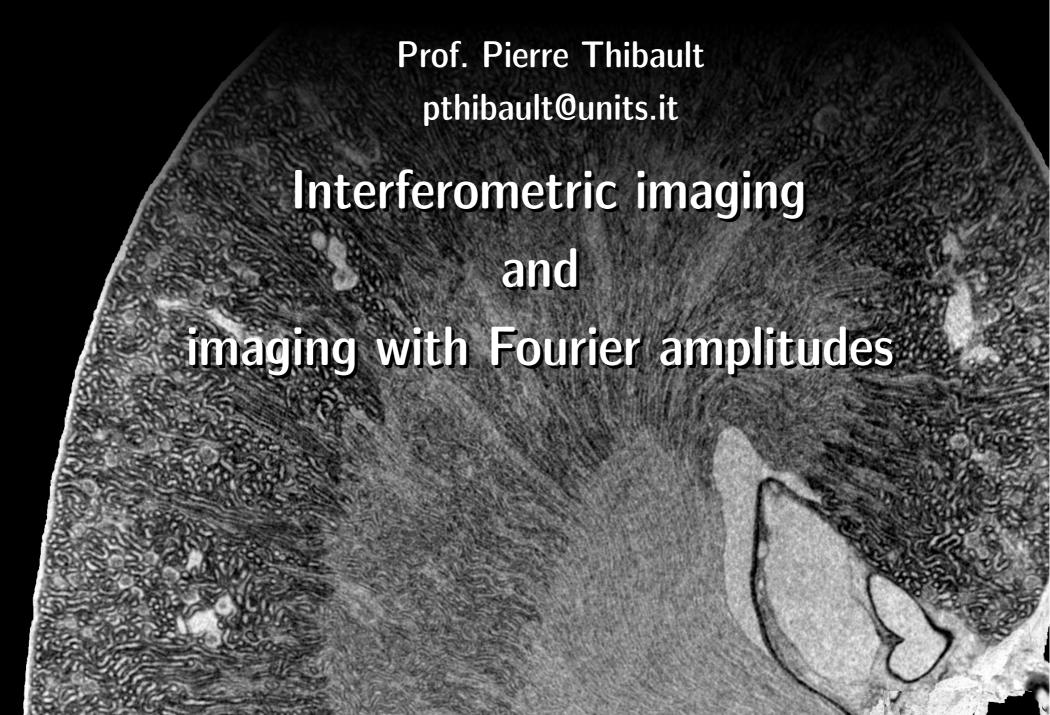
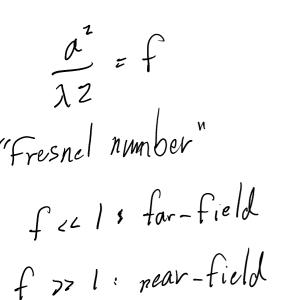
Image Processing for Physicists

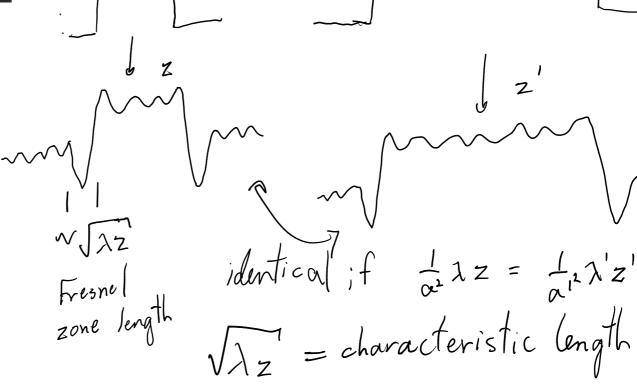


Overview

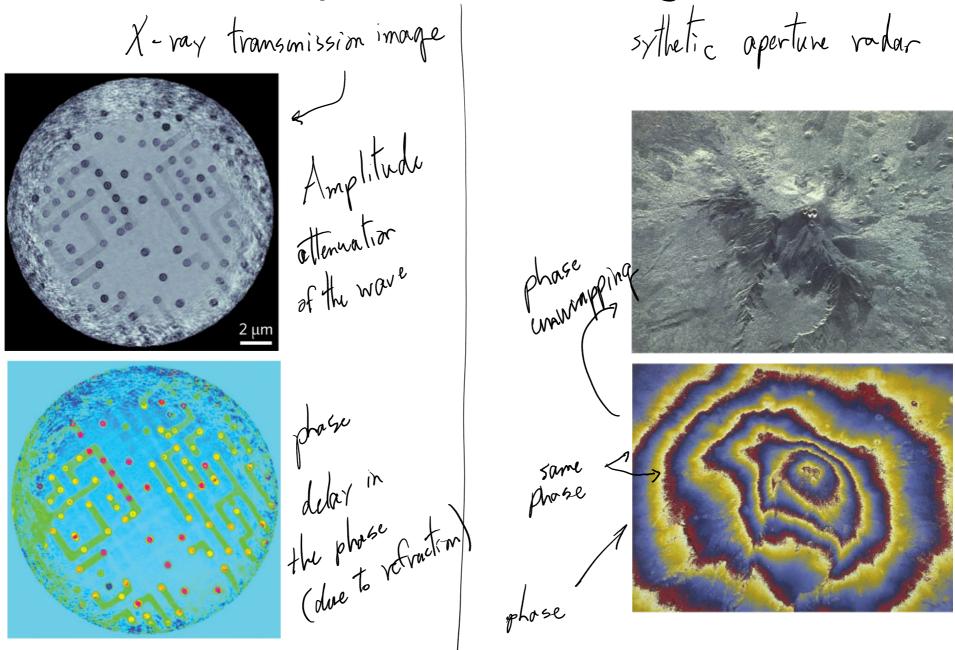
- The phase problem
- Holography: on/off-axis
- Grating interferometric imaging
- Imaging using far-field amplitude measurements
 - Fourier transform holography
 - Coherent diffraction imaging
 - Ptychography

Wave propagation





Complex-valued images

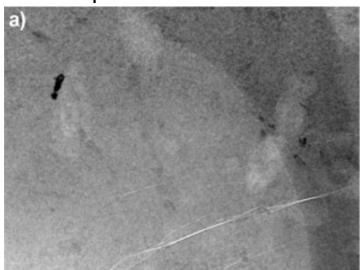


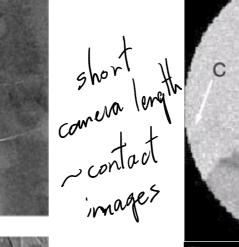
Phase-contrast

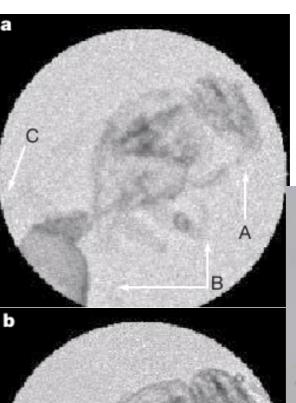
Visible light: sec Zernike

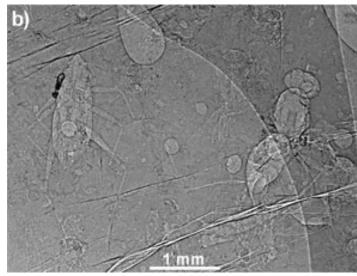
Hard X-ray propagation-based phase contrast

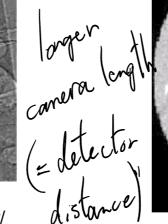
Neutron phase contrast







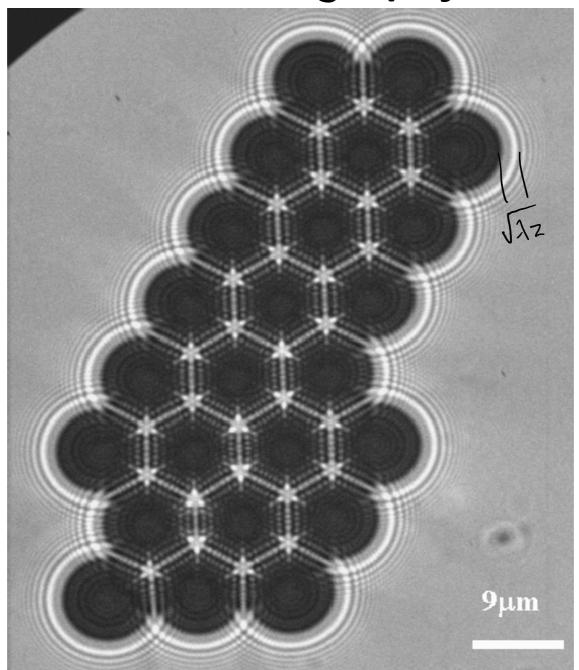




Source: Allman et al. Nature 408 (2000).

Source: www.esrf.eu/news/general/amber/amber/

Inline holography



Source: Mayo et al. Opt Express 11 (2003).

