inversion $T \simeq 10^6 \text{ entries}$ $5 \simeq 10^6 \text{ entries}$

Sinbyrom

Iterative methods:

system matrix tomo in finance $S = 10^{\circ} \text{ mfr.}$ $\int M \int T = \int S \int T = M S Matob \times 10^{\circ}$ nethods: Algebraic reconstruction toologie Algebraic reconstruction technique • ART

system matrix tomo slice

• SART Simultaneous algebraic reconstruction technique

Tomographic reconstruction = linear system inversion

- SIRT Simultaneous iterative reconstruction technique
- MART Multiplicative algebraic reconstruction technique
- MLEM Maximum likelihood expectation maximization
- OSEM Ordered subset expectation maximization
- ... and many, many more

FBP vs algebraic methods

iterative 40% dose

Filtered backprojection 100% dose

source: Kachelries, http://www.dkfz.de/en/medphysrad/workinggroups/ct/ct_conference_contributions/BasicsOfCTImageReconstruction_Part2.pdf

Iterative methods

Iterative methods

Abbreviation	Meaning	
ART	Algebraic reconstruction technique	Gordon et al. 1970
SART	Simultaneous ART	Anderson & Kak, 1984
SIRT	Simultaneous iterative reconstruction technique	Gilbert 1972
OS-SIRT	Ordered subset SIRT	Gordon et al. 1970
MART	Multiplicative algebraic reconstruction technique	
ML-EM	Maximum likelihood expectation-maximization	Lange & Carson 1984
OS-EM	Ordered subset expectation-maximization	Manglos et al 1995
OSC	Ordered subset convex algorithm	Kamphuis & Beekman 1998 Erdogan & Fessler 1999
ICD	Iterative coordinate descent	
OS-ICD	Ordered subset ICD	
MBIR	Model-based iterative	
	reconstruction	

Image quality

Signal to noise

Artifacts

Medical CT

Ring artifacts: caused by damaged or miscalibrated detector pixels.

Medical CT

Beam hardening: deviation from the exponential law caused by the attenuation of a broad spectrum (thicker objects seem more transmissive than they should)

"Missing wedge": caused by an incomplete sinogram (also called limited angle tomography)

"Missing wedge": promising results using machine learning

Photon starvation: strongly absorbing features discard useful signal for the reconstruction of nearby areas

 $\rho = -h\left(\frac{I}{I_0}\right)$

Tomographic Display

source: http://wikipedia.org

source: W. Kalender, Publicis, 3rd ed. 2011

Volume rendering display

Summary

- Computed tomography: reconstruction from projections
- Analytic approach:
 - Projections and tomographic slices are related by the Fourier slice theorem
 - Standard algorithm uses filtered back-projection
- Algebraic approach:
 - Tomography as a system of linear equations
 - Iterative methods are used for large matrix inversions
 - More powerful but computationally more costly
- Imperfect data leads to artifacts