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7.2.3 Stabilisers

For n qubits, one has 4 ⇥ 4n Pauli operators. The first factor 4 accounts for the four relevant phases
{ +1,�1,+i,�i }, while the rest count the operators being the basis of the operators acting on a 2n dimensional
space. We define as stabilisers the elements of an abelian subgroup which is responsible of the division of H

0 in
subspaces. Namely, there will be one code space HC and the other are the error spaces.

Example 7.1
Consider the case of n = 3. The stabilisers are

(Stabilisers for n = 3) = { 1̂1̂1̂, �̂z�̂z1̂, 1̂�̂z�̂z, �̂z1̂�̂z } . (7.99)

Consider �̂z�̂z1̂. It determines the parity of the first and the second qubit. Thus, it divides the Hilbert space
H

0 in two parts, one associated to its +1 eigenvalue and to its �1 eigenvalue:

+1 �1

|000i |100i
|111i |011i
|001i |010i
|110i |101i

(7.100)

A similar division can be done considering the operator 1̂�̂z�̂z, for which we have

+1 �1

|000i |001i
|111i |110i
|100i |010i
|011i |101i

(7.101)

We notice that there are no other possible partitions of H
0. Indeed, the last non-trivial stabilisers is �̂z1̂�̂z

can be expressed as the product of the other two:

�̂z1̂�̂z = (�̂z1̂�̂z)(�̂z�̂z1̂). (7.102)

To be specific, the operators �̂z1̂�̂z and �̂z�̂z1̂ are the generators of the abelian subgroup of the stabilisers.
Now, we can define the code space HC as that associated to the +1 eigenvalues for all the stabilisers.

Namely, this is the subspace of H
0 which is spanned by the +1 eigeinstates of all the generators of the

abelian subgroup:
HC = span(|000i , |111i). (7.103)

The partitioning of H
0 is represented graphically in Fig. 7.11.

Now, consider Êi being one of the 4 ⇥ 4n Pauli operators not being one of the stabilisers Ŝk. Now, since it
is constructed as the product of single qubit Pauli operators, Êi can only commute or anticommute with the
stabilisers Ŝk.

• Assume that it commutes:
h
Êi, Ŝk

i
= 0. Then, we have that for any | i 2 HC, it holds

ŜkÊi | i = ÊiŜk | i = Êi | i , (7.104)

where the last equality follows from the fact that Ŝk is a stabiliser and thus acts as an identity on HC. Then,
if Êi commutes stabiliser Ŝk, it is associated to the eigenvalue +1 of the latter. Indeed, the state |�ii = Êi | i
is associated to the +1 eigenvalue of Ŝk.
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Fig. 7.11: Division of the Hilbert space H
0 with respect to the subspaces defined by the eigenvalues of �̂z�̂z1̂

and 1̂�̂z�̂z.

• Conversely, if it anticommutes:
n
Êi, Ŝk

o
= 0, then

ŜkÊi | i = �ÊiŜk | i = �Êi | i . (7.105)

In such a case, one says that Êi is associated to the �1 eigenvalue of Ŝk.

Example 7.2
In the case of n = 3 one has that the operators �̂x1̂1̂ and �̂x�̂x�̂x are associated to the eigenvalues of �̂z�̂z1̂

and 1̂�̂z�̂z as
�̂z�̂z1̂ 1̂�̂z�̂z

�̂x1̂1̂ �1 +1
�̂x�̂x�̂x +1 +1

(7.106)

Now, �̂x�̂x�̂x commutes with both the (generators of the subgroup of) stabilisers. Thus, it means that if

| i 2 HC, then �̂x�̂x�̂x | i 2 HC. (7.107)

Namely, it is a normaliser (see below) and it acts as a logical �̂x.
Conversely, �̂x1̂1̂ anticommutes with �̂z�̂z1̂. This means that given a state

| i 2 HC, then �̂x1̂1̂ | i 2 H
0
1 [ H

0
3, (7.108)

where H
0
1 and H

0
3 are respectively associated to the eigenvalues (�1,+1) and (�1,�1) of (�̂z�̂z1̂, 1̂�̂z�̂z).

However, since �̂x1̂1̂ commutes with 1̂�̂z�̂z, then �̂x1̂1̂ | i 2 H
0
1.