Inline holography

Measure

* plane monochromatic wave

* weak transmission of imaged object small perturbation

$$\psi(\vec{r},z=0) = A(1+\varepsilon(\vec{r},z))$$

* constant (plane wave)

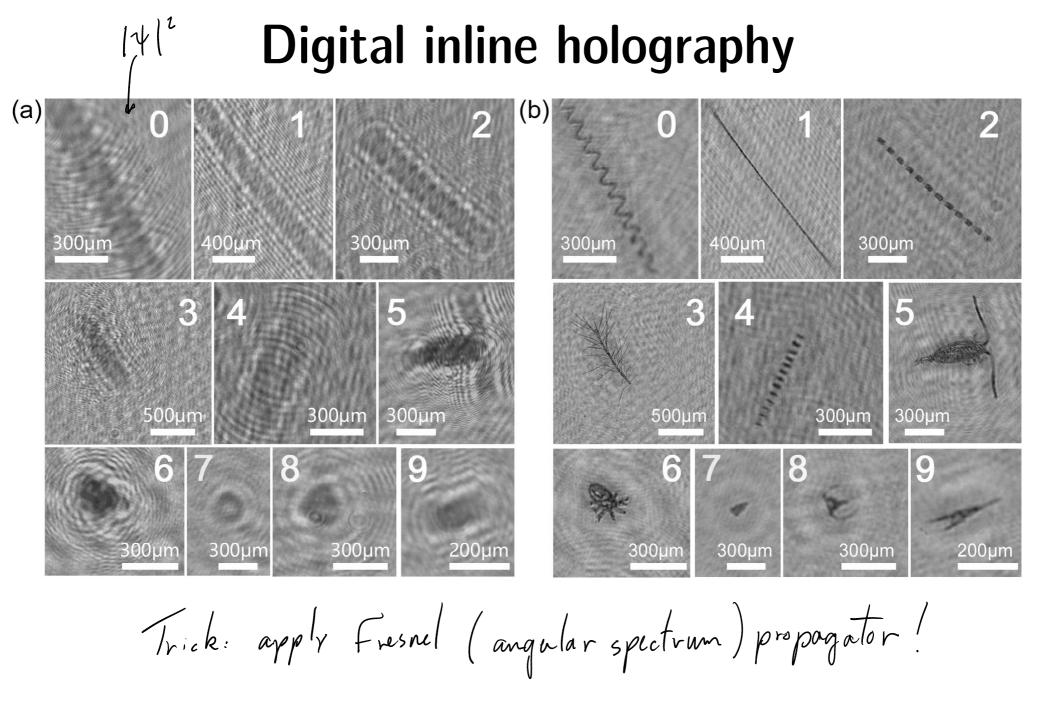
$$I(\vec{r}) = |A(1+\varepsilon(\vec{r},z))|^2 = |A|^2(1+\varepsilon(\vec{r},z)+\varepsilon^*(r,z)+|\varepsilon(\vec{r},z)|^2)$$

= $|A|^2[1+\varepsilon(\vec{r},z)+\varepsilon^*(r,z)]$

propagated by $= |A|^2[1+\varepsilon(\vec{r},z)+|\varepsilon(\vec{r},z)|]$

* propagated by $= |A|^2[1+|\varepsilon(\vec{r},z)|]$

* propagated by $= |A|^2[1+|\varepsilon(\vec{r},z)|]$



The phase problem

We always measure 14/2. phases are lost.

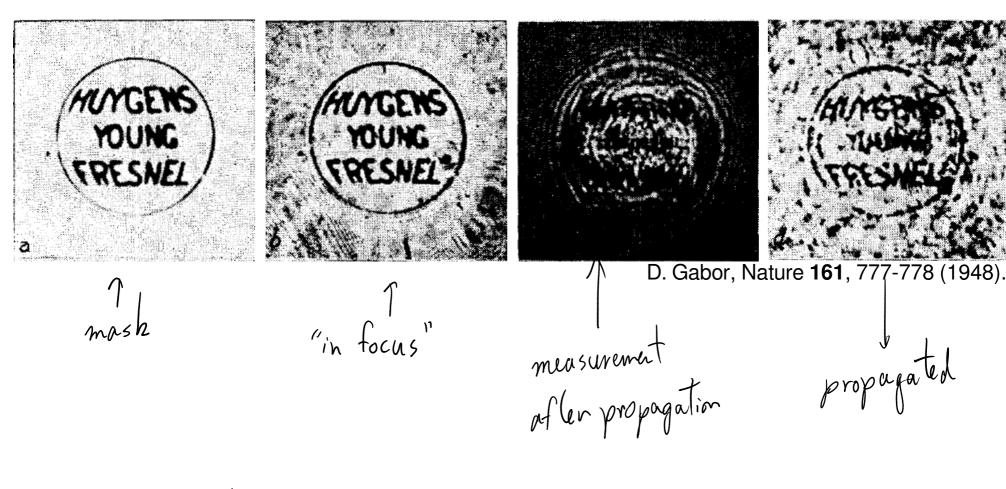
We need to recover the phase part of the wavefield

* sometimes the phases are interesting

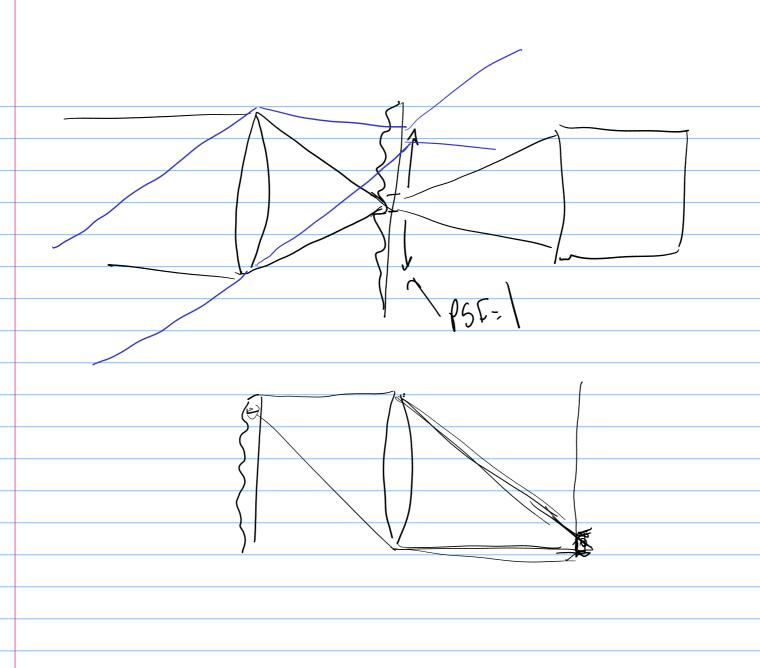
* most often: the phase are an auxiliary quantity

for proper interpretation of the wavefield

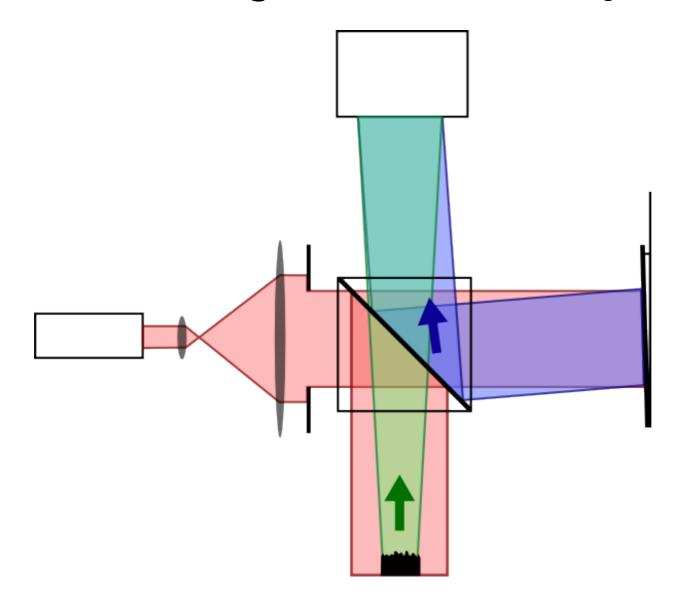
In-line holography



problem: twin image

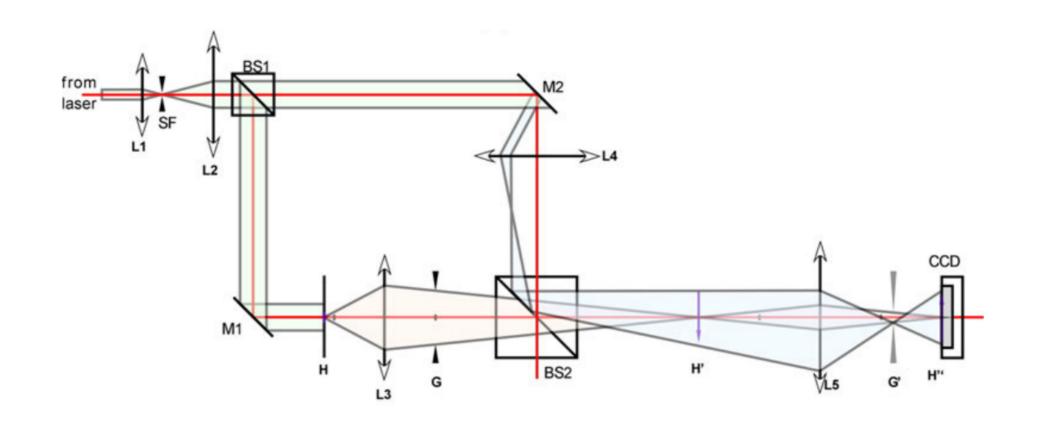


Fringe interferometry



Twyman-Green interferometer

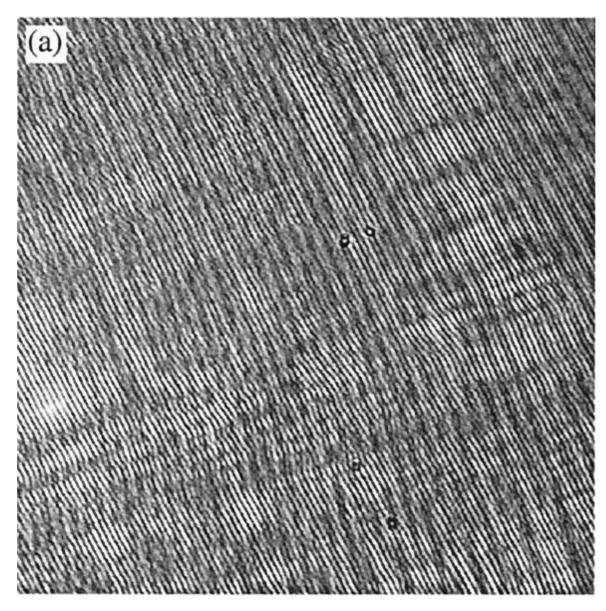
Visible light interferometer



Mach-Zehnder interferometer

Source: M. K. Kim, SPIE Rev. 1, 018005 (2010).

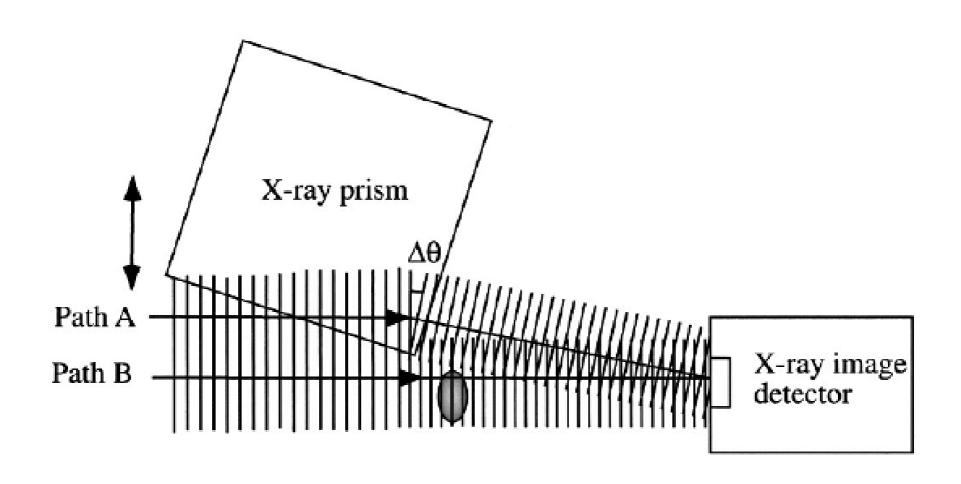
Fringe interferometry



Source: Cuche et al. Appl. Opt. **39**, 4070 (2000)

Two tilted plane waves: 1+ e ig.r along z at an angle θ ($\sin \theta = \frac{|q|}{k}$) $I = |1 + e^{i\vec{q}\cdot\vec{r}}|^2 = 1 + e^{i\vec{q}\cdot\vec{r}} + e^{-i\vec{q}\cdot\vec{r}} + 1 = 2 + 2\cos(\vec{q}\cdot\vec{r})$ La oscillation with spatial frequency in = 8/2tr With a sample in: $|a(\vec{r}) + e^{i\vec{q}\cdot\vec{r}}|^2$

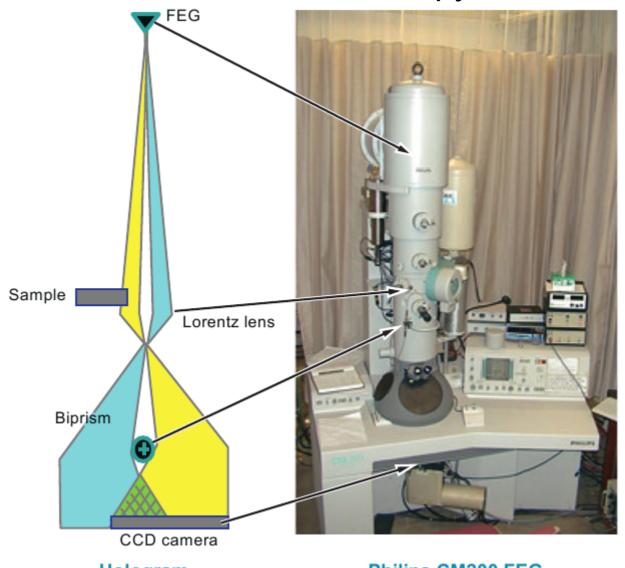
Off-axis X-ray holography



Source: Y. Kohmura, J. Appl. Phys. **96**, 1781-1784 (2004)

Off-axis electron holography

Electron microscopy

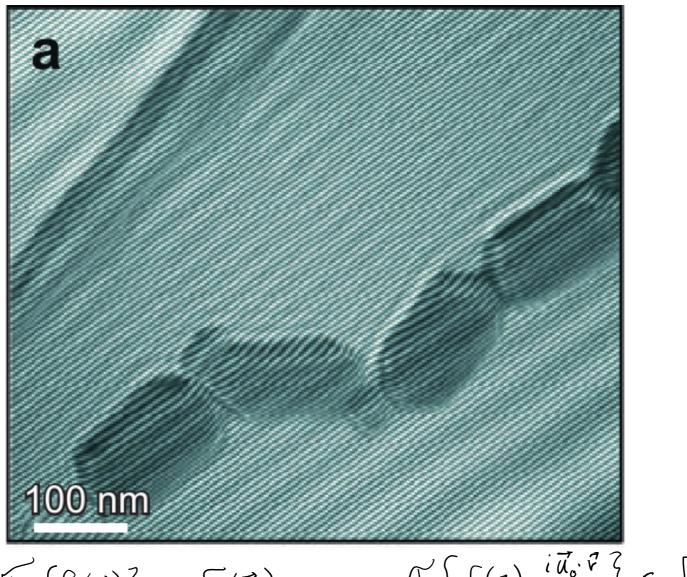


Hologram

Philips CM200 FEG

Source: M. R. McCartney, Ann. Rev. Mat. Sci. **37** 729-767 (2007)

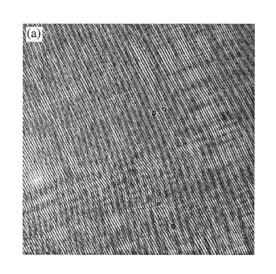
Off-axis electron holography



$$\mathcal{F}\left\{f(\vec{r})\right\} = F(\vec{u}) \qquad \mathcal{F}\left\{f(\vec{r})e^{i\vec{u}_0\cdot\vec{r}}\right\} = F(\vec{u}-\vec{u}_0)$$

Source: M. R. McCartney, Annu. Rev. Mat. Sci. **37** 729-767 (2007)

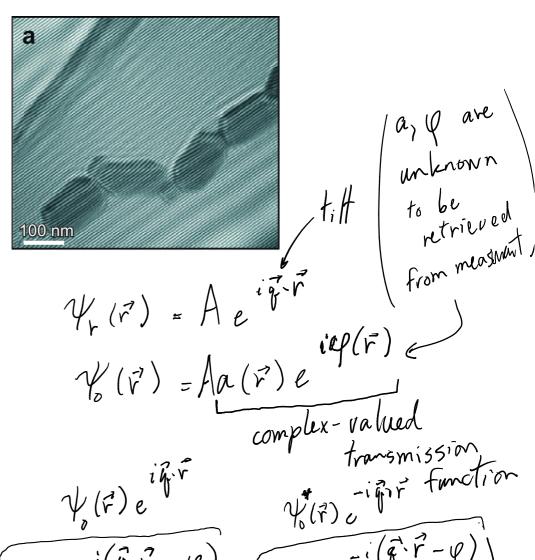
Fringe interferometry



Measuvenent:

$$|\psi|^{2} = (\psi_{0} + \psi_{r})(\psi_{0} + \psi_{r})^{*} \qquad \psi_{0}(\vec{r}) e^{i\eta_{r}} \qquad \psi_{0}(\vec{r}) e^{-i\eta_{r}} + \text{and}(\vec{r})$$

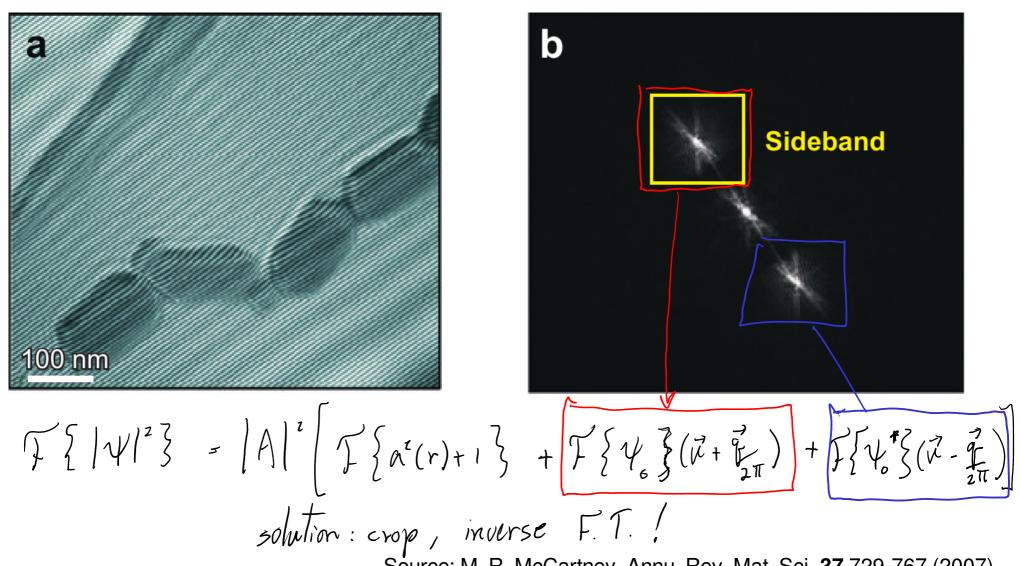
$$= |A|^{2} \left(|+|a(r)|^{2} + a(\vec{r})e^{-i(\eta_{r})} + a(\vec{r})e^{-i(\eta_{r})} + a(\vec{r})e^{-i(\eta_{r})} + a(\vec{r})e^{-i(\eta_{r})} + a(\vec{r})e^{-i(\eta_{r})} + a(\vec{r})e^{-i(\eta_{r})} \right)$$



$$V_o(\vec{r}) = Aa(\vec{r})e^{iq}(\vec{r})$$

$$2a(\vec{r})\cos(\vec{q}-\vec{r}-\varphi(\vec{r}))$$

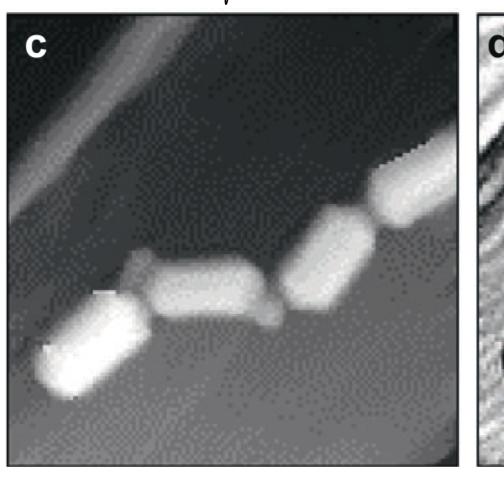
Off-axis holography

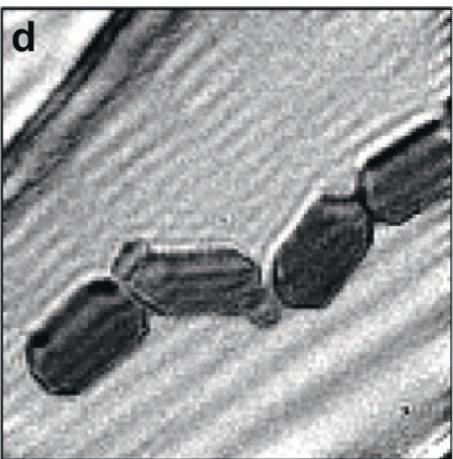


Source: M. R. McCartney, Annu. Rev. Mat. Sci. 37 729-767 (2007)