Namely, the operator �̂x1̂1̂ is one of the V̂i errors that maps the states from the code space to the
corresponding H

0
i.

If we have k qubits that are encoded in n qubits, with n > k, then we need (n � k) generators from the
stabilisers to define the partitions. By starting with dim(H0) = 2n, since each generator divides the Hilbert space
in two parts, we have 2n�k di↵erent subspaces of dimension 2k each. One of these will be the code space HC .
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7.2.4 Normalisers and Centralisers

There are Pauli operators that commute with all the elements of the stabilisers, but do not appartain to the
stabilisers subgroup. These are the normalisers N̂k. They respect the partition of H, meaning that they do not
map states from the code space HC to an error space H

0
i, and act non-trivially in the code space. They are

defined via
N̂kŜiN̂

†
k = Ŝj , (7.109)

where Ŝi are the stabilisers. If i = j they are called centralisers, while for i 6= j they are normalisers. In the
particular case of the Pauli algebra, meaning that all the operators are generated by the product of Pauli
operators, one has that all normalisers are centralisers. Indeed,

N̂kŜiN̂
†
k = ±N̂kN̂

†
k Ŝi = ±Ŝi, (7.110)

since Pauli operators multiplying their Hermitian conjugate give 1̂. Thus, they are all centralisers: N̂kŜiN̂
†
k =

Ŝi = Ŝj .

Example 7.3
Consider the case of n = 3. The operator �̂x�̂x�̂x acts as follows:

|000i �̂x�! |111i ,

|111i �̂x�! |000i .
(7.111)

Thus, it acts as a logical �̂x, and maps | i 2 HC 7! |�i 2 HC . The same happens for �̂x�̂x�̂xŜk for any
stabiliser Ŝk. Indeed, for | i 2 HC, we have that

�̂x�̂x�̂xŜk | i = �̂x�̂x�̂x | i , (7.112)

since Ŝk acts as a logical identity on HC. Suppose we take the stabiliser Ŝk = �̂z�̂z1̂, then

(�̂x�̂x�̂x)(�̂z�̂z1̂) = ��̂y�̂y�̂x, (7.113)

which also acts as a logical �̂x.
The normalisers contain �̂x�̂x�̂x, ��̂y�̂y�̂y, �̂z�̂z�̂z, and all the products of these with all the stabilisers

Ŝk, which act as a logical identity.

Physical operation Logical operation

1̂1̂1̂ 1̂

�̂z�̂z1̂ 1̂

�̂z1̂�̂z 1̂

1̂�̂z�̂z 1̂

�̂x�̂x�̂x �̂x
�̂x�̂x�̂xŜk �̂x

��̂y�̂y�̂y �̂y
��̂y�̂y�̂yŜk �̂y

�̂z�̂z�̂z �̂z
�̂z�̂z�̂zŜk �̂z

(7.114)
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Important note: To have a logical �̂y, it is not su�cient to act with �̂y�̂y�̂y: one needs to add a (�) sign
as well.

7.2.5 Stabiliser code

Consider the three qubits encoding a single logical qubit. The stabilisers are:

1̂1̂1̂, �̂z�̂z1̂, �̂z1̂�̂z, 1̂�̂z�̂z. (7.115)

Among the possible errors, there are some that are more and less likely to occur. Under the assumption of errors
that act independently on the qubits, the error 1̂�̂x1̂ is more likely to occur than �̂x�̂x�̂x. The first has weight
1 (only one operator di↵erent from the identity), while the second has weight 3.

Now, the question is which are the errors that can be corrected, and eventually how they can be corrected.
As we already saw, the errors where only one of the qubits is modified can be corrected (see bit-flip, phase-flip
and 9-qubit Shor QEC codes). These can be corrected via the application of the recovery operator R̂k = V̂ †

k , so
that

R̂kV̂k = V̂ †
k V̂k = 1̂. (7.116)

However, the operator R̂k can correct for a much wider class of operators. Indeed, given a state | i 2 HC and
a stabiliser Ŝi, one has

R̂k(V̂kŜi) | i = R̂kV̂k | i = | i . (7.117)

Thus, R̂k can correct also errors of the form of a correctable error multiplied by a stabiliser, i.e. V̂kŜi.
Conversely, an error in the class of normalisers which is not a stabiliser is a non-correctable error. Indeed, it

acts non-trivially on the code space.
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