Off-axis holography

Price paid: loss of resolution





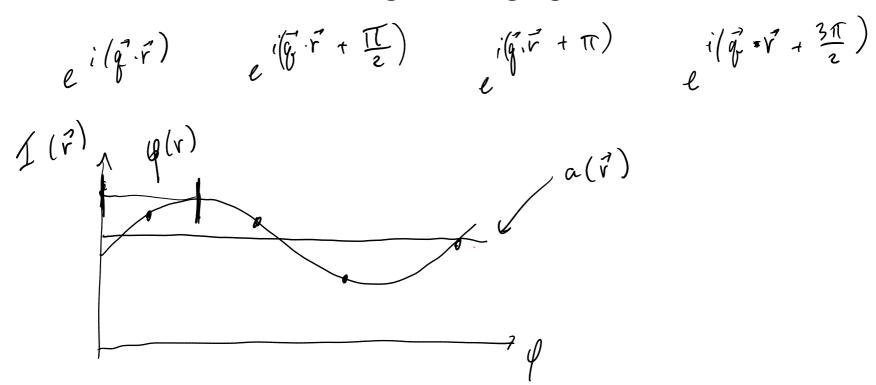
phose (4)

attenution (a)

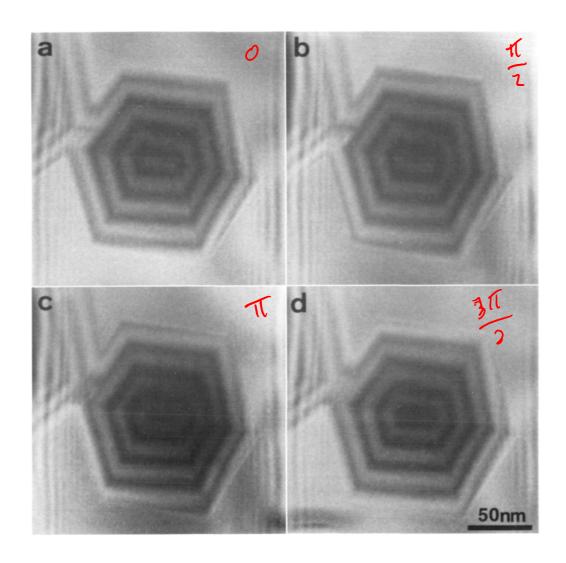
Source: M. R. McCartney, Annu. Rev. Mat. Sci. 37 729-767 (2007)

Phase stepping

- Encoding phase and amplitude in a single image has a price: resolution
 - \rightarrow Take more than one image, changing the reference in each.



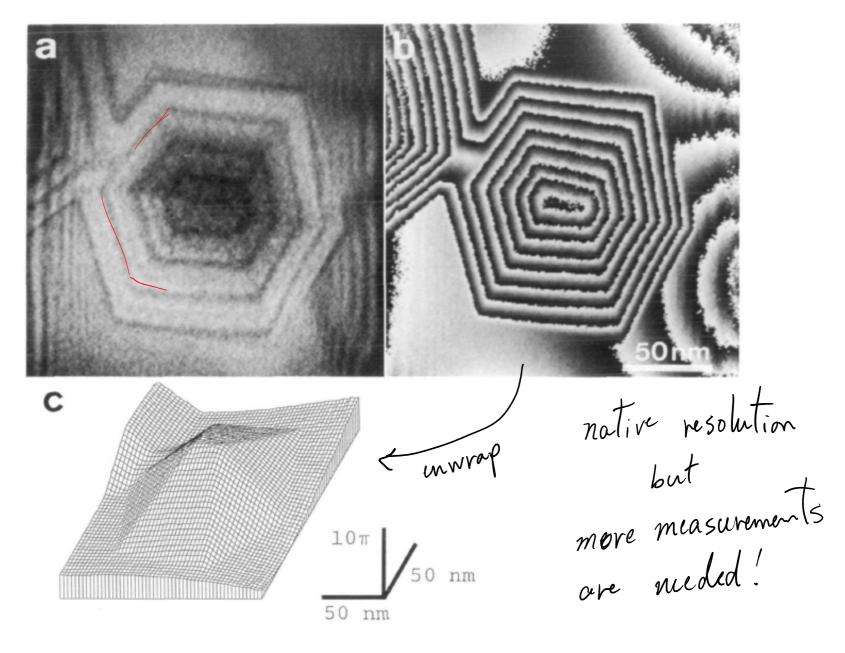
Fringe scanning



Electron microscopy

Source: K. Harada, J. Electron Microsc. 39 470-476 (1990)

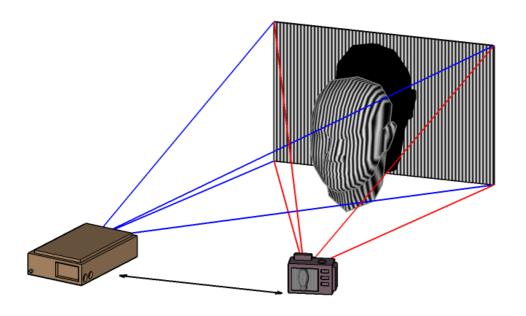
Fringe scanning



Source: K. Harada, J. Electron Microsc. **39** 470-476 (1990)

Structured light sensing

- Project a structured light pattern onto sample
- Distortions of light pattern allow reconstruction of sample shape



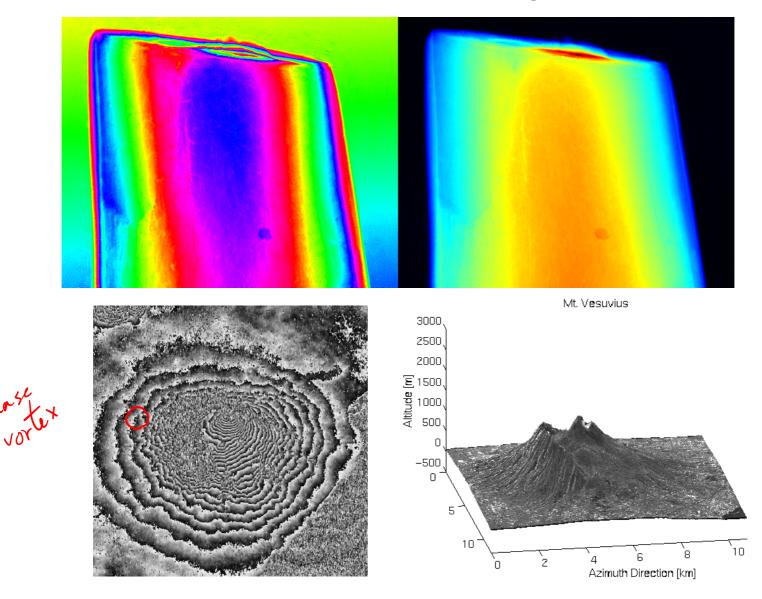
Phase unwrapping

- Phase is measured only in the interval $[0, 2\pi)$
- Physical phase shifts (which can be larger) are wrapped on this interval
 - \rightarrow Any multiple of 2π is possible
- Unwrapping: use correlations in the image to guess the total phase shift.
- Main difficulties:
 - aliasing: phase shifts are too rapid for the image sampling
 - noise: produces local singularities (vortices)
- · Many strategies exist path following methods

> phase vortex connection

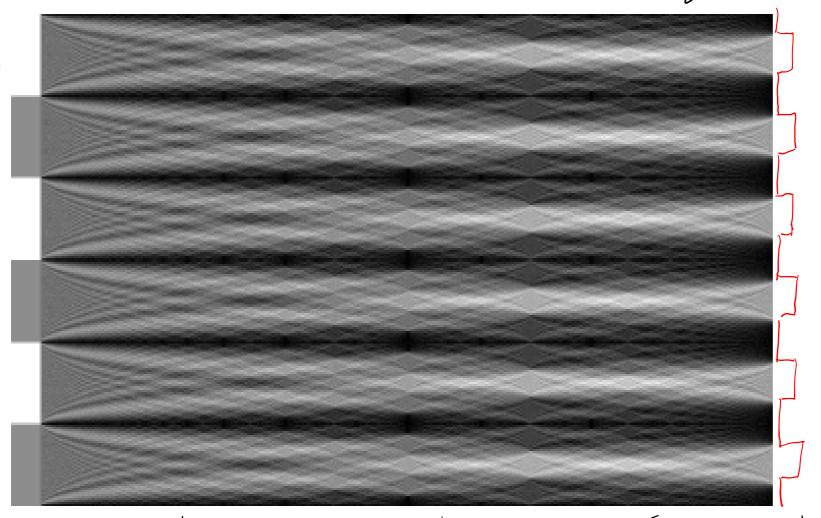
Complex-valued images

Phase unwrapping



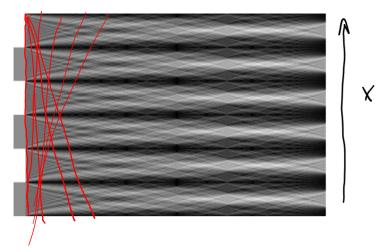
Source: http://earth.esa.int/workshops/ers97/program-details/speeches/rocca-et-al/

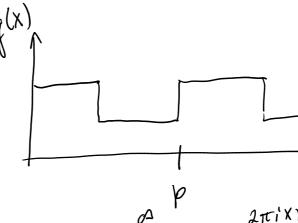
Diffraction from a grating

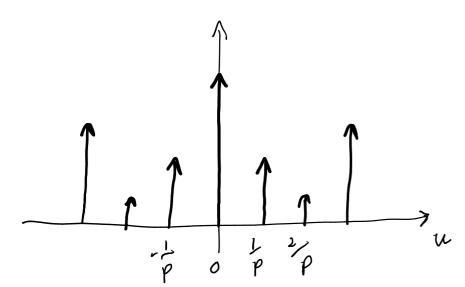


periodicity along the propagation exis: Talbot effect

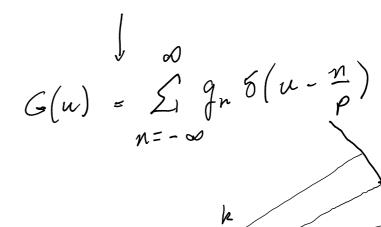
Diffraction from a grating



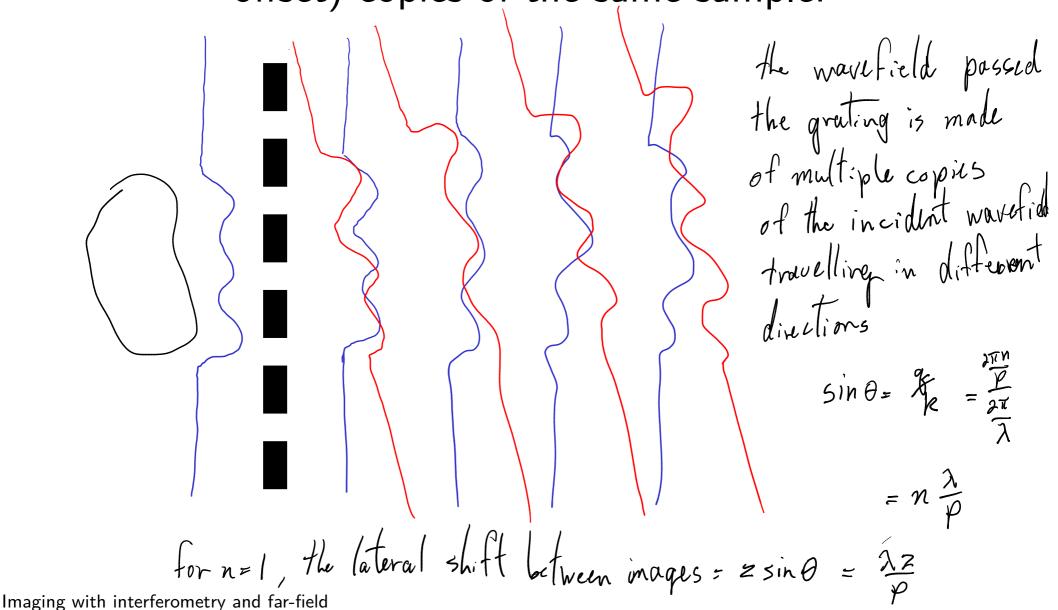




$$q(x) = \sum_{-\infty}^{\infty} q_n e^{2\pi i x n} p$$



Observing the interference between two (slightly offset) copies of the same sample.



Observing the interference between two (slightly offset) copies of the same sample.

$$\mathcal{T}^{-1} \left\{ \mathcal{V}_{0} \left(\vec{u} - \hat{\vec{r}} \right) e^{-i\vec{r} \cdot \vec{u}^{2}} \lambda Z \right\} \quad \vec{u}' = \vec{u}' - \frac{\hat{x}}{p}$$

$$u^{2} = \left(\vec{u}' + \frac{\hat{x}}{p} \right)^{2} = u'^{2} + \frac{1}{p_{2}} + 2 \frac{u'_{x}}{p}$$

$$= \mathcal{T}^{-1} \left\{ \mathcal{V}_{0} \left(\vec{u}' \right) e^{-i\pi\lambda z} \left(u'^{2} + p_{1} + 2 \frac{u'_{y}}{p} \right) \right\}$$

$$= i\pi\lambda z$$

$$e^{-i\pi\lambda z} \left\{ \int_{2u'}^{2u'} \mathcal{V}_{0} \left(u' \right) e^{-i\pi\lambda z} u'^{2} - 2\pi i \lambda Z u'_{x} e^{2\pi i (\vec{u}' + \frac{\hat{x}}{p}) \cdot \vec{y}} \right\}$$

$$e^{2\pi i \vec{u}' \cdot (\vec{y} - \frac{\lambda z}{p} \hat{x})} \cdot e^{2\pi i x}$$

$$e^{2\pi i \vec{x}} \mathcal{V}_{0} \left(\vec{z} - \frac{\lambda z}{p} \hat{x} \right) \cdot e^{2\pi i x}$$

$$= e^{-i\sqrt{\chi^2}} \theta_1 e^{2\pi i x} \psi_0 (\vec{r} - \frac{\lambda z}{p} \hat{x}; z)$$

$$\psi(\vec{r},z) = e^{-i\pi\lambda_{z}^{2}} \left(g_{,e}^{2\pi i \times p} \psi_{,e}(\vec{r} - \frac{\lambda z}{p};z) + g_{-1}e^{-\frac{\lambda \pi i \times p}{p}} \psi_{,e}(\vec{r} + \frac{\lambda z}{p};z) \right)$$

gi=g-1 ER for simplicity

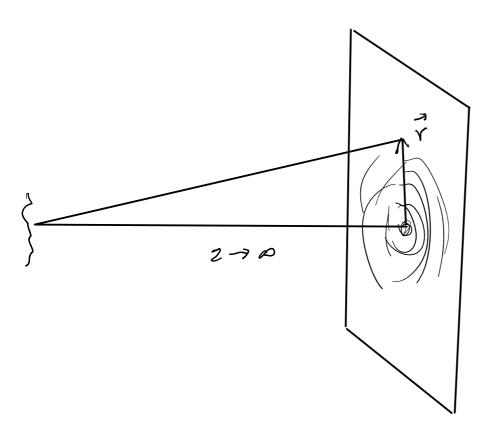
$$I = |V(\vec{r},z)|^2 = |g_1|^2 \left(|V_0(\vec{r} - \lambda z^2;z)|^2 + |V_0(\vec{r} + \lambda z^2;z)|^2 \right)$$

$$+ \lambda \operatorname{Reff}_{i}^2 e^{4\pi i x} P V_0(\vec{r} - \lambda z^2;z) V_0^* (\vec{r} + \lambda z^2;z)$$

$$V_0(\vec{r};z) = \alpha(\vec{r}) e^{i\varphi(\vec{r})}$$

$$= 2\alpha^2(\vec{r})$$

Far-field diffraction The Fraunhofer regime

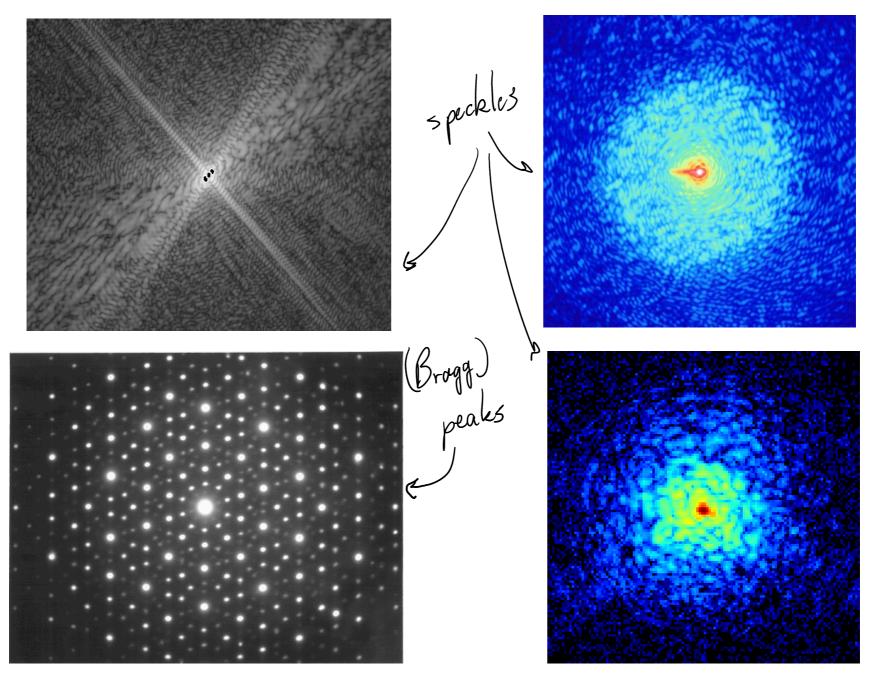


$$\frac{\vec{z}}{z} = \frac{\vec{q}}{k} = \lambda \vec{u}$$

$$|\psi(\vec{r};z\rightarrow\infty)|^{2}\propto |\tau\psi|^{2}(\vec{u}=\vec{x})$$

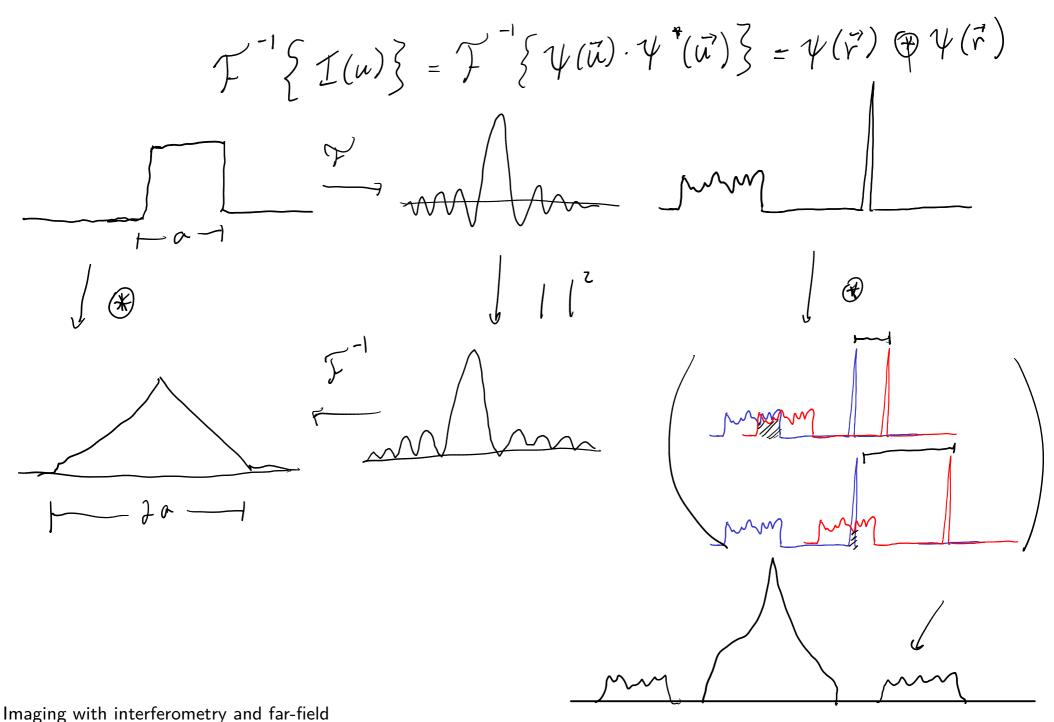
$$|\tau(\vec{u})|^{2}$$

Diffraction patterns



Imaging with interferometry and far-field

Diffraction and autocorrelation



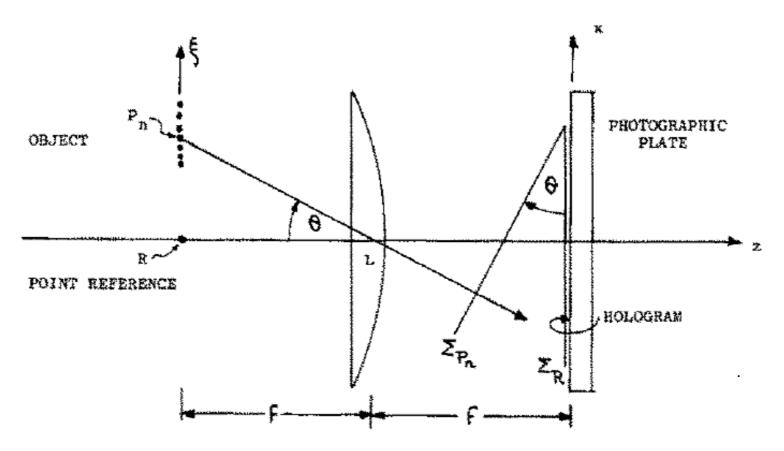
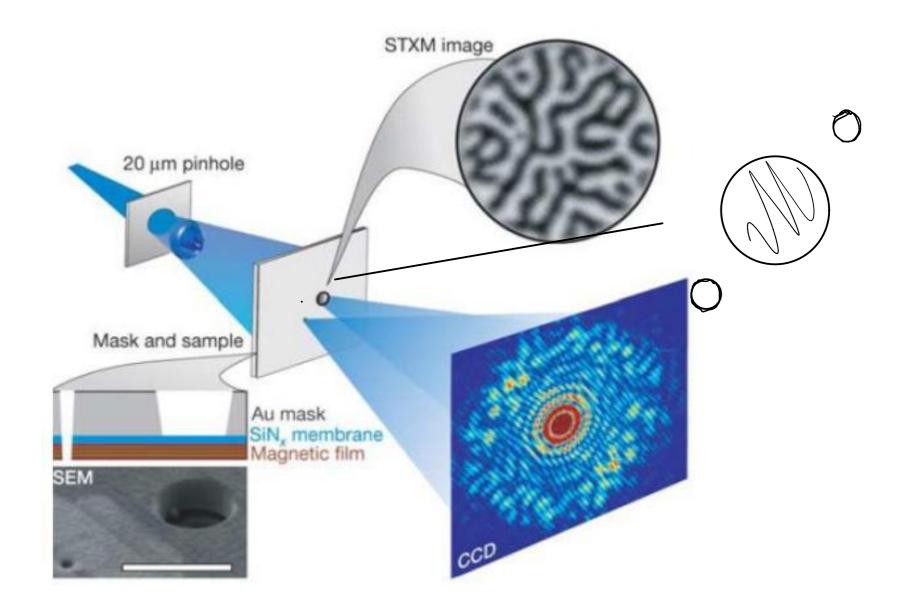
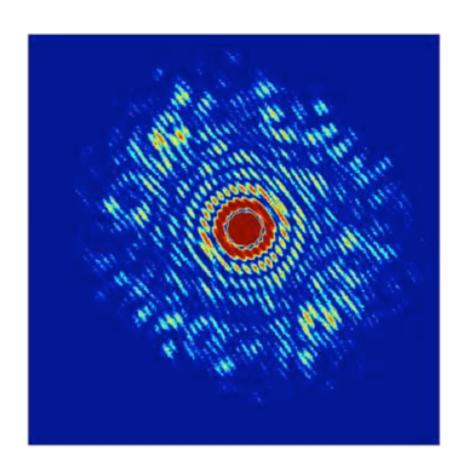
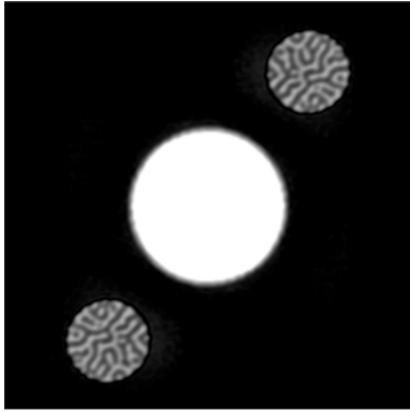


Fig. 1. Recording of a Fourier-transform hologram with a lens L. Σ_R = reference wavefront.

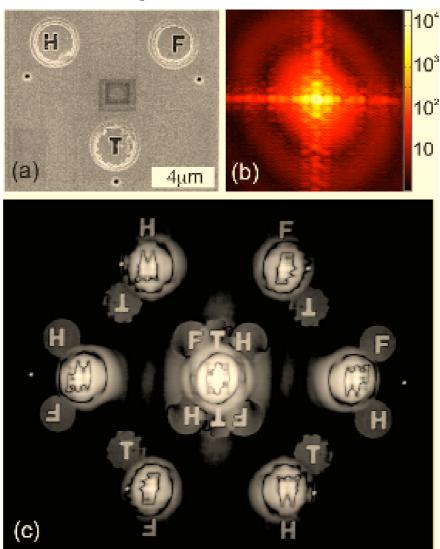


Source: S. Eisebitt et al., Nature **432**, 885-888 (2004).





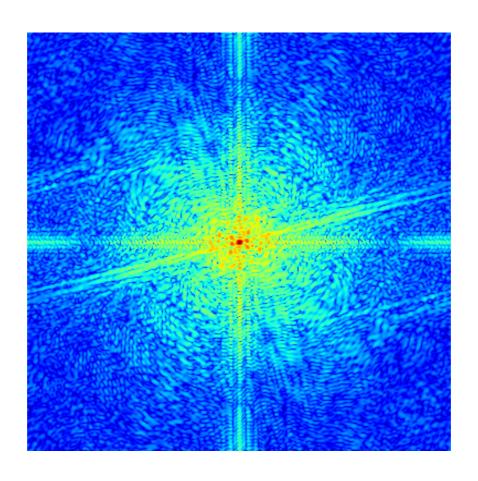
Multiple references



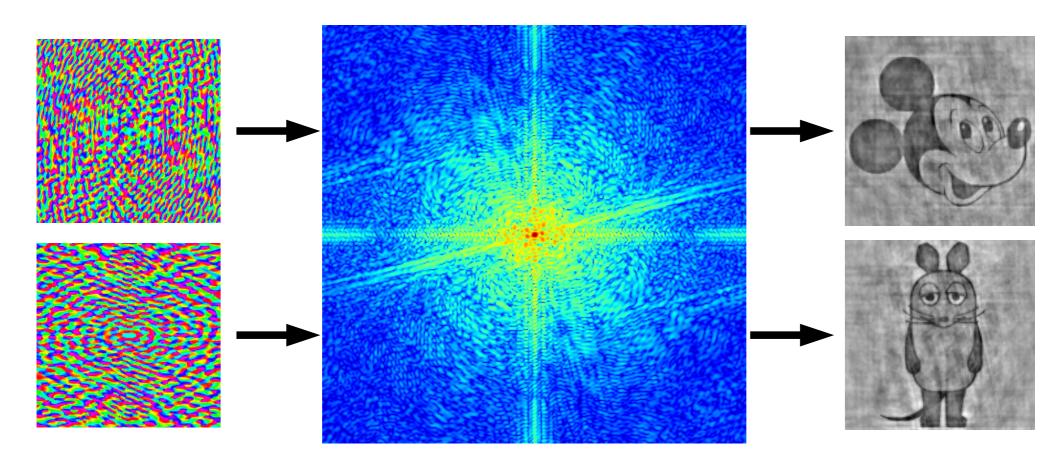
Another similar method: "HERALDO"

Source: W. Schlotter et al., Opt.. Lett. 21, 3110-3112 (2006).

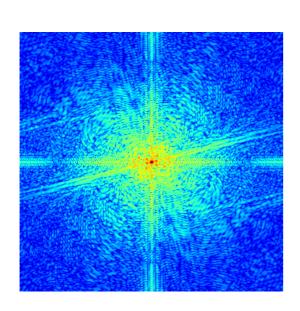
Coherent diffractive imaging



The phase problem

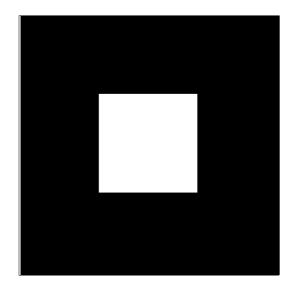


Coherent diffractive imaging



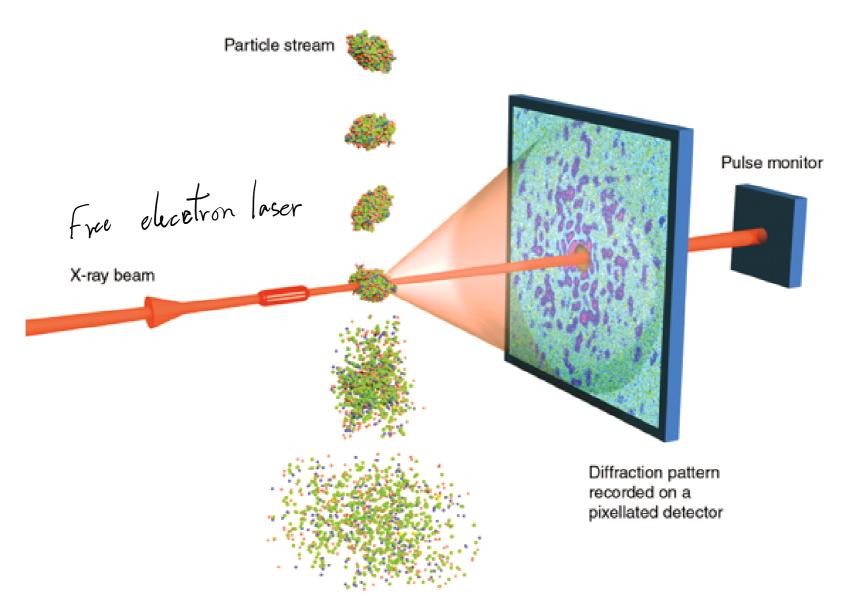
Two constraints

1. Solution is consistent with measured Fourier amplitudes



2. Solution is isolated

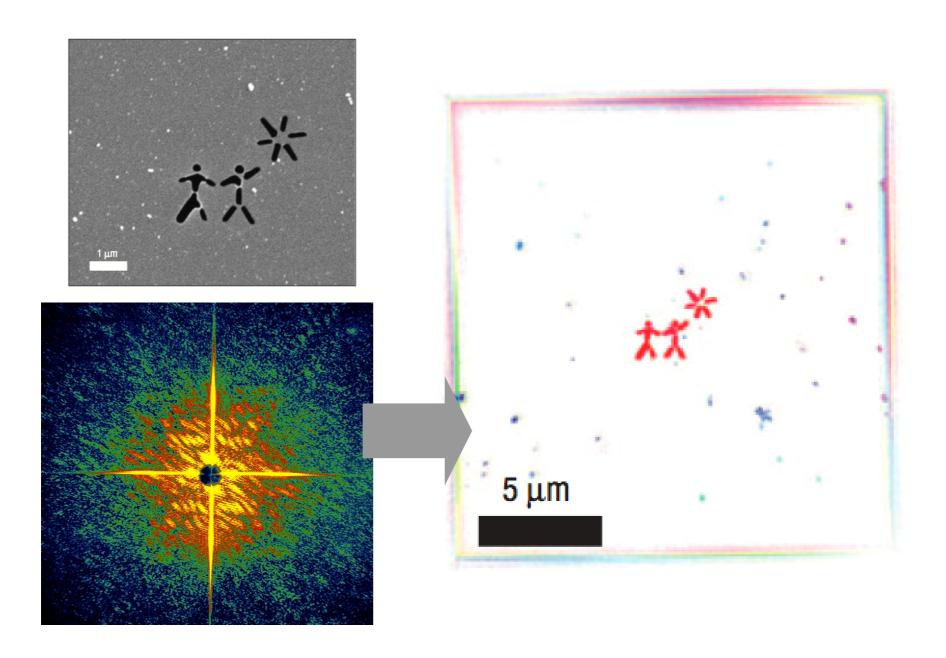
Radiation damage limits on radiation



R. Neutze *et al*, Nature **406**, 752 (2000)

K. J. Gaffney *et al*, Science **316**, 1444 (2007)

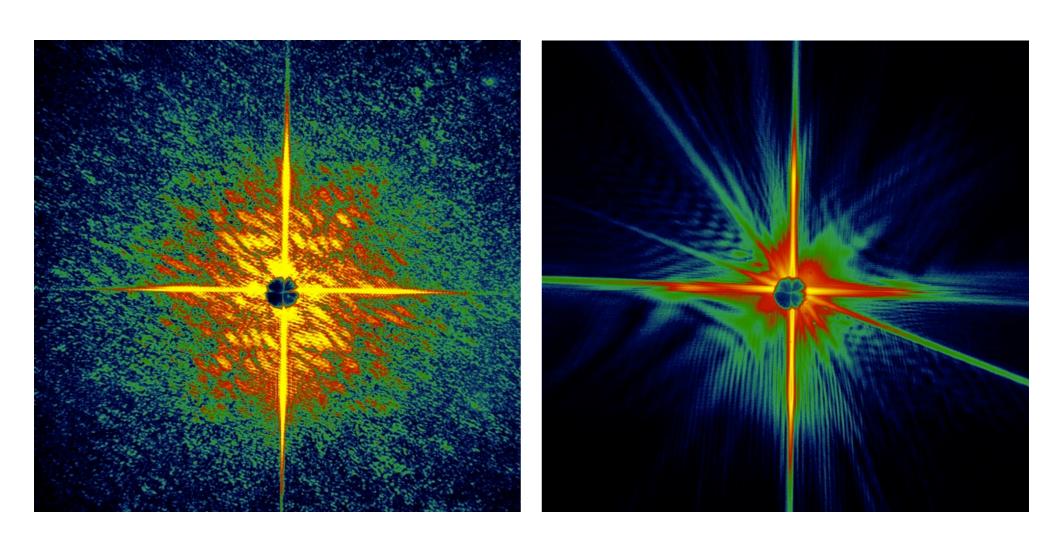
"Diffraction before destruction"



H. N. Chapman et al, Nat. Phys. 2, 839 (2006)

"Diffraction before destruction"

The imaging pulse vaporized the sample



H. N. Chapman *et al*, Nat. Phys. **2**, 839 (2006)

Ptychography

- Scanning an isolated illumination on an extended specimen
- Measure full coherent diffraction pattern at each scan point
- Combine everything to get a reconstruction

Dynamische Theorie der Kristallstrukturanalyse durch Elektronenbeugung im inhomogenen Primärstrahlwellenfeld

Von R. Hegerl und W. Hoppe

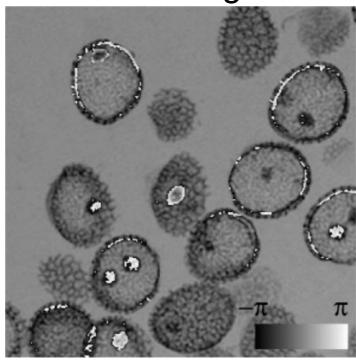
Some time ago a new principle was proposed for the registration of the complete information (amplitudes and phases) in a diffraction diagram, which does not—as does Holography—require the interference of the scattered waves with a single reference wave. The basis of the principle lies in the interference of neighbouring scattered waves which result when the object function g(x, y) is multiplied by a generalized primary wave function p(x, y) in Fourier space (diffraction diagram) this is a convolution of the Fourier transforms of these functions. The above mentioned interferences necessary for the phase determination can be obtained by suitable choice of the shape of p(x, y). To distinguish it from holography this procedure is designated "ptychography" ($\pi \tau v \xi = \text{fold}$). The procedure is applicable to periodic and aperiodic structures. The relationships are simplest for plane lattices. In this paper the theory is extended to space lattices both with and without consideration of the dynamic theory. The resulting effects are demonstrated using a practical example.

1969 - 1970

Ptychography

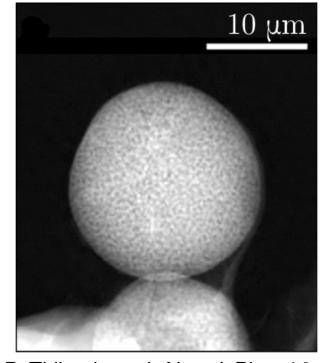
A few examples

Visible light



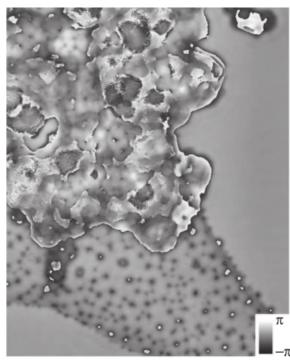
A. Maiden *et al.*, Opt. Lett. **35**, 2585-2587 (2010).

X-rays



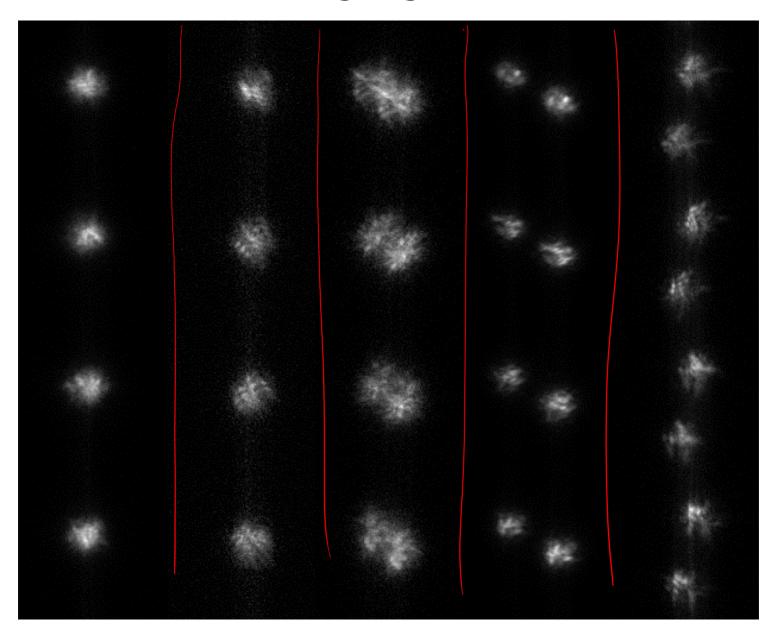
P. Thibault *et al.*, New J. Phys **14**, 063004 (2012).

electrons



M. Humphry *et al.*, Nat. Comm. **3**, 730 (2012).

Speckle imaging in astronomy



result
of air
turbulance

Source:http://www.cis.rit.edu/research/thesis/bs/2000/hoffmann/thesis.html

Speckle imaging in astronomy

one measurement: I(7) = 0 * point-spread fuction

$$\frac{1}{1}(\vec{a}) = \hat{0} \cdot M \leftarrow MTF$$

$$|\vec{I}(\vec{u})|^2 = |\vec{O}|^2 |n|^2 \qquad \text{can be modeled}$$

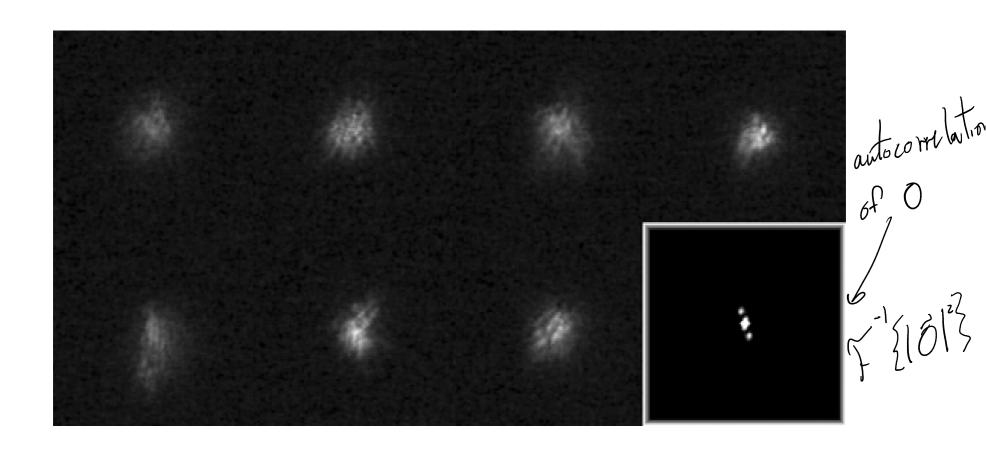
$$|\vec{I}(\vec{u})|^2 = |\vec{O}|^2 |n|^2 \qquad \text{from fluid}$$
average over the from fluid from fluid dynamics
multiple independent $|\vec{I}(\vec{u})|^2 = |\vec{O}|^2 \langle |M|^2 \rangle \qquad \text{dynamics}$

recovering 0 from
$$|\tilde{O}|^2$$
 same

coherent diffrative imaging

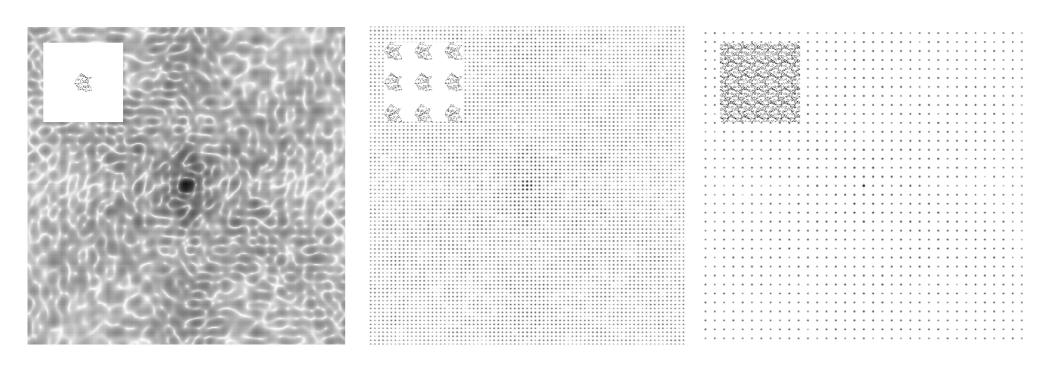
Imaging with interferometry and far-field

Speckle imaging in astronomy Retrieval of the autocorrelation

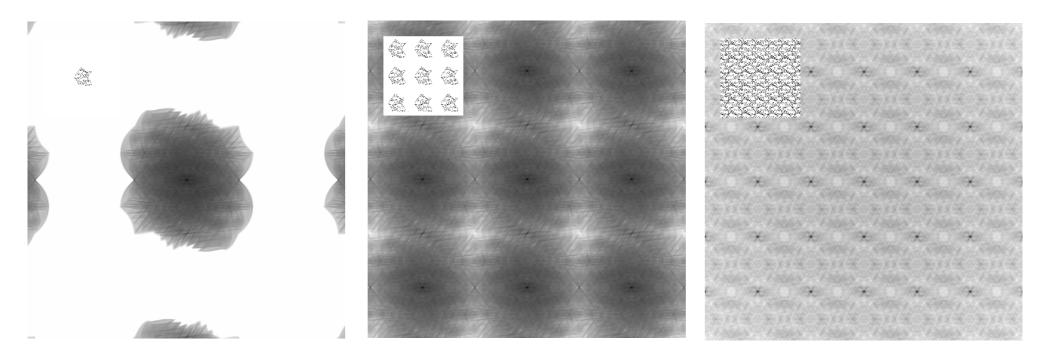


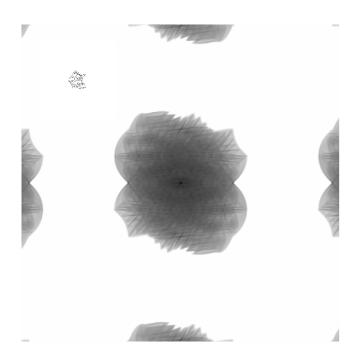
Source: http://www.astrosurf.com/hfosaf/uk/speckle10.htm

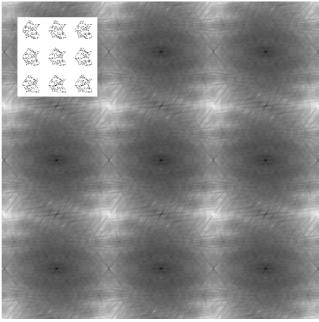
Diffraction by a crystal: Bragg peaks

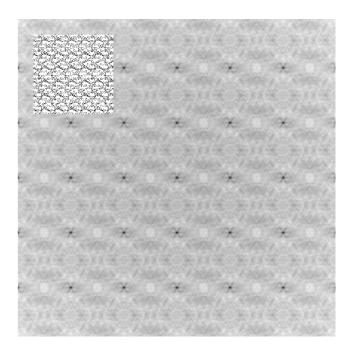


Fourier transform of intensity: autocorrelation

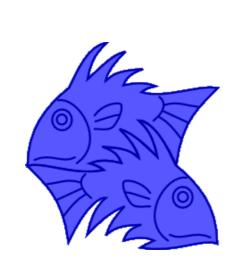


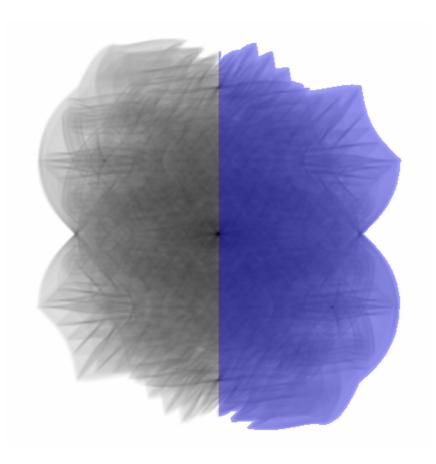






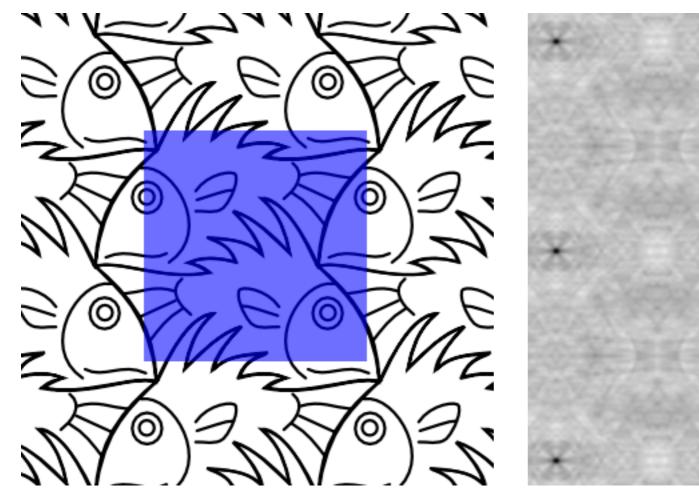
Problem is overconstrained with an isolated sample

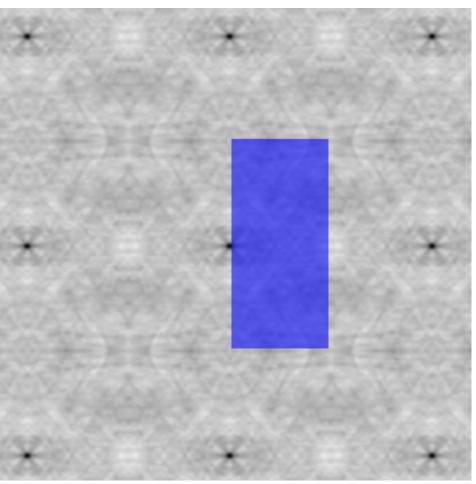




constraints ≥ 2N

Problem is underconstrained with a crystal

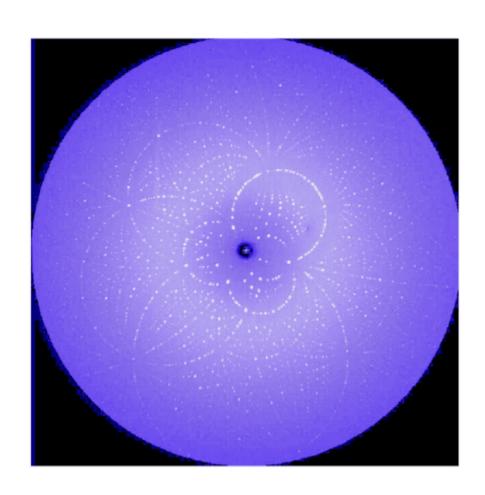




unknowns = N

constraints = N/2

CrystallographyStructure determination



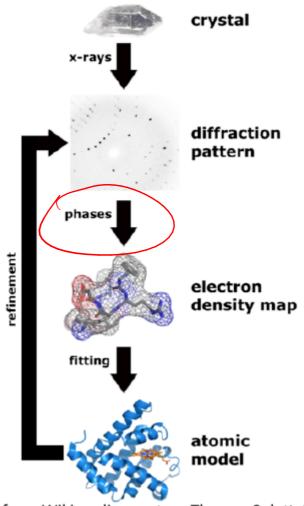


Image from Wikimedia courtesy Thomas Splettstoesser

Structure determination

- Hard problem: few measurements for the number of unknowns
- Luckily: crystals are made of atoms \rightarrow strong constraint
- Also common: combining additional measurements (SAD, MAD, isomorphous replacement, ...)

Summary

Imaging from far-field amplitudes

- Used when image-forming lenses are unavailable (or unreliable) or to obtain more quantitative images.
- In general difficult because of the phase problem
- Solved with the help of additional information:
 - Strong a priori knowledge (e.g. CDI: support)
 - Multiple measurements (e.g. ptychography)